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Abstract—In this paper, we study the problem of beam track-
ing of a multipath channel in millimeter-wave massive MIMO
communication system using adaptive filters. We focus on the
performance of least-mean-square filter (LMS) and recursive
least-squares filter (RLS) algorithms, compared to a reference
extended Kalman filter (EKF), in scenarios where the wireless
channel is dominated by a single line of sight (LOS) path or a
small number of strong paths. The signal direction and channel
coefficients are tracked and updated using these filters. Our
results recommend that beamforming systems at millimeter-wave
bands should consider variable number of paths rather than a
single dominant LOS path. Furthermore, we show that the mean
squared-error (MSE) of the innovation process gives a better
overall view of the tracking performance than the MSE of the
state parameters.

Index Terms—Beam tracking, Channel tracking, mmWave,
multipath, LMS, RLS, EKF.

I. INTRODUCTION

Millimeter-wave (mmWave) wireless communication sys-
tems are gaining a great amount of attention, recently, on
the academic and industrial levels due to the huge available
non-utilized bandwidth, in addition to the promising high data
transmission rates, in the mmWave frequency bands [1]. How-
ever, these advantages come at a price, where new techniques
need to be developed to deal with the signal attenuation at
high-frequency transmission. As the transmission wavelength
is too small at mmWave bands, the physical size of the
antenna array system is small too, and a massive number of
antenna elements is required to produce directional beams
pointing at specific directions (e.g. user location) [2]–[4].
The effects of beam pointing errors and their impact on the
performance of mmWave wireless communications system
have been discussed thoroughly in the literature [5]–[7].

Narrow beamwidth at mmWave bands is an attractive fea-
ture for three main reasons: First, in multiuser downlink
scenario, the 3 dB beamwidth is very narrow that the in-
terference between simultaneously served users is very low,
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which increases the users’ signal-to-interference-plus-noise
ratio (SINR). Second, narrow beamwidth makes the com-
munication link more immune to potential intruders, thereby
raising the security of the communicating parties. Third, since
large concentrated power is available in narrow beams (high
signal-to-noise ratio, SNR), the quality of the communications
link improves. However, narrow beams are sensitive to small
changes in the position of the user, which necessitates the
use of fast and accurate adaptive beam tracking techniques to
maintain an acceptable link quality.

The beam tracking problem mainly involves the process of
adaptively estimating the angular beam parameters, which are
the direction of arrival (DOA) of the received signal and the
direction of departure (DOD) of the transmitted signal. These
two parameters represent the state of the tracking problem, and
they need to be updated every time new data snapshots become
available. The main motivation behind the need for tracking
the direction of the transmitted and received signals is the
relationship between the user-beam alignment and the quality
of the received signal (e.g. SNR), which could be severely
dropped if the user is more than 3dB away from the main
beam direction [8]. Even though wide beams are more tolerant
to user mobility than narrow beams, the latter guarantee better
link quality, and thereby higher data transmission rates. It
is worth noting that the channel coefficients between the
transmitter and receiver sides need to be tracked as well in
mobility scenarios. Thus, it is useful to claim channel and
beam tracking when the channel coefficients, DOD, and DOA
are tracked in wireless communications systems.

Different types of methods have been proposed in the
literature to handle the beam tracking problem, which can be
classified into two main categories. The first category is model-
based, where a dynamics model is assumed to update the
target state adaptively. The Kalman filter (KF) [9], [10] and the
least-mean-square (LMS) algorithm [11] are among the widely
used trackers under this category, where these two algorithms
were used to track the DOA, DOD, and the channel gain in
a mmWave wireless communication system setup. It is worth
noting that the authors of these articles have concluded that the
mean squared-error (MSE) of the state parameters increases
over time (i.e. the KF and LMS have divergence problem in
the beam-tracking application). In this letter, we show that
it is recommended to inspect the MSE of the innovation
process, which gives a better overall idea about the behaviour
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of the trackers that are shown to have similar performance.The
MSE of the state parameters represents the average of the
squared error between the measured DOA and DOD and their
estimated values over time. On the other hand, the MSE of the
innovation process represents the average of the squared error
between the measured and estimated observations, where there
exists a mathematical model that relates the state parameters
to the measured observations. Thus, the performance of the
tracker is not only a function of the type of the tracker used
for online estimation of the state, but also a function of the
quality of the observation, as well as the mathematical model
that is supposed to capture the actual physical reality to some
extent.

The KF has also been used in [12], [13] to track the slow
variations in the DOA and DOD angles and detect abrupt
channel changes. In [14], an adaptive multistage algorithm
with low feedback overhead has been proposed to track the
beam and estimate the channel of a mmWave vehicular com-
munication link. Also, the authors proposed an updated version
of the extended Kalman filter (EKF) that is suitable for beam
tracking in high mobility scenario. In addition, the particle
filter (PF) is used to perform a beam tracking recently in the
literature, such as [12], [15], [16], where, generally, the angular
position of the user is described by a probability distribution
that is tracked by the PF. One common advantage shared
among the trackers in this category is that these algorithms
are well studied and explored in the literature, and they have
a predictable performance. On the other hand, they still have
a few limitations, such as the linear model and Gaussian noise
assumptions in the KF, and the relatively high processing time
of the PF, even though they have fast convergence speeds.

The second category of beam trackers is based on ma-
chine learning algorithms (i.e. data driven approaches), such
as recurrent neural networks (RNN) based on long short
term memory (LSTM) architecture [17], [18], Deep SORT
algorithm [19], and deep reinforcement learning [20]. These
trackers are still being studied and explored in the literature
to better understand their performance in different types of
scenarios. Even though they have shown a promising results,
the availability of training data can hinder the application of
these algorithms in some situations, such as high mobility
vehicles.

Our contribution can be summarized as follows:

• In this work, we investigate the recursive least-squares
(RLS) algorithm as a beam tracker at mmWave bands, and
compare its performance against the least-mean-square
(LMS) algorithm and the extended Kalman filter (EKF)
algorithm in a single path and multipath scenarios.

• We emphasise the effect of multiple paths on the per-
formance of the tracking algorithms, where assuming a
single LOS path in the presence of multiple paths can
degrade the performance of the trackers. An important
application to this point is the indirect paths reflected off
an intelligent reconfigurable surface (IRS) [21].

• We show that looking at the average performance of the
tested trackers in terms of the MSE of the innovation
process is more valuable than the MSE of the state

parameters, which is used in several publications in the
literature, such as[9] and [11].

The paper is organized as follows. The mmWave channel
model and the state-space model are presented in II. LMS
and RLS algorithms are detailed in III. Our numerical results
are given in IV, before we conclude our work in V.

Notation
In this paper, we use small case letters for scalars, while
bold small case letters are used to denote vectors, which are
assumed to be column-wise. Matrices are denoted by bold
capital letters.

II. SYSTEM MODEL

We consider a mmWave MIMO wireless communications
system, where the receiver is equipped with MR receive
antennas receiving L signals originating from a transmitter
equipped with MT transmit antennas. L can be a direct path
(L = 1) or multipath signals (L ≥ 1), even though the number
of dominant paths is usually small in mmWave channels [22].
It is worth noting that the number of paths can change over
time for various reasons as the user changes its location, which
can be modeled in different ways, such as a discrete-time
Markov process with L states.

A narrowband geometric channel model is assumed in
this work, where the steering vectors in the direction of the
transmitted and received signals represent the main building
component of the mathematical model [23]. In the following
two sub-sections we elaborate on the theoretical background
of the channel model and the beamforming model of the
considered communication system.

A. mmWave Channel Model

We write the narrowband time-varying channel model for
mmWave communications system at time instant k as follows
[23]:

HHHk =

Lk∑
l=1

αk,laaaR(θk,l)aaa
H
T (ϕk,l), (1)

where (·)H denotes the conjugate transpose operator. Lk is the
number of signal paths at time k. αk,l, θk,l, and ϕk,l are the
complex path gain, the direction of arrival (DOA), and the
direction of departure (DOD) of the l-th path at time instant
k, respectively. aaaR(·) is the receive array response vector in
the direction of θθθk and aaaT(·) is the transmit array response
vector in the direction of ϕϕϕk . Generally, the array steering
vectors are defined as follow:

aaaR(θk,l) =
1√
MR

[
e−jΦ1(θk,l), e−jΦ2(θk,l), . . . , e−jΦMR

(θk,l)
]H

,

(2)

aaaT(ϕk,l) =
1√
MT

[
e−jΦ1(ϕk,l), e−jΦ2(ϕk,l), . . . , e−jΦMT

(ϕk,l)
]H

(3)
For a perfect linear array along the y-axis, Φi(θk,l) =

2π
di
λ

sin(θk,l) and Φi(ϕk,l) = 2π
di
λ

sin(ϕk,l), where λ is the
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carrier wavelength, and di is the inter-element spacing of the
array antennas, i = 1, . . . ,M .

Note that the definition of the steering vectors here can be
easily extended to incorporate the elevation angle in the case
of 2D arrays or a linear array in 2D space, but we restrict the
discussion here to linear arrays (1D) for simplicity.

Transmit precoding and receive combining are commonly
used techniques in 5G MIMO communication systems for
several desirable reasons, such as a) reducing the number of
RF chains (one beam per RF chain rather than one RF chain
per antenna element), b) beam alignment and tracking, and
c) equivalent scalar channels rather than vector channels in
the conventional MIMO systems. The transmitted signal is
precoded with a precoding vector, wwwT(ϕ̄), and the received
signal is combined with a combining vector, wwwR(θ̄). θ̄ and ϕ̄
are, respectively, a pre-defined arrival and departure pointing
angles. These two beamforming vectors are steering vectors
in the direction of known pointing angles. Thus, wwwR(θ̄) and
wwwT (ϕ̄) have the same mathematical form as in equations (2)
and (3), respectively.

The combining and beamforming vectors are updated each
time the angular distance between the pointing direction and
the estimated direction of the user exceeds a specific threshold
(e.g., exceeds the 3dB beamwidth). In addition, the combining
and beamforming vectors should be re-estimated if the tracked
path is lost, due to blockage for example [9]. In this work, we
assume that there is always a LOS path between the transmitter
and receiver (i.e., no blockage) over a block of time slots (100
time instances in our simulations).

The downlink received signal can now be written as follows:

yk = wwwH
R HHHkwwwTsk +wwwH

Rnnnk, (4)

where, sk is a complex transmitted symbol (scalar), and nnnk

is a complex additive Gaussian noise with zero mean and
covariance RRRn, that is nnn ∼ CN(000,RRRn). As it is clear from
equation (4), the transmit and receive pointing vectors are
pre-defined and fixed and the tracker’s job is to adaptively
estimate the beam and channel parameters with the hope that
the estimated beamforming vectors are aligned (usually up to
3dB) with the pointing vectors to achieve the best possible
performance in terms of capacity, transmission power, mean
squared error, or any other relevant criteria.

B. State-Space Model

In this paper, the time evolution of the DOA, DOD, and the
real and imaginary parts of the complex path gain represent
the ”state” vector, xxxk, which evolves over time (the update
dimension) as follows:

xxxk =
[
R(αk), I(αk), θk, ϕk

]T
, (5)

where R(.) and I(.) are the real and imaginary parts of a
complex number, respectively. Next, we describe the state-
space equations used in our work.

1) The dynamics model: Since we are assuming a slowly
time-varying channel, it is reasonably accurate to model
the state at time k + 1 as a noisy version of the state

at time k, up to a scaling factor (i.e. a random walk
process). This can be written mathematically as follows
[9], [11], [24], [25]:

xxxk+1 = FFF kxxxk + vvvk, (6)

where vvvk is the dynamics model noise, and it captures
the mismatch between the actual behaviour of the state
and our understanding (and model) of this behaviour. vvv
can be modeled as a Gaussian noise with zero mean and
RRRv covariance: vvv ∼ N(000,RRRv). The scaling matrix, FFF k,
is a real square diagonal matrix, and, generally, can be
modeled as follows:

FFF k = diag{R(ραk
), I(ραk

), ρθk , ρϕk
} (7)

ρ is a parameter that captures the correlation between
two consecutive states. In this work, we impose the
assumption that the angular position of the user changes
slowly and smoothly. Thus, we can set ρθk = ρϕk

= 1,
even though close-to-one values can also be used here,
and we fix the values of R(ραk

) and I(ραk
) for all

k. The elements of the matrix FFF k can be measured
using training data or guessed based on an educated
guess. Moreover, since the elements of the matrix FFF k

are usually slowly time-varying, they can be efficiently
tracked using simple tracking algorithm or learned in a
smarter way using, for example, a machine learning type
of algorithms.

2) The measurements model: The measurements model was
given in equation (4), which can be re-written more
compactly as follows:

yk = h(xxxk)sk + nk, (8)

where, h(xxxk) is the time-varying channel impulse re-
sponse (scalar and complex-valued), and, from equations
(1) and (4), is given as follows:

h(xxxk) =

Lk∑
l=1

αk,lg(θk,l)g(ϕk,l). (9)

The function g(.) is defined as follows:

g(θk,l) = wwwH
R (θ̄l)aR(θk,l) =

1

MR

MR∑
i=1

e−j
(
Φi(θk,l)−Φi(θ̄l)

)

g(ϕk,l) = aH
T (ϕk,l)wwwT(ϕ̄l) =

1

MT

MT∑
i=1

e+j
(
Φi(ϕk,l)−Φi(ϕ̄l)

)
.

(10)

nk = wwwH
Rnnnk is a scalar measurements noise with zero

mean and σ2
n variance: nk ∼ CN(0, σ2

nk
). Note that

if the actual signal direction is perfectly aligned with
the pointing beam, g(θ) = 1 and g(ϕ) = 1, and
the highest estimation quality can be achieved (highest
SNR). As the deviation between the actual and the
pointing angles increases, the received signal quality
degrades and, consequently, the estimated states will be
erroneous. This is a challenging problem if one or both
of the communicating sides are mobile, especially in
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high mobility scenarios. Thus, in real world applications,
the angle deviation must be carefully monitored if a
recursive algorithm is used to track and estimate the
state vector to avoid unrealistic results.
Since the tracked state variables in (5) are naturally real-
valued, we stack the real and imaginary parts of yk and
h(xxxk) before we feed them into the tracking algorithm
as follows:

yyyk =

[
R(yk)
I(yk)

]
, hhh(xxxk) =

[
R(h(xxxk))
I(h(xxxk))

]
. (11)

III. BEAM TRACKING ALGORITHMS

In this section, we investigate three powerful tracking al-
gorithms to track the channel parameters (beam direction and
channel gain), which were given in the state vector xxxk.

A. The Least-Mean-Square (LMS) Algorithm

LMS is a stochastic gradient descent-based adaptive filtering
algorithm that is known for its stability and fast convergence
[26]. In LMS, the state-update equation is defined as follows:

x̂xxk+1 = x̂xxk −µµµ∇∇∇xxxk
Jk, (12)

where x̂xxk is the estimated state of xxxk, ∇∇∇xxxk
Jk is the gradient

of the mean squared-error (MSE) vector Jk, and µµµ is the
step size of the LMS algorithm. µµµ is a diagonal matrix:
µµµ = diag{R(µα111L), I(µα111L), µθ111L, µϕ111L}, where µα, µθ,
and µϕ represent the values of the step size of channel path
gain, DOA, and DOD, respectively. 111L is an all-ones vector
of length L.

Assuming that the transmitted symbol has a unit norm (i.e.
∥sk∥ = 1, ∀k = 1, 2, . . .), the error variable can be defined
as the difference between the actual measurements and the es-
timated measurements in the following way: ek = yk−h(x̂xxk).
The MSE of the innovation process can be expressed as:
Jk = E{∥eeek∥2}, where E is the expectation operator and,
here, it is taken with respect to the probability distribution
of the error vector. Furthermore, eeek = [R(ek), I(ek)]T ,
where R(ek) and I(ek) are the real and imaginary parts of the
estimation error. Jk contains a collective information about the
variance of the measurements and the channel, in addition to
the correlation between them.

By definition, the gradient of the MSE is [11], [27]:

∇∇∇xxxk
Jk =

∂

∂x̂xxk
E{∥eeek∥2},

=− 2E
{
eeeTk

∂hhh(x̂xxk)

∂x̂xxk

}
.

(13)

In LMS, we are interested in the instantaneous gradient of
the MSE as opposed to the average gradient in (13), which
makes the LMS algorithm a good candidate for tracking non-
stationary random processes. Mathematically, the stochastic
gradient of Jk is defined as follows:

∇∇∇xxxk
Jk = −2eeeTk

∂hhh(x̂xxk)

∂x̂xxk
, (14)

where,

∂hhh(x̂xxk)

∂x̂xxk
& =

[
∂R(h(x̂k))
∂R(αk)

, ∂R(h(x̂k))
∂I(αk)

, ∂R(h(x̂k))
∂θk

, ∂R(h(x̂k))
∂ϕk

∂I(h(x̂k))
∂R(αk)

, ∂I(h(x̂k))
∂I(αk)

, ∂I(h(x̂k))
∂θk

, ∂I(h(x̂k))
∂ϕk

]
(15)

The expression in (15) is the partial derivative of the ex-
pression in (9), which is the product of three separate terms.
This makes the partial derivatives straightforward, and thus
we omitted the derivation here. In addition, hhh(xxxk) is a two-
elements vector and is derived with respect to four parameters,
which makes its Jacobian matrix a 2× 4L matrix.

Accordingly, using (12) and (14), the state-update equation
of the LMS algorithm is given as follows:

x̂xxk+1 = x̂xxk + 2µµµeeeTk
∂hhh(x̂xxk)

∂x̂xxk
. (16)

From (16), we can see that when the error is zero, the expected
value of the next state vector equals to that of the current
state vector. As the error increases and/or the accumulated
estimation bias increases, big jumps in the estimated state
vectors should be expected. However, LMS is known for
its stability even if large state-jumps occur, owing to the
instantaneous gradient that constitutes the main component of
its state-update formula.

An extended version of the LMS filter with smaller gradient
noise is the normalized LMS (NLMS). With NLMS, we can
change the step size according to the inverse of the L2−norm
of x̂xxk as follows [26]:

x̂xxk+1 = x̂xxk +
2

||x̂xxk||2
µµµeeeTk

∂hhh(x̂xxk)

∂x̂xxk
. (17)

B. The Recursive Least-Squares (RLS) Algorithm

Another powerful tracking method is the recursive least-
squares (RLS) algorithm. In RLS, the dynamic state value at
the current time instant is modeled as a weighted sum of the
state values at the previous B time instances. B is usually
called the RLS filter length. Clearly, the main embedded
assumption here is that these B states are correlated. Since
the tracked state is changing over time, correlation decreases
over time and, thus, a forgetting factor, λ, is needed to give a
higher importance weight to the most recent states as opposed
to the distant states in time.

The role of the RLS filter is to adaptively track the complex
weights, wwwk ∈ CB , each time a new measurement data is
received using a scaled innovation vector, eeek. The steps of the
RLS algorithm can be stated as follows [26]:

1) Initialization: Given the initial weight vector ŵww0|0 and
the initial weight covariance matrix TTT 0|0 = δ−1III , where
δ is a small positive constant.

2) Calculate the gain vector, ggg:

gggk|k−1 =
λ−1TTT k|k−1x̂xxk|k−1

1 + λ−1x̂xxH
k|k−1TTT k|k−1x̂xxk|k−1

(18)

3) Calculate the current weight vector:

ŵwwk|k = ŵwwk|k−1 + gggk|k−1

(
yyyk − hhh(x̂xxk|k−1)

)
(19)
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4) Calculate the current weight covariance matrix:

TTT k|k =
(
III − gggk|k−1xxx

H
k|k−1

)
λ−1TTT k|k−1 (20)

5) Estimate the current state vector:

x̂xxk|k = ŵwwH
k|kx̂xxk|k−1 (21)

6) Repeat steps 2 to 5 until ∥x̂xxk|k−1 − x̂xxk|k∥2 ≤ ∆xxxRLS ,
where ∆xxxRLS is a pre-set threshold constant, or until
a desired number of iterations is reached. Note that
this thresholding can also be performed for each state
parameter in (5) separately as the quantities are different
in nature (e.g. real angle values vs complex gain values).

The subscript k|k − 1 should be read as ”at time instant k
given the measurements data at time instant k − 1.” RLS is
known for its faster convergence relative to the LMS algorithm
[28]. However, LMS is more capable of dealing with abrupt
changes in the dynamics of the state, while with RLS these
sudden changes may need to be detected and the algorithm
should be re-started all over again to avoid tracking divergence,
even though smooth re-initialization is also possible. Also, it
is worth noting that the choice of the parameters of the step-
size, µµµ, in LMS and the forgetting factor, λ, in RLS also affects
the convergence and stability of these two algorithms [29]. In
the actual implementation of the RLS algorithm, we used the
extended RLS algorithm from [26].

C. The Extended Kalman Filter (EKF) Algorithm

Kalman filter (KF) is a state-space based framework for
the estimation and tracking of a changing state of a dynamic
system adaptively using innovation information. The main
assumption in the basic form of the KF is that the model
is linear and the noise is drawn from a unimodal Gaussian
random process. For nonlinear systems (such as (8)), however,
the extended Kalman filter (EKF) is usually used, where
the system is linearized before the KF is applied, with a
similar noise process assumption as in the standard KF. It is
worth noting that if the noise variance is large and the state-
space model is highly nonlinear, then the EKF with first-order
linearization may not be guaranteed to converge. Thus, it is
preferred to apply the EKF in moderate or high signal-to-
noise ration (SNR) regions even for relatively highly nonlinear
systems.

In this work, we apply the EKF to track the time-varying
state-vector xxx. Using the state-space model in (6) and (8), the
sequential steps of the EKF algorithm (applied to our beam
and channel tracking problem) are as follows [26]:

1) Initialization: Given the initial state vector x̂xx0|0 and the
initial state covariance matrix PPP 0|0.

2) Calculate Kalman gain matrix, GGG:

GGGk|k−1 = PPP k|k−1HHH
H
k

(
HHHkPPP k|k−1HHH

H
k +RRRk

)+

(22)

3) Calculate the current state value:

X̂XXK|K = X̂XXK|K−1 +GGGK|K−1

(
YYY K −HHH(X̂XXK|K−1)

)
(23)

4) Calculate the current state covariance matrix:

PPP k|k =
(
III −GGGk|k−1HHHk

)
PPP k|k−1 (24)

5) Predict the next state value:

x̂xxk+1|k = FFF kx̂xxk|k (25)

6) Predict the next state covariance matrix (aka Riccati
update equation):

PPP k+1|k = FFF kPPP k|kFFF
H
k +QQQk (26)

7) Repeat steps 2 to 6 until ∥x̂xxk|k−1 − x̂xxk|k∥2 ≤ ∆xxxEKF ,
where ∆xxxEKF is a pre-set threshold constant, or until
a desired number of iterations is reached. Note that the
thresholded state difference can also be done for each
state value in (5) separately because the state members
are different in nature (e.g. real angle values vs complex
gain values).

The notation (.)+ refers to the pseudo-inverse of the matrix (.).
The noise covaiance matrices are defined as: RRRk = E{vvvkvvvHk }
and QQQk = E{nnnknnn

H
k }. III is an identity matrix of a proper size.

The term inside the parentheses in (23) is the innovation
vector and it shows the error between the actual received
measurements at the current time instant and the predicted
measurements from the model at the previous time instant.
Since the measurements model in (8) is (highly) nonlinear
in the state vector, large measurements-model mismatch may
lead to tracking divergence, as we mentioned before. Also,
depending on the velocity of the mobile receiver and the
operation frequency, the coherence time should be long-
enough to perform the tracking steps of the EKF, especially
the pseudo-inverse operation in (22). Overall, as we will see
in the results section, we can claim that the EKF tracker
works best in situations where the channel is stationary or
quasi-stationary, but may not be guaranteed to converge in
nonstationary channels for the reasons mentioned earlier in
this section.

IV. SIMULATION RESULTS

In this section, we evaluate the overall performance of the
LMS and RLS tracking filters, in addition to the celebrated
extended Kalman filter (EKF), to serve two main objectives:
1) we compare these filters to, simultaneously track the DOA,
DOD, and path gain in a single path (L = 1) and multipath
(L = 3) environments, and 2) to emphasise the fact that
evaluating these types of trackers based on individual state
parameters rather than the overall system performance can lead
to non-complete conclusions, such as those made in [9] and
[11]. We use the MSE of the measurements (J , defined in
§III-A), as well as the MSE of the DOA and DOD, as the
evaluation metrics of our results.

To emphasise the role of the array aperture size, we consider
two MIMO system scenarios with uniform linear array at
both sides of the communication link: MR = MT = 16 and
MR = MT = 4. Moreover, the pointing angles are taken
as θ̄ = ϕ̄ = 45◦, and the noise variance of the DOA and
DOD estimates is taken as σ2

θ = σ2
ϕ = (0.5◦)2. Moreover, the

state correlation parameters ρθ = ρϕ = 1 and ρα = 0.995.
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Based on an educated guess, we set the step-sizes of the LMS
filter to µθ = µϕ = 10−6, and µα = 10−3. In the RLS, the
forgetting factor is chosen to be λ = 0.995. Two scenarios are
considered in our simulations: the single path case, L = 1,
(i.e. line-of-sight path, LoS), and the multipath case, where
the information is communicated over L = 3 dominant paths
sharing the same mean value (the pointing angle). The rational
behind the later case is that, usually, in mmWave wireless
communication systems the receiver expects a single dominant
LoS path to be received, even though more random paths
can dominate the communication link, which can happen, for
example, when a reflector is placed close to the receiver or
the transmitter. The SNR of the main path is 30 dB, while the
multipath components have 3dB SNR.

It is worth noting that the curves presented in this section
may change if the initial states change. However, this mainly
depends on the antenna array beamwidth, where wide beams
are more tolerant to initial values than narrow beams. Also,
as long as the initial values of the DOA and DOD angles
are within the 3dB beamwidth of each other, the tracker can
always recover.

Figs. 1 and 2 show the MSE performance of the LMS, RLS,
and EKF for the case of MR = MT = 16 antenna elements.
Even though the LMS and RLS have similar performance
in the angular domain, the overall system performance is
different, and the EKF stands out as the best among the
three trackers. The reason for this behavior is that the MSE
of the innovation process captures the relationship among
DOA, DOD, and channel gain simultaneously, which gives
a better system-level understanding about the performance
of these trackers. Also, the transmit-receive beams mismatch
increases over time since the estimation error accumulates and
propagates through the states, as can be projected from the
system model and the state-space model.

Reducing the number of antenna elements leads to a lower
beamforming gain, but at the same tiem the quality of the
tracking improves, as shown in Figs. 3 and 4. In addition, since
the ratio of the array beamwidth to the state noise variance
of the DOA and DOD decreases as we add more antennas
(i.e. the beam becomes narrower), the trackers become more
sensitive to small tracking errors and small variations in the
angular location of the target user. It is for this reason that the
curves in Figs. 3 and 4 are smoother than those in Figs. 1 and
2 and the MSE is smaller too. Also, since the user location
is assumed to vary slowly and smoothly in our simulations,
and since there is no abrupt changes in the channel link, the
curves of the LMS and RLS algorithms are very close.

In Fig. 5, we plot the MSE of the innovation in single path
(L = 1) and multipath (L = 3) environments using LMS,
RLS, and EKF algorithms for MT = MR = 16 antenna
elements. We can notice that the MSE increases substantially
in the case of multipath. The reason for this performance
degradation from L = 1 to L = 3 paths is that the tracker’s
model assumes a single path and did not account for the
other two (weaker) paths, which can be seen as two weak
sources of interference. Also, the three used algorithms behave
similarly in the single path and multipath scenarios. Thus, it is
recommended that the tracker is capable of tracking more than
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Fig. 1. Overall MSE of LMS, RLS, and EKF for MR = MT = 16 antenna
elements with L = 1 path.
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Fig. 2. MSE of the DOA of LMS, RLS, and EKF for MR = MT = 16
antenna elements with L = 1 path.

a single dominant path to avoid occasional beam misalignment
or loss of connectivity. In addition, the tracker must be reset
(or re-initialized) when the MSE of the DOA hits a specific
threshold to avoid tracking divergence.

In mmWave systems, the array size could be different at
the communication sides. The behavior of the MSE curves
presented in this section for the case of equal number of
antennas at the TX and RX sides is not different from the
case of unequal number of antennas at both sides. However,
the results can improve since the beamwidth at one side will
be wider than the other side, which improves the tracking
quality at the expense of smaller communication rate due to
the reduction in the array gain.

V. CONCLUSION

In this paper, the LMS, RLS, and EKF tracking filters are
used to track the DOA, DOD, and channel gain in single and
multipath environments. We use the MSE of the innovation
random process, in addition to the MSE of the DOA and
DOD, as our evaluation metric to assess these three filters.
We showed that if the communication link contains more than
a single dominant path, a large MSE performance degradation
is observed, unless the tracking filter is designed to handle
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Fig. 3. Overall MSE of LMS, RLS, and EKF for MR = MT = 4 antenna
elements with L = 1 path.
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Fig. 4. MSE of the DOA of LMS, RLS, and EKF for MR = MT = 4
antenna elements with L = 1 path.
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Fig. 5. Overall MSE performance comparison between LMS, RLS, and EKF
for MR = MT = 16 antenna elements with LOS (L = 1) and multipath
environments (L = 3).

variable number of paths. Moreover, we observed that investi-
gating the individual state variables can lead to an incomplete
conclusion. The MSE of the innovation process captures the
overall system performance rather than the individual channel
and beam parameters. Also, we noticed that LMS and RLS
trackers have similar MSE performance in beam tracking
applications, while the EKF stands out due to its ability to
capture correlation information of the measurements and the
state.
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