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ABSTRACT 

Generally, for a machine learning model to perform well, the data instances on which the model is 

being trained have to be relevant to the use case. In the case of relevant samples not being available, 

Zero-shot learning can be used to perform classification tasks. Zero-shot learning is the process of 

solving a problem when there are no examples of that problem in the phase of training. It lets us 

classify target classes on which the deep learning model has not been trained. 

In this article, Zero-shot learning is used to classify food dish classes through an object recognition 

model. First, the data is collected from Google Images and Kaggle. The image attributes are then 

extracted using a VGG16 model. The image attributes belonging to the training categories are then 

used to train a custom-built deep learning model. Various hypermeters of the model are tuned and the 

results are analyzed in order to get the best possible performance. The image attributes extracted from 

the zero-shot learning categories are used to test the model after the training process is completed. The 

predictions are made by comparing the vectors of the target class with the training classes in the 

Word2Vec space. The metric used to evaluate the model is Top-5 accuracy which indicates whether 

the expected result is present in the predictions. A Top-5 accuracy of 92% is achieved by 

implementing zero-shot learning for the classification of unseen food dish images. 
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INTRODUCTION 

In this day and age, even as we are collecting a lot of data in various fields, there are some 

categories where it is difficult to collect relevant data. In these particular categories, the 

mechanism of zero-shot learning (ZSL) can be used to perform classification tasks for unknown 

object categories that have not been used for training the model. Traditional machine learning 

approaches mainly focus on predicting data of only the categories they have been trained on. ZSL 

instead focuses on classifying data of new and unseen categories. This approach can be used in 

various applications ranging from autonomous vehicles to healthcare use cases. 

Unseen food dishes are classified and recognized through ZSL in this article. Nine training 

classes and four ZSL classes were considered in an attempt to classify the samples of ZSL 

classes using the Deep learning model trained on samples of training classes. In our case, the 

task of recognition of food dish classes is chosen to show how ZSL can be used to perform 

image classification on unseen objects. The VGG16 model [2] is used for extracting the 

image features of both training and ZSL class samples. Then, a new deep learning model is 

built to train the samples of the training classes. 

The word embeddings are gathered by using the pre-trained Word2Vecs by Google. The 

result of this is a Word2Vec for the thirteen target categories that have been taken. After 

performing image feature extraction [1] and normalization, the Top-5 classes are predicted by 

comparing the vectors in the Word2Vec space. If the Top-5 predictions contain the actual 

label, then the model is said to have correctly classified the given image. 

This article discusses the Literature Survey in Section 3. ZSL is discussed in Section 4. The 

problem scenario is defined in Section 5. Section 6 explores the methodology of ZSL. Section 7 

discusses the case study undertaken. The article weighs up the performance of various 

optimizers in Section-8. Section-9 discusses the results and analyses the performance of the 

model in tuning the hyperparameters. The article is concluded in Section 10. 

LITERATURE SURVEY 

In [3], the authors proposed a novel strategy Zero-Short Learning three-fold. First, they 

defined new benchmarks by considering the unification of the evaluation protocols as well as 

the publicly available data splits to overcome the lack of agreed-upon ZSL benchmarks. Also, 

the Animals with Attributes 2 (AWA2) dataset, in terms of image features and the images 

themselves, is proposed by them. Secondly, a comparative study with a state-of-art algorithm 

is provided, and finally, the limitations are also given. 

The authors in [4] presented a novel procedure named Generalized Zero-Short Learning, 

which combines unseen images and unseen semantic vectors while the training process is 

going on. They propose a low dimensional embedding of visual instance to fill the gap 

between visual features to a semantic domain similar to semantic data that quantifies the 

existence of an attribute of the presented instance. They also showed in the article the 

quantification of the impact of noisy semantic data by utilizing the visual oracle. 

The authors in the article [5] provided an approach that is based on a more general framework 

that models the relationships between features, attributes, and classes as a two linear layers 

network. They contemplated that the weights of the top layer are not learned but are 

considered from the environment. They also provided learning bound on the generalization 

error of this kind of approach by casting them as domain adaptation methods. 

A novel zero-shot classification approach is proposed by article [6] that automatically learns 

label embeddings from the input data in a semi-supervised learning framework. It considers 
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multi-class classification of all classes (observed and unseen) and tackles the target prediction 

problem directly without introducing intermediate prediction problems. It also can 

incorporate semantic label information from different sources when available. 

Instead of reformulating ZSL as a conditioned visual classification problem, the authors of [7] 

develop algorithms targeting various ZSL settings: (i) train a deep neural network that 

directly generates visual features from the semantic attributes with an episode-based training 

scheme as a conventional setting, (ii) concatenate the learned highly discriminative classifiers 

for seen classes and the generated classifiers for unseen classes to classify visual features of 

all classes, and (iii) exploit unlabelled data to effectively calibrate the classifier generator 

using a novel learning method without forgetting the self-training mechanism – this process 

is guided by a robust generalized cross-entropy loss. 

Article [8] provides a comprehensive survey on ZSL mechanisms. The authors presented the 

survey in several categories: (i) an overview of ZSL includes data utilized in model 

optimization and classification of learning settings, (ii) different semantic spaces adopted in 

existing ZSL works, (iii) categorize existing ZSL methods. Apart from this, the authors also 

highlighted different applications of ZSL and promising future research directions. 

ZERO-SHORT LEARNING 

Identifying an object among many other categories is becoming a popular application that can 

be used to expose new information in image data. By using ZSL, a target class is recognized 

and interpreted even when a similar object has not been seen or there is no information 

regarding the category it belongs to. ZSL methods are made to study various object classes, 

their features, and use the features learnt during image classification to help recognize unseen 

classes of data. It uses information from the training classes with labelled samples using the 

class attributes to perform recognition tasks. It is performed in the following way: 

• training stage: the stage where information regarding the data is extracted, 

• learning stage: the stage where the information captured categorizes various data samples 

which have not been previously seen. 

The ZSL process is quite similar to how humans recognize objects. But there can be projects 

where data of thousands of classes may need to be labelled manually. Using the process of 

ZSL, it is feasible to classify many objects instead of performing recognition tasks on finite 

sets of objects. Traditional object classification tasks may struggle to provide good results 

when there is a lack of relevant data. In these types of situations, ZSL can potentially be used 

to implement many innovative applications. 

While implementing ZSL, let us assume that we are training the model for C classes. The 

activation function used is the Softmax function. Since we are using it for a multi-class 

classification, the output will be the probabilities of every class, with the target class having 

the highest probability. We minimize the objective functions using Categorical Cross-

Entropy Loss [9]. It is a good metric for differentiating between two discrete probability 

functions. Categorical Cross-Entropy Loss is defined as: 

 , (1) 

which is the Softmax function. 

where s represents the input vector, es
i
 is the standard exponential function for input vector, C 

is the number of classes in the multi-class classifier and es
j is the standard exponential 

function for output vector. The Categorical Cross-Entropy Loss: 

 , (2) 
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where f(s)i is the i-th scalar value in the model output, ti is the corresponding target value and 

C is the number of scalar values in the model output. 

The vector of the target class is compared with the vectors of training classes to obtain the 

predictions at the testing phase. 

DESIGN OF THE PROBLEM 

Consider a scenario where it is wished to classify species which live in places that humans 

cannot go to easily. It is almost impossible to collect the necessary image data of these 

animals. It would not be enough if you just collected similar pictures because it would not 

provide the diversity that the recognition task needs. So, the image data has to be quite 

unique. Adding to this difficult task of classifying various target categories, labelling of target 

categories can be trickier than it may seem. There are cases in which the labelling of object 

classes can only be done after the topic is really mastered or in the presence of a specialist. 

Under the guidance of a person who is experienced in the particular field, object 

classification tasks like the classification of endangered animals or plants are viewed as 

examples of giving labels to the data. Let us consider pandas, where some specific species of 

pandas are considered to be endangered or vulnerable, but an ordinary human will label all 

the pandas they observe as a panda instead of correctly naming its exact species which can 

only be done by an expert. Although there is truth in labelling it as just a panda, it does not 

help the neural network to recognize a particular species of panda. In such a situation, all the 

generalized labels are pretty much useless and there is the need of a specialist to label the 

particular species. As labelling the data instances manually can take a lot of time, ZSL can be 

used to perform classification tasks in such scenarios. 

To perform object classification tasks with good accuracy in fine-grained object 

classification, it is needed to decide on a finite amount of target categories. It is important to 

gather as much image data for the target categories that have been decided. The training 

dataset must obviously have images captured at various positions in diverse habitats. Even 

though image data of a lot of object classes can be collected, there are often classes in which 

data is difficult to get hold of. 

METHODOLOGY 

While performing ZSL on image samples that have not been trained on may seem strange at 

first, it is possible to do so. The Training and Zero-shot classes are then separated. Simply 

put, how is it possible to recognize objects that the model has not seen before? The data 

should be depicted with sensible features. Thus, two data depictions are used. Class 

embedding and image embedding are the two data depictions that are required. 

Image embedding [10] is used to read images and evaluate them locally or to upload them to 

a remote server. To calculate a feature vector for each image, deep learning models are used. 

This is done so in order to return another data table with additional image descriptors. This is 

learnt using a deep learning model and is called a feature vector. The deep learning model 

can either be a pre-trained convolutional network that already has a high accuracy rate or a 

new one can be built from scratch. For the image feature extraction process, a pre-trained 

deep learning model called VGG16 [2] is used. 

Image embeddings can be obtained for all the instances of the dataset that are collected for 

training classes. But there is a lack of samples of images for the ZSL classes. It is 

impossible to obtain image embeddings for the ZSL classes. It is here where ZSL is 

different from the usual image classification problems. Now in this stage, there has to be an 
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alternative depiction of data linking both the ZSL and training classes. Image embedding 

should be learnt from the image dataset regardless of which class they belong to, whether it 

be training or Zero-shot. Therefore, labels of categories should be focused upon instead of 

concentrating on the image itself. 

Both the class labels and image samples for the Training classes are available to us now. 

However, only the class labels for the Zero-shot classes are available as the image data has 

not been seen. This is shown in Figures 1 and 2. Here, it can be seen that image embedding is 

done only for the training classes and not for the ZSL classes, while class embedding is done 

for both training and ZSL classes. 

MODEL ARCHITECTURE 

As the final step is using the Word2Vec as a link to classify the target categories that have not 

been trained on, the last layer of the model that was custom-defined and untrainable is 

removed. The model then gives a vector output for each input image. The model contains 

various layers, and it is made sure that the input shape of the first layer of the model is of the 

same shape as the image attributes extracted using the VGG16 model. 

A vector is then obtained that gives an indication of a coordinate in the Word2Vec space for 

every data instance. Then this vector output is mapped to the one which is placed closest by 

differentiating it with the thirteen category vectors available. From the VGG16 model, the 

last three layers were removed in order to map to the input shape of the custom sequential 

model which is as shown in Figure 3. 

After tuning the hyperparameters [11] and getting to the best possible model performance, the 

trained model is tested on the image data of ZSL classes. 

 

Figure 1. Whether class and image embeddings are performed for the classes. 

 
Figure 2. Flowchart describing the process of ZSL. 

DATA COLLECTION 

The first step is to collect the necessary images of both the training and testing classes. The 

image data of training classes is utilized for training the ZSL model, while that of the testing 

classes is utilized for assessing how the model performs. 
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Figure 3. Architecture of the deep learning model. 

The image data described above is collected from Google Images and Kaggle [23]. Thirteen 

classes were selected in total, out of which nine classes are chosen for the training phase and 

four classes are chosen as ZSL classes. Now, it is necessary to decide which classes out of the 

total thirteen are chosen to be ZSL and training classes. Various food dishes have been picked 

as classes for demonstrating the process of ZSL for classification of unseen objects. 

 

Figure 4. Training classes for ZSL. 

 

Figure 5. Zero-shot classes for ZSL. 
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IMAGE FEATURE EXTRACTION 

From Google Images and Kaggle, the required food dish images are obtained for all the 

necessary classes. Extraction of the image attributes [1] is done using the VGG16 

convolutional neural network [2] from the data collected. 

WORD EMBEDDINGS 

The word embeddings [12] of all the classes are gathered after the datasets have been formed 

and extracted the image features. Google’s Word2Vec depiction is used for this process. This 

is a Word2Vec for all the 13 food dish target categories which have been considered. 

Class embedding is the form of depiction of a particular category in a vectorized manner. It 

can be easily accessed for every object category aside from image embeddings. Vectors are 

placed near each other in the Word2Vec space if the two words tend to appear together in 

similar Google News documents. 

 

Figure 6. Word2Vec space containing the vectors of Training and ZSL classes. 

From the Word2Vec space illustrated in Figure 6, it can be noticed that the vectors of food 

dishes related to cakes are placed near to each other. But they are placed far from the vectors 

of food dishes related with salads. 
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MODEL TRAINING 

Here, the inputs are the image features extracted, and the corresponding outputs are the 

Word2Vecs. A fully-connected Keras model is created as a follow-up to the pre-trained 

convolutional model, which is used to extract the image features. The last layer of the model 

created has to be a custom layer. This layer should not be trainable. This indicates that the layer 

must not be changed by updating the gradients. The different kinds of layers used in this model are: 

• dense layer: It is a deeply connected neural network layer. It is the most frequently used 

layer in deep neural networks. It receives input from all neurons of its previous layer [13], 

• dropout layer: It is a method of reducing overfitting in neural networks by preventing the 

model from learning noise in the dataset [14], 

• batch Normalization layer: It is a method that is used for training neural networks which 

standardize the inputs to a layer for each mini-batch [15]. 

The formula for implementing Batch Normalization is: 

 . (3) 

where x* is the new value of a single component, E[x] is its mean and var(x) is its variance.  

Batch Normalization can learn the identity function using: 

 . (4) 

where x** is the final normalized value. 

OPTIMIZERS 

The process of updating the deep learning model according to the loss function’s output by 

tying together the parameters and the loss function is performed by optimizers. Simply put, 

by futzing with the weights of the neurons, the deep learning model is updated to its best 

form. The model is trained using various optimizers in order to know which best fits the 

dataset. The accuracies obtained are shown in Table 1. 

Table 1. Accuracies obtained upon using various optimizers. 

Here, it can be observed that the Adagrad optimizer [16] performs best on our training dataset 

with the best Top-5 and Top-3 accuracy. The Adam optimizer [17] comes a close second 

after Adagrad. 

Adagrad (Adaptive Gradient Algorithm) is an algorithm that is used for gradient-based 

optimization. By incorporating knowledge of past observations, the learning rate is adapted to 

the parameters component-wise. It performs bigger updates for those parameters which are 

not frequent and smaller updates for those that are frequent. While using Adagrad, the 

learning rate need not be tuned manually, and its convergence is more reliable. Adagrad is 

also not sensitive to the size of the master step. 

The formula used by Adagrad to update the parameters is [13]: 

Optimizer  Top-5 Accuracy Top-3 Accuracy 

Adagrad  0,92 0,78 

Adam  0,91 0,76 

SGD  0,90 0,76 

Nadam  0,89 0,76 

RMSprop  0,88 0,75 
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 . (5) 

where t is the time step, ϴ is the weight/parameter which we want to update, vt denotes 

different learning rates for each weight at each iteration, α is a constant number and ∂L/∂ϴt is 

the gradient of L, the loss function to minimise, with respect to ϴ. 

RESULTS AND ANALYSIS 

The accuracy scores of the deep learning model when it is tested on the image data of the four 

unseen food dish classes are shown in Figure 7. 92% accuracy for Top-5 predictions and 78% 

for Top-3 is attained after tuning the hyper parameters of the deep learning model. 

 
Figure 7: The final ZSL scores obtained. 

For testing the model, the data instances of ZSL classes will be used. These images have not 

been used for training the model. The deep learning model is evaluated by performing ZSL 

classification on the collected image data. The Word2Vec is compared for each image sample 

with the 13 vectors. The metric that is used is Euclidean distance [10]. Finally, the class 

which is closest to the target class in the Word2Vec space is predicted. 

For example, an image of a Chocolate Cake is taken which is one of the zero-shot classes. The 

predictions of the model are shown in Figure 8 upon performing ZSL on the selected image. 

 

Figure 8. Top-5 Predictions when the target class is Chocolate Cake. 

It can be seen that it predicts ‘Chocolate Cake’ at the second position while not having seen 

the image class during the training process. The metric that is being used to evaluate the 

model is Top-5 and Top-3 accuracy. It basically means whether the actual label for the 

unseen image is present in the Top-5 or -3 predictions. Top-5 accuracy is around 92 %. Since 
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this is a process of classifying images that have not been seen by the model before, the 

accuracy percentages are prety decent. 

The deep learning model knows only the positions of the classes in the Word2Vec space. Thus, 

it can be deduced that ZSL clearly works better than some random object recognition task. 

A confusion matrix helps in visualizing the performance of a deep learning model. Figure 9 

shows how many images the model predicted correctly for each class. The ‘Not in Top-5 

preds’ row indicates the number of images the model predicted incorrectly for each class. 

 

Figure 9. The confusion matrix of the Zero-Shot classes tested on the deep learning model. 

EFFECT OF BATCH SIZE 

The amount of data instances that are needed to be trained before updating the necessary 

hyperparameters is known as batch size. It iterates over the data and predicts classes. The 

predicted values are compared to the expected values and the loss is computed. The neural 

network is improved from this loss by moving down the error gradient. 

The training accuracies and losses of different batch sizes such as 64, 128 and 256 [18] are 

compared. The training accuracy and loss of the deep learning model using various batch 

sizes are shown in Figures 10 and 11. The number of epochs (X-axis) denote the number of 

passes that the model has completed of the entire training dataset. 

 

Figure 10. Comparing the training accuracies of the model when trained with different batch 

sizes. 
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Figure 11: Comparing the training losses of the model when trained with different batch sizes. 

From the figure one can analyse that low training accuracy is caused by high batch sizes. As 

the batch size increases, the training accuracy decreases and the training loss increases. This 

is due to the amount of data being trained as a batch is increased. A hypothesis on why this 

happens is that the training instances of a particular batch interfere with one another’s 

gradient. Therefore, this leads to smaller gradients overall. 

EFFECT OF LEARNING RATE 

The hyperparameter that controls the amount of change in reaction to the loss every time the 

weights of neurons get updated is called the learning rate [11]. The process of selecting a 

learning rate can be difficult as the value may be too large, resulting in learning a sub-optimal 

set of weights too quickly, whereas a smaller value may end in the training process getting 

stuck. There are studies [19] that analyze the impact of varying learning rates over larger 

batch sizes. Thus, the learning rate is increased and it is checked if the training accuracy that 

has been lost are regained. 

 

Figure 12. Comparing the training accuracies of the model at different batch sizes and 

learning rates. 

The learning also affects such a way that the lost training accuracy is regained by increasing 

the learning rate. As the learning rate is increased, the training accuracy lost by increasing the 

batch size is regained as the model learns at a faster rate than the previous runs. 
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Figure 13. Comparing the training losses of the model at different batch sizes and learning rates. 

IMPLEMENTING EARLY STOPPING 

The process of monitoring the model’s performance for each epoch on a validation set during 

training and ending the training based on the validation set performance is called Early 

Stopping [20]. Early Stopping is implemented during training and it is checked whether there 

is an improvement in the Validation loss. 

In Figure 14, it can be seen that the validation loss stops decreasing and starts to go back up. 

This shows that the model is overfitting the dataset. However, in Figure 15 implementing 

Early Stopping, the training is stopped as soon as the validation loss starts to increase, 

thereby preventing overfitting. 

 

Figure 14. Comparison between training and validation losses of the model while not 

implementing early stopping. 

REGULARIZATION LAYERS 

To help the model in generalizing well, regularization layers are used that make some 

changes to the algorithm. Here, in the methodology for optimization, the following 

regularization layers are implemented: Dropout, Gaussian Noise and Gaussian Dropout.  

Dropout [14] is partially learning the weights over many epochs. Dropout value of 0.5 leads 

to the highest possible regularization. The intention is to lessen the dropout loss in order to 

regularize the deep learning model. This is done using the following equation: 

 . (6) 
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Figure 15: Comparison between training and validation losses of the model while 

implementing early stopping. 

where w represents the weights, I represents the input vector, i is the activity in a particular unit. 

Gaussian Dropout involves multiplying the weights with a variable. There are Gaussian Gates 

are put on each connection. The weights need not be scaled in Gaussian Dropout. The 

equation for Gaussian Dropout is shown below. 

 . (7) 

where 𝛿 denotes a gating 0-1 Bernoulli variable, w the weights, I the input vectors, i the 

activity in a particular unit. 

The layer of Gaussian Noise [21] is used to include noise in the model. This helps in reducing 

overfitting. It is particularly useful when dealing with inputs which are real valued. It 

performs the second best right after the Dropout layer when trained on the image data of the 

training classes. 

The probability density function p of a Gaussian random variable z is given by: 

 , (8) 

where z represents the grey level, µ represents the mean grey value and  is its standard 

deviation. The model is trained on the following regularization layers obtaining accuracies as 

shown in Table 2. 

Table 2. Effect of different regularization layers on the model. 

As it can be observed that using the Dropout layer achieves the best results, with the Gaussian 

Noise layer coming a close second. Two Dropout layers are used with the first one having a 

rate of 0,8 and the second one having a rate of 0,5. The rate of the first layer is 0,8 because it is 

important to retain as much information when implementing Dropout layers at the input. If not 

done so, a lot of information might be lost and it might affect the training process. 

Regularization layer Top-5 Accuracy Top-3 Accuracy 

Dropout 0,92 0,78 

Gaussian Noise 0,91 0,76 

Gaussian Dropout 0,88 0,72 
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CONCLUSION 

A ZSL model is built in a way that uses the VGG16 model [2] to extract image attributes and 

then recognize daily life objects which the model has not seen. Nine training classes and four 

ZSL classes were considered in this article to classify the samples of ZSL classes on training 

the model with samples of training classes.  The data is collected from scraping Google for 

images and from a Kaggle dataset. A deep learning model is then trained on the features 

extracted from the training class data collected. It is tested on ZSL class data and achieved a 

Top-5 accuracy of 92 %. 

Images that have not been trained on are being classified, especially when the neural network is 

not aware of the ZSL classes, at scores that are quite decent. The only information given to the 

model is location of the word vectors of these classes in the Word2Vecs. The scores are not 

always high as it is more difficult to recognize target classes that belong to similar categories. 

ZSL has great scope and is a popular topic in Deep Learning even though it is a relatively new 

idea. ZSL can be built upon and improved to make further systems like helper-based systems 

using ZSL for the visually impaired. The natural vegetation can be analysed in remote areas and 

rare animals can be classified in their own habitats. There have been a lot of developments 

recently in the field of robotics [22] and ZSL can be used to produce robots that can carry out 

functions of humans. This can be done as humans can recognize an object that the model has not 

been trained on before and might not have information regarding what the thing is. 

Future work that we envisage carrying out is focused on adopting ZSL mechanisms in deep 

learning algorithms for the design and development of intelligent systems. We aim to test 

other N-shot approaches such as one-shot and few-shot learning, and compare their 

performance to ZSL. Another approach could be to combine other N-shot approaches with 

ZSL to achieve better predictions in practical situations such as autonomous vehicles. This 

takes the novelties of all such approaches and produces an overall positive result. 

The code is available at http://www.github.com/JatinArutla/Zero-Shot-Learning. 
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