REVIEW Libri Oncol., Vol. 34 (2006), N° 1-3, 41 - 51
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Summary

Molecular defects discovered in the recent years could explain the pathogenesis of myeloid malignancies. Moreover
these alterations serve as the targets for the therapy. In this article treatment approach of myeloid malignancies is
presented, together with the new treatment possibilities specifically acting on the level of molecular defects. Therapy
with the combination of several agents which target more than one molecular alterations i.e. gene mutation, signal
transduction pathway or antigenic determinant may be the most promising therapy in the future.
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NOVOSTI U LI]ECEN]U ZLOCUDNIH BOLESTI MIJELOIDNIH STANICA
Sazetak

Nedavno otkrivenim molekularnim ostecenjima moguce je objasniti patogenezu zlocudnih bolesti mijeloidnih sta-
nica. Te su promjene usto i ciljevi prema kojima se usmjerava terapija. U ovom ¢lanku prikazan je pristup u lijecenju
zlo¢udnih bolesti mijeloidnih stanica te nove mogu¢énosti lijecenja s djelovanjem na razini molekularnih ostecenja. Terapi-
ja kombinacijom nekoliko lijekova koji ciljaju viSe od jedne molekularne promjene, npr. gensku mutaciju, prijenos signala
ili antigensku determinantu najviSe obecava i mogla bi u buducnosti dati najbolje rezultate.

KLJUCNE RIJECL: mijeloproliferatvine bolesti, AML, KML, MDS, molekularna ostecenja, ciljana terapija

INTRODUCTION In this review article current therapy of
myeloproliferative disorders (MPD) will be dis-
cussed. Some of the new insight into the molecu-
lar basis of the malignant disorders of myeloid
progenitors will be presented. The molecular al-
terations as possible targets for the current and
future therapy will be comment.

The new insights of pathogenesis in myeloid
malignancies at the molecular level open a new
possibility for therapy. Based on this approaches
it is expected in the near future to switch from
non-specific standard chemotherapy combined
with radiotherapy to more specific treatment.

The principle of such therapy is the use of The terms my'elo1d mahgnanggs refers to a
“smart” drugs that act at the level of molecular group of well defined hematopoietic neoplasm
alterations of myeloproliferation. Some data sug- involving cells committed to myeloid line to cel-
gests that targeted therapy could be given alone lular development (Fig. 1.). All of these malig-
or in combination with some other treatment ap- nancies show clonal proliferation of myeloid pre-
proach especially immunotherapy. cursors (1, 2).
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ACUTE MYELOID LEUKEMIA (AML):

The basic approach of current therapy in
AML is to achieve complete remission (CR) of the
disease with the rapid restoration of normal bone
marrow function. If the patients are not treated
after the CR most of them will relapse. Standard
postinduction or postremission therapy usually
comprises one or more courses of intensive che-
motherapy with or without stem cell transplanta-
tion. The goal of such therapy is to eradicate re-
sidual leukemia, allowing the possibility of cure.
During the last three decade combination of cyta-
rabine with daunorubicin (7+3) has been well es-
tablished as a common remission induction regi-
men (3). According to the risk for relapse as a
postremission therapy patients receive either in-
tensive consolidation or intensive chemotherapy
with autologous or allogeneic stem cell trans-
plantation (4, 5). Current results show CR rate in
younger adults (< 60 years of age) of 65-80% and
overall survival rate of only 30-35% (6). In pa-
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tients older than 60 years the CR rate is between
40-50%, but there are few (10-15%) long-term sur-
vivors (7). It was expected that intensification of
therapy by using the higher doses of anthracy-
clines or cytarabine, addition of other cytotoxic
agents such as etoposide, or novel agents with
unique mechanisms of action such as the purine
analogs might increase antileukemic efficacy
(8-11). Preliminary data shows that high-dose
cytarabine is effective (CR rate > 80%) with ac-
ceptable toxicity (12).

The new treatment strategy for AML de-
pends predominantly on prognostic and risk fac-
tors recognized at diagnosis (Fig. 2).

More than 60% of good risk patients receiv-
ing chemotherapy with or without autologous
transplantation are long term survivors (13). For
intermediate and high risk patients allogeneic
stem cell transplantation is at the moment the
treatment of choice (14, 15).

Moreover, better understanding of AML es-
pecially the molecular basis of leukemic cell al-
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ACUTE MYELOID LEUKEMIA - RISK FACTORS

FAVORABLE

e Age < 50 years
o Karnofsky score > 60%
e CD34-neg. Phenotype
e MDR 1-neg. Phenotype
e Hypocellular leukemia
e Cytogenetics
normal karyotype
inv (16)
t(8;21)
t (15;17)
absence of changes in
chromosomes 5 or 7
¢ FLT3 gene mutations absent

Figure 2. Risk factors in AML

terations (Fig.3.) could explain the pathogenesis
of leukemia and might substantially change the
prognostic and treatment approach in the near

future.

UNFAVORABLE

e Age > 60 years

¢ Karnofsky score < 60%

e CD34-pos. phenotype

e MDR 1-pos. phenotype

¢ Prior myelodisplastic syndrome
myeloproliferative or hematologic
disorder, chemotherapy or
radiation therapy

e Cytogenetics
trisomy 8
complex karyotypic abnormalities
t (6;9)
changes in chromosomes 5 or 7

¢ FLT3 gene mutations present

e Acute megakaryocytic leukemia (M7)

Molecular alterations that disrupt almost
every facet of cell transformation could be in-
volved in leukemogensis. These processes in-

clude the regulation of cell proliferation, differ-
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Figure 3. Molecular defects in AML
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entiation, self-renewal, survival, cell cycle check-
point control, DNA repair and chromatin stabil-
ity, and cell dissemination (see Fig.3.). Some of
these alterations are the targets for therapy. It has
to be stated that the molecular pathogenesis of
AML is complex. In some cases it is obvious that
there is a direct correlation between the molecu-
lar defect and the biological feature of leukemia,
while in the others explanation for the molecular
basis of leukemia is still not clear. Better under-
standing of this links more specific therapy can
be developed. Currently the investigational ap-
proach is to prove that targeted drugs might in-
fluence differentiation block and proliferative ac-
tivity of leukemic cells, might induce specific
apoptosis of malignant cells and might restore
cell cycle control.

The new agents in clinical trials in AML are
presented in Table 1.

Gemtuzumab  ozogamicin is monoclonal
anti-CD33 antibody chemically linked to a potent
cytotoxic agent, calichemicin. The monoclonal
antibody after linkage to CD-33 positive leuke-
mic blasts release calichemicin which disrupt cell
organelles ultimately leading to cell death. This
drug currently is under investigation in most
large cooperative groups in phase II/III studies.
In EORTC group older patients are currently ran-
domizing to receive chemotherapy with or with-
out gemtuzumab ozogamomycin and than again
randomizing in CR receiving maintenance ther-
apy with or without gemtuzumab ozogamomicin
(16). Preliminary data showed that gemtuzumab
ozogamomicin given in older patients alone and
in combination with chemotherapy could achie-
ve CR rate in 20% and 50% of patients respec-
tively (17). The toxicity risk is acceptable and oc-

casional patients have developed a veno-occlu-
sive disease-like syndrome. For younger patients
the preliminary data is encouraging; CR rate
with chemotherapy and gemtuzumab ozogamo-
mycin could be achieved in approximately 85%
(18).

Clofarabine a deoxynucleoside analogs is ef-
fective antileukemic drug not associated with the
neurotoxicity observed with other analogs (19).
In relapsed or refractory patients with AML re-
sponse rate is about 50% (20). For newly diag-
nosed older patients CR rate with clofarabine in
combination with cytarabine (the rational of
combination is to modulate cytarabine triphos-
phate accumulation and decrease its toxicity) is
achieved in 60% cases (21).

Genasense is another new agent known as
antisense oligonucleotide which inhibits BCL-2
(22). BCL-2 as an apoptosis inhibitor protein can
render leukemic cells resistant to induction of
apoptosis. This antisense oligonucleotide com-
bined with chemotherapy in phase II study could
achieve CR rate in about 45% of patients with re-
lapsed/refractory AML (23). At the moment the
role of drug is investigating in induction and
postremission therapy in phase III trial.

Agents that might be effective in AML are
P-glycoprotein modulators. P-glycoprotein is a
cellular membrane protein encoded by MDR1
gene. It serves as an efflux pump to extrude cyto-
toxic drugs from the cell (24). A high expression
of P-glycoprotein is usually found in older pa-
tients with AML and in those with relapsed or re-
fractory AML (25). This might explain refractori-
ness of these patients to standard chemotherapy.
Several agents are able to overcome this refracto-
riness by blocking the efflux pump. MDR modu-

Table 1.

NEW AGENTS IN AML
Agent Target Class
Gemtuzmab ozogamomycin CD33 Antibody/Immunoconjugates
Clofarabine DNA Deoxyadenosine analogs
Genasense BCL-2 Apoptosis inhibitor
Zosuquidar, PSC833, P-gp MDR inhibitors
Tipifarnib Lamins FT inhibitors
Valproic acid, SAHA, depsipetide HD AC Histone deacetylase cytarabine(HD AC) inhibitors
Bevacizumab VEGF Antiangiogenic agents
PKC-412,CEP-701, MLN518,SU11248 FLT3 ITD FLT3 inhibitors

Abbreviations: MDR — multidrug resistance, P-gp — P-glycoprotein, FT — farnesyltransferase, FLT3 ITD - fms-like tyrosine kinase 3 internal tandem duplication; SAHA,

suberoylanilide hydroxamic acid; VEGF, vascular endothelial growth factor
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lators such as cyclosporine and PSC-833 have no
shown benefit in AML. More potent second gen-
eration modulators /Zosuquidar - formerly
LY335979) is currently being investigated (26).

Farnesyltransferase inhibitors (FTI) also

show activity in AML because FTT inhibitors in-
terfere with RAS signaling farnelysation of RAS
and its transfer to the plasma membrane (27).
This is important step in signaling process. It is
well known that mutation of RAS gene is associ-
ated with the development of myeloid leukemia
(28). The overall response on oral agent FTI,
Tipafarnib in newly diagnosed older patients
with AML is 34% (29).
The remodeling and restoration of nuclear chro-
matin is another important mechanism of leuke-
mogenesis. Histone acetyltransferase promote
the remodeling of chromatin. The opposite effect
and restoration of chromatin configuration is
controlled by histone deacethylase (HDACs). By
its inhibitors it is possible to induce the differen-
tiation of leukemic precursor cells (30). Several
new agents as suberoylanilide hydroxamic acid
/SAHA/, valproic acid, depsi-peptide and MS-275
acting as HDACs inhibitors are currently testing
in phase II clinical trials (31, 32).

Increased microvessel density was docu-
mented in bone marrow biopsies from patients
with AML. By adding vascular endothelial
growth factor (VEGF) it is possible to stimulate
growth and proliferation of leukemic cells (33).
Growth stimulation by VEGF might be blocked
by the use of receptor inhibitors of VEGF. Such
activity has been demonstrated for small mole-
cule inhibitor of phosphorilation of VEGF recep-
tor SU5416. Another agent, anti-VEGF antibody,
Bevacizumab was tested in phase II clinical trial.
CR rate in patients receiving Bevacizumab after
chemotherapy was achieved in about half of
them (34).

In 30% of AML patients mutations of FLT3
receptor tyrosine kinase was described (35). This
constitutive activation of FLT3 receptor tyrosine
kinase is associated with poor prognosis of AML.
Recently FLT3-selective targeted tyrosine kinase
inhibitors have been developed. At the moment
four agents with in vitro cytotoxicity of leukemia
cells are undergoing investigation in clinical tri-
als (36-38). Clinical responses are modest, and
only transient reduction of blasts has been ob-
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served. Current clinical trials focus on the evalu-
ation of FLT3 inhibitors in combination with che-
motherapy.

ACUTE PROMYELOCYTIC LEUKEMIA
(APL, AML-M3):

More than 90% of patients with APL have
the balanced translocation t (15; 17) (q22; q11.12)
involving the retinoic acid receptor-a (RAR-a)
gene on chromosome 17 and PML gene on chro-
mosome 15 (39). The new fusion oncogene gov-
erns the synthesis of PML/RAR-« fusion protein.
The protein has reduced sensitivity to retinoic
acid, preventing terminal differentiation of ma-
lignant promyelocytes. This defect can be over-
come with the use of trans-retinoic acid (ATRA).
ATRA therapy accelerates the terminal differen-
tiation of malignant promyelocytes to mature
neutrophils leading to apoptosis and CR without
myelosuppression and bone marrow hypoplasia
(40). Recent results of phase III trials proved a
very high efficacy of ATRA and chemotherapy
for remission induction, consolidation and main-
tenance therapy. The cure rate is about 70-75 %(
41-42).

Arsenic trioxide (ATO) as ATRA, affects both
apoptosis and partial differentiation in APL by
interacting with the PML/RAR-a protein (43).
ATO is also effective in patients who relapsed af-
ter ATRA treatment (44). Gemtuzumab ozogamo-
mycin is recently shown to be very effective in
APL (45), because the CD-33 antigen is strongly
expressed in APL cells. Many of the clinical trials
currently are investigating the combination of
ATRA, ATO and Gemtuzumab ozogamomycin
in remission induction, consolidation and main-
tenance therapy (46). The goal of such approach
is to reduce or even omit the need for chemother-

apy.

MYELODYSPLASTIC SYNDROME

Myelodisplatic syndrome is a clonal disor-
der of myeloid stem cells, resulting in alterations
of differentiation and maturation of erythrocyte,
platelet and granulocytic lineage. In MDS a fre-
quent clonal, non-random chromosomal dele-
tions (7q-, 59-, 20g-, 6g- 11q- and 13g-) was re-
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ported. These changes appear to inactivate tumor
suppressor genes required for the normal devel-
opment of myeloid cells (47). Tumor suppressors
are very difficult to identify compare to the onco-
genes activated by chromosomal translocations
reported also in MDS. The deleted regions de-
tected by cytogenetic methods are very large,
containing many genes, thus making it hard to
locate the critically affected gene or genes. Be-
cause of that therapy of MDS is still non-specific
or better to say symptomatic. For the advanced
stages of MDS with the signs of transformation to
AML, treatment approach is similar as in AML.
Targeted therapeutic advances in MDS will likely
depend on a full comprehension of underlying
molecular mechanisms, in particular the tumor
suppressor genes lost through clonal, nonran-
dom chromosomal deletions, such as the 7q— and
(del) 5q.

CHRONIC MYELOID LEUKEMIA

Philadelphia chromosome, a cytogenetic
marker of CML, is reciprocal translocation of the
c-ABL gene on chromosome 9q34 to the chromo-
some 22. The new BCR-ABL fusion oncogene on
chromosome 22 encodes synthesis of Ber-Abl fu-
sion proteins. These proteins have the ability to
promote leukemogenesis. The Bcr-Abl fusion
protein contains the entire tyrosine kinase cata-
lytic domain from c-Abl and has constitutively
increased tyrosine kinase activity (48). With the
understanding of a unique gene product and its
activity many efforts have been made to develop
compounds that could selectively inhibits aber-
rant tyrosine kinase. The compound which was
known to bind to the ATP binding site of protein
kinases were synthesized and screened for bio-
logical activity. One such compound termed
STI-571, was found to be a potent inhibitor of the
Ber-Abl protein tyrosine kinase (49). This agent
inhibited cellular proliferation and tumor forma-
tion by Bcr/Abl expressing cells without induc-
ing apoptosis, and produced a 92 to 98 percent
decrease in CML colony growth in vitro without
inhibiting normal colony growth (50). This com-
pound was renamed to imatinib mesylate (Gli-
veec) and currently is the first line therapy of Ph
positive CML. The recommended initial starting
dose of imatinib is 400 mg/day for patients in
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Table 2.
DEFINITIONS OF RESPONSE ON IMATINIB IN CML

Definition

Normal full blood count and white
cell differential count, no evidence
of extramedullary disease

66% - 95% Ph-positive metaphases™

Level of Response

Complete Hematologic
response (CHR)

Minimal cytogenetic
response

Minor cytogenetic
response

Partial cytogenetic
response

Complete cytogenetic
response(CCR)
Major cytogenetic
response (MCR)
Major molecular
response (MMR)
Complete molecular
response (CMR)

36% - 65% Ph-positive metaphases*

1% - 35% Ph-positive metaphases*

0% Ph-positive metaphases

0% - 35% Ph-positive metaphases

= 3-log reduction of BCR-ABL mRNA

Negativity by RT-PCR

* Based on the analysis of at least 20 metaphases

chronic phase and 600 mg/day for patients in ac-
celerated phase or blast crisis (51). Doses less
than 300 mg/day are considered subtherapeutic
and should rarely be used. Responses to imatinib
may occur at the hematologic, cytogenetic and
molecular levels. The defining criteria for the
various levels of response are summarized in ta-
ble 2.

Those patients who achieve both complete
cytogenetic response and >3 log reduction in the
Q-PCR signal, 100 percent were alive and free of
progression at 24 months (52).

A very small proportion of patients are re-
sistant to treatment with imatinib. In addition,
many patients with initial responses to imatinib
ultimately relapse. This proportion for chronic
phase is between 10 to 15% while in patients with
blastic crisis it is estimated to be 80% (53) at two
years. Drug resistance to imatinib is generally a
consequence of reactivation of Ber/Abl signal-
ing, which can be due to bcr/abl overexpression,
excretion of imatinib from the «cell by
transmembrane transporters, or, most com-
monly, by the development of single nucleotide
mutations in ber/abl which result in amino acid
substitutions that change the conformation of the
ATP binding site. In such situation imatinib no
longer binds to mutant ber/abl effectively. More
than 40 such mutations have been described to
date (54, 55). While some of these confer only
modest increases in the resistance to imatinib,
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others produce profound resistance in vitro and
in vivo, which cannot be overcome by dose in-
creases.

A number of new tyrosine kinase inhibitors
have been synthesized specifically to target the
altered bcr/abl proteins not responding any
more to imatinib. Phase I /Il trials have been com-
pleted with AMN107 (nilotinib) and BMS-354825
(dasatinib) (56, 57) in patients refractory to, or in-
tolerant of imatinib. Both drugs are orally
bioavailable, have favorable toxicity profiles, are
>100-fold more potent than imatinib in vitro, and
have produced hematologic and cytogenetic re-
sponses in patients whose CML was no longer re-
sponsive to imatinib.

Although both drugs are effective against
most of the known bcr/abl mutations, some of
the mutations, most notably a mutation known
as T315], are also resistant to high concentrations
of these newer agents (56, 57). Exploratory clini-
cal trials are being planned to assess whether
these more potent inhibitors might be employed,
either alone or in combination with imatinib or
other agents, as initial therapy.

In vitro culture studies have indicated that
CD34+ CML progenitor cells can remain viable in
a quiescent state in the presence of imatinib and
growth factors (58). Mathematical modeling and
in vitro studies also suggest that imatinib is a po-
tent inhibitor of the production of differentiated
leukemic cells but does not deplete the pool of
leukemic stem cells As experience with the
newer tyrosine kinase inhibitors matures, it is
likely that the initial use of chemotherapy in
imatinib failures will decline. The clinical prob-
lem will then be whether to refer patients who
have a complete cytogenetic response to these
new agents to hematopoietic cell transplantation
or whether to continue the agents in the hope that
the responses will be durable. Currently, most
patients treated with these drugs have been fol-
lowed for less than one year, so that the durabil-
ity of these responses is not yet known.

OTHER CHRONIC MYELOPROLIFERATIVE
DISORDERS

In the WHO classification, three common
and well characterized diseases are considered as
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myeloproliferative disorders. These include:
Polycythaemia Vera (PV), agnogenic myeloid
metaplasia (AMM also called idiopathic myelo-
fibrosis) and essential thrombocythemia (ET).
The molecular pathogenesis of these MPDs is
poorly understood. In CML molecular pathoge-
nesis was identified by the examination of recur-
rent chromosomal translocations. In other MPDs
recurrent chromosomal translocations were not
found. One of the basic hallmarks of MPDs is an
abnormal response to cytokines. Numerous stud-
ies showed the existence of autocrine stimulation
or a cytokine receptor defects as the causes of ab-
normal cytokine response (59, 60). These results
suggest that the cytokine hypersensitivity was
due to downstream signaling defects and that
these MPDs are accompanied by a constitutive
kinase activity. Cytoplasmatic tyrosine kinase Ja-
nus kinase 2 (JAK2), a gene found on the short
arm of chromosome 9 (9p) could explain in part
this hypersensitivity. A mutation of JAK2 gene
leads to constitutive tyrosine phosphorilation
activity that promotes hypersensitivity to cyto-
kines and induces erythrocytosis in a mouse
model (61).

A single gain-of-function point mutation
(Val617Phe, V617F) in JAK2 has been identified
in 65 to 97 percent of patients with PV, 23 to 57
percent of those with ET, and 43 to 57 percent of
those with AMM (62, 63). This discovery of the
JAK2 V617F mutation is a major advance in en-
hancing our understanding of both the molecular
pathogenesis and the clinical aspects of PV and
other MPDs. This observation opens new ap-
proach for researches and may have implications
for the diagnosis and classification of MPDs. Re-
search can now focus on MPDs that are negative
for the V617F mutation, which might constitute a
distinctive entity. Further work is also needed to
determine how a single mutation in JAK2 gives
rise to three different diseases. Moreover, the
JAK2 V617F mutation offers a molecular target
for new drug discovery.

SUMMARY AND FUTURE DIRECTIONS

A myriad of new agents are now available
for the treatment of myeloproliferative disorders.
They are currently using either alone or in combi-
nations with each other or with conventional che-
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motherapy. This approach has the potential to
change the standard of care for patients with
myeloproliferative disorders. Treatment combi-
nations of several agents which target more than
one gene mutation, signal transduction pathway
or antigenic determinant are under investigation.
This may be the most promising therapy in the
future. Many of these agents are currently under
investigation in cooperative group trials. As the
molecular diversity of myeloproliferative disor-
ders continues to be explored, it is expected that
new molecular defects will be discovered in the
near future. By increasing the type and number
of new molecular alterations for targeted therapy
in the near future one may expect more effective
treatment modalities with better treatment out-
come for myeloid malignancies.
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