
Interdisciplinary Description of Complex Systems 20(4), 454-468, 2022

*Corresponding author, : chakri.ls@gmail.com; +919866656855;
*Department of Computer Science and Engineering, GITAM, Viskhapatnam, India, 530045

PROGNOSTICATION OF UNSEEN OBJECTS
USING ZERO-SHOT LEARNING WITH

A COMPLETE CASE ANALYSIS

Srinivasa L. Chakravarthy* and Jatin V.R. Arutla

Gandhi Institute of Technology and Management
Visakhapatnam, India

DOI: 10.7906/indecs.20.4.10
Regular article

Received: 6 July 2021.
Accepted: 2 May 2022.

ABSTRACT

Generally, for a machine learning model to perform well, the data instances on which the model is

being trained have to be relevant to the use case. In the case of relevant samples not being available,

Zero-shot learning can be used to perform classification tasks. Zero-shot learning is the process of

solving a problem when there are no examples of that problem in the phase of training. It lets us

classify target classes on which the deep learning model has not been trained.

In this article, Zero-shot learning is used to classify food dish classes through an object recognition

model. First, the data is collected from Google Images and Kaggle. The image attributes are then

extracted using a VGG16 model. The image attributes belonging to the training categories are then

used to train a custom-built deep learning model. Various hypermeters of the model are tuned and the

results are analyzed in order to get the best possible performance. The image attributes extracted from

the zero-shot learning categories are used to test the model after the training process is completed. The

predictions are made by comparing the vectors of the target class with the training classes in the

Word2Vec space. The metric used to evaluate the model is Top-5 accuracy which indicates whether

the expected result is present in the predictions. A Top-5 accuracy of 92% is achieved by

implementing zero-shot learning for the classification of unseen food dish images.

KEY WORDS

zero-shot learning, machine translation, unseen image classification

CLASSIFICATION

JEL: Z19

PACS: 07.05.Pj

predformatirano/chakri.ls@gmail.com

Prognostication of unseen objects using zero-shot learning with a complete case analysis

455

INTRODUCTION

In this day and age, even as we are collecting a lot of data in various fields, there are some

categories where it is difficult to collect relevant data. In these particular categories, the

mechanism of zero-shot learning (ZSL) can be used to perform classification tasks for unknown

object categories that have not been used for training the model. Traditional machine learning

approaches mainly focus on predicting data of only the categories they have been trained on. ZSL

instead focuses on classifying data of new and unseen categories. This approach can be used in

various applications ranging from autonomous vehicles to healthcare use cases.

Unseen food dishes are classified and recognized through ZSL in this article. Nine training

classes and four ZSL classes were considered in an attempt to classify the samples of ZSL

classes using the Deep learning model trained on samples of training classes. In our case, the

task of recognition of food dish classes is chosen to show how ZSL can be used to perform

image classification on unseen objects. The VGG16 model [2] is used for extracting the

image features of both training and ZSL class samples. Then, a new deep learning model is

built to train the samples of the training classes.

The word embeddings are gathered by using the pre-trained Word2Vecs by Google. The

result of this is a Word2Vec for the thirteen target categories that have been taken. After

performing image feature extraction [1] and normalization, the Top-5 classes are predicted by

comparing the vectors in the Word2Vec space. If the Top-5 predictions contain the actual

label, then the model is said to have correctly classified the given image.

This article discusses the Literature Survey in Section 3. ZSL is discussed in Section 4. The

problem scenario is defined in Section 5. Section 6 explores the methodology of ZSL. Section 7

discusses the case study undertaken. The article weighs up the performance of various

optimizers in Section-8. Section-9 discusses the results and analyses the performance of the

model in tuning the hyperparameters. The article is concluded in Section 10.

LITERATURE SURVEY

In [3], the authors proposed a novel strategy Zero-Short Learning three-fold. First, they

defined new benchmarks by considering the unification of the evaluation protocols as well as

the publicly available data splits to overcome the lack of agreed-upon ZSL benchmarks. Also,

the Animals with Attributes 2 (AWA2) dataset, in terms of image features and the images

themselves, is proposed by them. Secondly, a comparative study with a state-of-art algorithm

is provided, and finally, the limitations are also given.

The authors in [4] presented a novel procedure named Generalized Zero-Short Learning,

which combines unseen images and unseen semantic vectors while the training process is

going on. They propose a low dimensional embedding of visual instance to fill the gap

between visual features to a semantic domain similar to semantic data that quantifies the

existence of an attribute of the presented instance. They also showed in the article the

quantification of the impact of noisy semantic data by utilizing the visual oracle.

The authors in the article [5] provided an approach that is based on a more general framework

that models the relationships between features, attributes, and classes as a two linear layers

network. They contemplated that the weights of the top layer are not learned but are

considered from the environment. They also provided learning bound on the generalization

error of this kind of approach by casting them as domain adaptation methods.

A novel zero-shot classification approach is proposed by article [6] that automatically learns

label embeddings from the input data in a semi-supervised learning framework. It considers

S.L. Chakravarthy and J.V.R. Arutla

456

multi-class classification of all classes (observed and unseen) and tackles the target prediction

problem directly without introducing intermediate prediction problems. It also can

incorporate semantic label information from different sources when available.

Instead of reformulating ZSL as a conditioned visual classification problem, the authors of [7]

develop algorithms targeting various ZSL settings: (i) train a deep neural network that

directly generates visual features from the semantic attributes with an episode-based training

scheme as a conventional setting, (ii) concatenate the learned highly discriminative classifiers

for seen classes and the generated classifiers for unseen classes to classify visual features of

all classes, and (iii) exploit unlabelled data to effectively calibrate the classifier generator

using a novel learning method without forgetting the self-training mechanism – this process

is guided by a robust generalized cross-entropy loss.

Article [8] provides a comprehensive survey on ZSL mechanisms. The authors presented the

survey in several categories: (i) an overview of ZSL includes data utilized in model

optimization and classification of learning settings, (ii) different semantic spaces adopted in

existing ZSL works, (iii) categorize existing ZSL methods. Apart from this, the authors also

highlighted different applications of ZSL and promising future research directions.

ZERO-SHORT LEARNING

Identifying an object among many other categories is becoming a popular application that can

be used to expose new information in image data. By using ZSL, a target class is recognized

and interpreted even when a similar object has not been seen or there is no information

regarding the category it belongs to. ZSL methods are made to study various object classes,

their features, and use the features learnt during image classification to help recognize unseen

classes of data. It uses information from the training classes with labelled samples using the

class attributes to perform recognition tasks. It is performed in the following way:

• training stage: the stage where information regarding the data is extracted,

• learning stage: the stage where the information captured categorizes various data samples

which have not been previously seen.

The ZSL process is quite similar to how humans recognize objects. But there can be projects

where data of thousands of classes may need to be labelled manually. Using the process of

ZSL, it is feasible to classify many objects instead of performing recognition tasks on finite

sets of objects. Traditional object classification tasks may struggle to provide good results

when there is a lack of relevant data. In these types of situations, ZSL can potentially be used

to implement many innovative applications.

While implementing ZSL, let us assume that we are training the model for C classes. The

activation function used is the Softmax function. Since we are using it for a multi-class

classification, the output will be the probabilities of every class, with the target class having

the highest probability. We minimize the objective functions using Categorical Cross-

Entropy Loss [9]. It is a good metric for differentiating between two discrete probability

functions. Categorical Cross-Entropy Loss is defined as:

 , (1)

which is the Softmax function.

where s represents the input vector, es
i
 is the standard exponential function for input vector, C

is the number of classes in the multi-class classifier and es
j is the standard exponential

function for output vector. The Categorical Cross-Entropy Loss:

 , (2)

Prognostication of unseen objects using zero-shot learning with a complete case analysis

457

where f(s)i is the i-th scalar value in the model output, ti is the corresponding target value and

C is the number of scalar values in the model output.

The vector of the target class is compared with the vectors of training classes to obtain the

predictions at the testing phase.

DESIGN OF THE PROBLEM

Consider a scenario where it is wished to classify species which live in places that humans

cannot go to easily. It is almost impossible to collect the necessary image data of these

animals. It would not be enough if you just collected similar pictures because it would not

provide the diversity that the recognition task needs. So, the image data has to be quite

unique. Adding to this difficult task of classifying various target categories, labelling of target

categories can be trickier than it may seem. There are cases in which the labelling of object

classes can only be done after the topic is really mastered or in the presence of a specialist.

Under the guidance of a person who is experienced in the particular field, object

classification tasks like the classification of endangered animals or plants are viewed as

examples of giving labels to the data. Let us consider pandas, where some specific species of

pandas are considered to be endangered or vulnerable, but an ordinary human will label all

the pandas they observe as a panda instead of correctly naming its exact species which can

only be done by an expert. Although there is truth in labelling it as just a panda, it does not

help the neural network to recognize a particular species of panda. In such a situation, all the

generalized labels are pretty much useless and there is the need of a specialist to label the

particular species. As labelling the data instances manually can take a lot of time, ZSL can be

used to perform classification tasks in such scenarios.

To perform object classification tasks with good accuracy in fine-grained object

classification, it is needed to decide on a finite amount of target categories. It is important to

gather as much image data for the target categories that have been decided. The training

dataset must obviously have images captured at various positions in diverse habitats. Even

though image data of a lot of object classes can be collected, there are often classes in which

data is difficult to get hold of.

METHODOLOGY

While performing ZSL on image samples that have not been trained on may seem strange at

first, it is possible to do so. The Training and Zero-shot classes are then separated. Simply

put, how is it possible to recognize objects that the model has not seen before? The data

should be depicted with sensible features. Thus, two data depictions are used. Class

embedding and image embedding are the two data depictions that are required.

Image embedding [10] is used to read images and evaluate them locally or to upload them to

a remote server. To calculate a feature vector for each image, deep learning models are used.

This is done so in order to return another data table with additional image descriptors. This is

learnt using a deep learning model and is called a feature vector. The deep learning model

can either be a pre-trained convolutional network that already has a high accuracy rate or a

new one can be built from scratch. For the image feature extraction process, a pre-trained

deep learning model called VGG16 [2] is used.

Image embeddings can be obtained for all the instances of the dataset that are collected for

training classes. But there is a lack of samples of images for the ZSL classes. It is

impossible to obtain image embeddings for the ZSL classes. It is here where ZSL is

different from the usual image classification problems. Now in this stage, there has to be an

S.L. Chakravarthy and J.V.R. Arutla

458

alternative depiction of data linking both the ZSL and training classes. Image embedding

should be learnt from the image dataset regardless of which class they belong to, whether it

be training or Zero-shot. Therefore, labels of categories should be focused upon instead of

concentrating on the image itself.

Both the class labels and image samples for the Training classes are available to us now.

However, only the class labels for the Zero-shot classes are available as the image data has

not been seen. This is shown in Figures 1 and 2. Here, it can be seen that image embedding is

done only for the training classes and not for the ZSL classes, while class embedding is done

for both training and ZSL classes.

MODEL ARCHITECTURE

As the final step is using the Word2Vec as a link to classify the target categories that have not

been trained on, the last layer of the model that was custom-defined and untrainable is

removed. The model then gives a vector output for each input image. The model contains

various layers, and it is made sure that the input shape of the first layer of the model is of the

same shape as the image attributes extracted using the VGG16 model.

A vector is then obtained that gives an indication of a coordinate in the Word2Vec space for

every data instance. Then this vector output is mapped to the one which is placed closest by

differentiating it with the thirteen category vectors available. From the VGG16 model, the

last three layers were removed in order to map to the input shape of the custom sequential

model which is as shown in Figure 3.

After tuning the hyperparameters [11] and getting to the best possible model performance, the

trained model is tested on the image data of ZSL classes.

Figure 1. Whether class and image embeddings are performed for the classes.

Figure 2. Flowchart describing the process of ZSL.

DATA COLLECTION

The first step is to collect the necessary images of both the training and testing classes. The

image data of training classes is utilized for training the ZSL model, while that of the testing

classes is utilized for assessing how the model performs.

Prognostication of unseen objects using zero-shot learning with a complete case analysis

459

Figure 3. Architecture of the deep learning model.

The image data described above is collected from Google Images and Kaggle [23]. Thirteen

classes were selected in total, out of which nine classes are chosen for the training phase and

four classes are chosen as ZSL classes. Now, it is necessary to decide which classes out of the

total thirteen are chosen to be ZSL and training classes. Various food dishes have been picked

as classes for demonstrating the process of ZSL for classification of unseen objects.

Figure 4. Training classes for ZSL.

Figure 5. Zero-shot classes for ZSL.

S.L. Chakravarthy and J.V.R. Arutla

460

IMAGE FEATURE EXTRACTION

From Google Images and Kaggle, the required food dish images are obtained for all the

necessary classes. Extraction of the image attributes [1] is done using the VGG16

convolutional neural network [2] from the data collected.

WORD EMBEDDINGS

The word embeddings [12] of all the classes are gathered after the datasets have been formed

and extracted the image features. Google’s Word2Vec depiction is used for this process. This

is a Word2Vec for all the 13 food dish target categories which have been considered.

Class embedding is the form of depiction of a particular category in a vectorized manner. It

can be easily accessed for every object category aside from image embeddings. Vectors are

placed near each other in the Word2Vec space if the two words tend to appear together in

similar Google News documents.

Figure 6. Word2Vec space containing the vectors of Training and ZSL classes.

From the Word2Vec space illustrated in Figure 6, it can be noticed that the vectors of food

dishes related to cakes are placed near to each other. But they are placed far from the vectors

of food dishes related with salads.

Prognostication of unseen objects using zero-shot learning with a complete case analysis

461

MODEL TRAINING

Here, the inputs are the image features extracted, and the corresponding outputs are the

Word2Vecs. A fully-connected Keras model is created as a follow-up to the pre-trained

convolutional model, which is used to extract the image features. The last layer of the model

created has to be a custom layer. This layer should not be trainable. This indicates that the layer

must not be changed by updating the gradients. The different kinds of layers used in this model are:

• dense layer: It is a deeply connected neural network layer. It is the most frequently used

layer in deep neural networks. It receives input from all neurons of its previous layer [13],

• dropout layer: It is a method of reducing overfitting in neural networks by preventing the

model from learning noise in the dataset [14],

• batch Normalization layer: It is a method that is used for training neural networks which

standardize the inputs to a layer for each mini-batch [15].

The formula for implementing Batch Normalization is:

 . (3)

where x* is the new value of a single component, E[x] is its mean and var(x) is its variance.

Batch Normalization can learn the identity function using:

 . (4)

where x** is the final normalized value.

OPTIMIZERS

The process of updating the deep learning model according to the loss function’s output by

tying together the parameters and the loss function is performed by optimizers. Simply put,

by futzing with the weights of the neurons, the deep learning model is updated to its best

form. The model is trained using various optimizers in order to know which best fits the

dataset. The accuracies obtained are shown in Table 1.

Table 1. Accuracies obtained upon using various optimizers.

Here, it can be observed that the Adagrad optimizer [16] performs best on our training dataset

with the best Top-5 and Top-3 accuracy. The Adam optimizer [17] comes a close second

after Adagrad.

Adagrad (Adaptive Gradient Algorithm) is an algorithm that is used for gradient-based

optimization. By incorporating knowledge of past observations, the learning rate is adapted to

the parameters component-wise. It performs bigger updates for those parameters which are

not frequent and smaller updates for those that are frequent. While using Adagrad, the

learning rate need not be tuned manually, and its convergence is more reliable. Adagrad is

also not sensitive to the size of the master step.

The formula used by Adagrad to update the parameters is [13]:

Optimizer Top-5 Accuracy Top-3 Accuracy

Adagrad 0,92 0,78

Adam 0,91 0,76

SGD 0,90 0,76

Nadam 0,89 0,76

RMSprop 0,88 0,75

S.L. Chakravarthy and J.V.R. Arutla

462

 . (5)

where t is the time step, ϴ is the weight/parameter which we want to update, vt denotes

different learning rates for each weight at each iteration, α is a constant number and ∂L/∂ϴt is

the gradient of L, the loss function to minimise, with respect to ϴ.

RESULTS AND ANALYSIS

The accuracy scores of the deep learning model when it is tested on the image data of the four

unseen food dish classes are shown in Figure 7. 92% accuracy for Top-5 predictions and 78%

for Top-3 is attained after tuning the hyper parameters of the deep learning model.

Figure 7: The final ZSL scores obtained.

For testing the model, the data instances of ZSL classes will be used. These images have not

been used for training the model. The deep learning model is evaluated by performing ZSL

classification on the collected image data. The Word2Vec is compared for each image sample

with the 13 vectors. The metric that is used is Euclidean distance [10]. Finally, the class

which is closest to the target class in the Word2Vec space is predicted.

For example, an image of a Chocolate Cake is taken which is one of the zero-shot classes. The

predictions of the model are shown in Figure 8 upon performing ZSL on the selected image.

Figure 8. Top-5 Predictions when the target class is Chocolate Cake.

It can be seen that it predicts ‘Chocolate Cake’ at the second position while not having seen

the image class during the training process. The metric that is being used to evaluate the

model is Top-5 and Top-3 accuracy. It basically means whether the actual label for the

unseen image is present in the Top-5 or -3 predictions. Top-5 accuracy is around 92 %. Since

Prognostication of unseen objects using zero-shot learning with a complete case analysis

463

this is a process of classifying images that have not been seen by the model before, the

accuracy percentages are prety decent.

The deep learning model knows only the positions of the classes in the Word2Vec space. Thus,

it can be deduced that ZSL clearly works better than some random object recognition task.

A confusion matrix helps in visualizing the performance of a deep learning model. Figure 9

shows how many images the model predicted correctly for each class. The ‘Not in Top-5

preds’ row indicates the number of images the model predicted incorrectly for each class.

Figure 9. The confusion matrix of the Zero-Shot classes tested on the deep learning model.

EFFECT OF BATCH SIZE

The amount of data instances that are needed to be trained before updating the necessary

hyperparameters is known as batch size. It iterates over the data and predicts classes. The

predicted values are compared to the expected values and the loss is computed. The neural

network is improved from this loss by moving down the error gradient.

The training accuracies and losses of different batch sizes such as 64, 128 and 256 [18] are

compared. The training accuracy and loss of the deep learning model using various batch

sizes are shown in Figures 10 and 11. The number of epochs (X-axis) denote the number of

passes that the model has completed of the entire training dataset.

Figure 10. Comparing the training accuracies of the model when trained with different batch

sizes.

S.L. Chakravarthy and J.V.R. Arutla

464

Figure 11: Comparing the training losses of the model when trained with different batch sizes.

From the figure one can analyse that low training accuracy is caused by high batch sizes. As

the batch size increases, the training accuracy decreases and the training loss increases. This

is due to the amount of data being trained as a batch is increased. A hypothesis on why this

happens is that the training instances of a particular batch interfere with one another’s

gradient. Therefore, this leads to smaller gradients overall.

EFFECT OF LEARNING RATE

The hyperparameter that controls the amount of change in reaction to the loss every time the

weights of neurons get updated is called the learning rate [11]. The process of selecting a

learning rate can be difficult as the value may be too large, resulting in learning a sub-optimal

set of weights too quickly, whereas a smaller value may end in the training process getting

stuck. There are studies [19] that analyze the impact of varying learning rates over larger

batch sizes. Thus, the learning rate is increased and it is checked if the training accuracy that

has been lost are regained.

Figure 12. Comparing the training accuracies of the model at different batch sizes and

learning rates.

The learning also affects such a way that the lost training accuracy is regained by increasing

the learning rate. As the learning rate is increased, the training accuracy lost by increasing the

batch size is regained as the model learns at a faster rate than the previous runs.

Prognostication of unseen objects using zero-shot learning with a complete case analysis

465

Figure 13. Comparing the training losses of the model at different batch sizes and learning rates.

IMPLEMENTING EARLY STOPPING

The process of monitoring the model’s performance for each epoch on a validation set during

training and ending the training based on the validation set performance is called Early

Stopping [20]. Early Stopping is implemented during training and it is checked whether there

is an improvement in the Validation loss.

In Figure 14, it can be seen that the validation loss stops decreasing and starts to go back up.

This shows that the model is overfitting the dataset. However, in Figure 15 implementing

Early Stopping, the training is stopped as soon as the validation loss starts to increase,

thereby preventing overfitting.

Figure 14. Comparison between training and validation losses of the model while not

implementing early stopping.

REGULARIZATION LAYERS

To help the model in generalizing well, regularization layers are used that make some

changes to the algorithm. Here, in the methodology for optimization, the following

regularization layers are implemented: Dropout, Gaussian Noise and Gaussian Dropout.

Dropout [14] is partially learning the weights over many epochs. Dropout value of 0.5 leads

to the highest possible regularization. The intention is to lessen the dropout loss in order to

regularize the deep learning model. This is done using the following equation:

 . (6)

S.L. Chakravarthy and J.V.R. Arutla

466

Figure 15: Comparison between training and validation losses of the model while

implementing early stopping.

where w represents the weights, I represents the input vector, i is the activity in a particular unit.

Gaussian Dropout involves multiplying the weights with a variable. There are Gaussian Gates

are put on each connection. The weights need not be scaled in Gaussian Dropout. The

equation for Gaussian Dropout is shown below.

 . (7)

where 𝛿 denotes a gating 0-1 Bernoulli variable, w the weights, I the input vectors, i the

activity in a particular unit.

The layer of Gaussian Noise [21] is used to include noise in the model. This helps in reducing

overfitting. It is particularly useful when dealing with inputs which are real valued. It

performs the second best right after the Dropout layer when trained on the image data of the

training classes.

The probability density function p of a Gaussian random variable z is given by:

 , (8)

where z represents the grey level, µ represents the mean grey value and  is its standard

deviation. The model is trained on the following regularization layers obtaining accuracies as

shown in Table 2.

Table 2. Effect of different regularization layers on the model.

As it can be observed that using the Dropout layer achieves the best results, with the Gaussian

Noise layer coming a close second. Two Dropout layers are used with the first one having a

rate of 0,8 and the second one having a rate of 0,5. The rate of the first layer is 0,8 because it is

important to retain as much information when implementing Dropout layers at the input. If not

done so, a lot of information might be lost and it might affect the training process.

Regularization layer Top-5 Accuracy Top-3 Accuracy

Dropout 0,92 0,78

Gaussian Noise 0,91 0,76

Gaussian Dropout 0,88 0,72

Prognostication of unseen objects using zero-shot learning with a complete case analysis

467

CONCLUSION

A ZSL model is built in a way that uses the VGG16 model [2] to extract image attributes and

then recognize daily life objects which the model has not seen. Nine training classes and four

ZSL classes were considered in this article to classify the samples of ZSL classes on training

the model with samples of training classes. The data is collected from scraping Google for

images and from a Kaggle dataset. A deep learning model is then trained on the features

extracted from the training class data collected. It is tested on ZSL class data and achieved a

Top-5 accuracy of 92 %.

Images that have not been trained on are being classified, especially when the neural network is

not aware of the ZSL classes, at scores that are quite decent. The only information given to the

model is location of the word vectors of these classes in the Word2Vecs. The scores are not

always high as it is more difficult to recognize target classes that belong to similar categories.

ZSL has great scope and is a popular topic in Deep Learning even though it is a relatively new

idea. ZSL can be built upon and improved to make further systems like helper-based systems

using ZSL for the visually impaired. The natural vegetation can be analysed in remote areas and

rare animals can be classified in their own habitats. There have been a lot of developments

recently in the field of robotics [22] and ZSL can be used to produce robots that can carry out

functions of humans. This can be done as humans can recognize an object that the model has not

been trained on before and might not have information regarding what the thing is.

Future work that we envisage carrying out is focused on adopting ZSL mechanisms in deep

learning algorithms for the design and development of intelligent systems. We aim to test

other N-shot approaches such as one-shot and few-shot learning, and compare their

performance to ZSL. Another approach could be to combine other N-shot approaches with

ZSL to achieve better predictions in practical situations such as autonomous vehicles. This

takes the novelties of all such approaches and produces an overall positive result.

The code is available at http://www.github.com/JatinArutla/Zero-Shot-Learning.

REFERENCES

[1] Tian, D.: A Review on Image Feature Extraction and Representation Techniques.
International Journal of Multimedia and Ubiquitous Engineering 8(4), 385-396, 2013,

[2] Simonyan, K. and Zisserma, A.: Very deep convolutional networks for large-scale image

recognition.
3rd International Conference on Learning Representations. ICLR, San Diego, 2015,

[3] Xian, Y., et al.: ZSL-A comprehensive evaluation of the good, the bad and the ugly.
IEEE Transactions on Pattern Analysis and Machine Intelligence 41(9), 2251-2265, 2019,

http://dx.doi.org/10.1109/TPAMI.2018.2857768,

[4] Zhu, P.; Wang, H. and Saligrama, V.: Generalized Zero-Shot Recognition based on

Visually Semantic Embedding.
The Conference on Computer Vision and Pattern Recognition, CVPR, 2019,

[5] Romera-Paredes, B. and Torr, P.H.S.: An embarrassingly simple approach to ZSL.
32nd International Conference on Machine Learning, ICML, 2015,

[6] Li, X.; Guo, Y. and Schuurmans, D.: Semi-Supervised Zero-Shot Classification with

Label Representation Learning.
International Conference on Computer Vision, ICCV, 2015,

[7] Li, K.; Renqiang Min, M. and Fu, Y.: Rethinking ZSL: A Conditional Visual

Classification Perspective.
International Conference on Computer Vision, ICCV, 2015,

http://www.github.com/JatinArutla/Zero-Shot-Learning
http://dx.doi.org/10.1109/TPAMI.2018.2857768

S.L. Chakravarthy and J.V.R. Arutla

468

[8] Wang, W., et al.: A Survey of ZSL: Settings, Methods, and Applications.
ACM Transactions on Intelligent Systems and Technology 10(2), 1-37, 2019,

http://dx.doi.org/10.1145/3293318,

[9] Zhang, Z. and Sabuncu, M.R.: Generalized Cross Entropy Loss for Training Deep

Neural Networks with Noisy Labels.
Conference on Neural Information Processing Systems, NeurIPS, 2018,

[10] Sumbul, G.; Cinbis, R.G. and Aksoy, S.: Fine-Grained Object Recognition and ZSL in

Remote Sensing Imagery.
IEEE Transactions on Geoscience and Remote Sensing 56(2), 770-779, 2018,

http://dx.doi.org/10.1109/TGRS.2017.2754648,

[11] Bengio, Y.: Neural Networks: Tricks of the Trade, chapter Practical recommendations

for gradient-based training of deep architectures.
Springer, Berlin & Heidelberg, pp.437-478, 2012,
http://dx.doi.org/10.1007/978-3-642-35289-8_26,

[12] Mikolov, T., et al.: Distributed Representations of Words and Phrases and their

Compositionality.
Advances in Neural Information Processing Systems 26, 2013,

[13] Zhuang, G.H., et al.: Densely Connected Convolutional Networks.
Computer Vision and Pattern Recognition, CVPR, 2017,

http://dx.doi.org/10.1109/CVPR.2017.243,

[14] Srivastava, N., et al.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research 15(56), 1929-1958, 2014,

[15] Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift.
preprint arXiv:1502.03167v3 [cs.LG],

http://dx.doi.org/10.48550/arXiv.1502.03167,

[16] Ruder, S.: An overview of gradient descent optimization algorithms.

preprint arXiv:1609.04747v2 [cs.LG],
http://dx.doi.org/10.48550/arXiv.1609.04747,

[17] Kingma, D. and Ba, J.: Adam: A Method for Stochastic Optimization.

preprint arXiv:1412.6980v8 [cs.LG],
http://dx.doi.org/10.48550/arXiv.1412.6980,

[18] Smith, S.L.: Don’t decay the learning rate, increase the batch size.
6th International Conference on Learning Representations, ICLR, 2018,

[19] Kandel, I. and Castelli, M.: The effect of batch size on the generalizability of the

convolutional neural networks on a histopathology dataset.
ICT Express 6(4), 312-315, 2020,

http://dx.doi.org/10.1016/j.icte.2020.04.010,

[20] Prechelt, L.: Early Stopping – But When?

In: Orr, G.B. and Müller, K.R., eds.: Neural Networks: Tricks of the Trade. Lecture Notes in

Computer Science Vol. 1524. Springer, Berlin & Heidelberg, pp.55-69, 2002,

http://dx.doi.org/10.1007/3-540-49430-8_3,

[21] Boyat, A.K. and Joshi, B.K.: A review article: Noise models in digital image processing.
Signal & Image Processing: An International Journal 6(2), 63-75, 2015,

http://dx.doi.org/10.5121/sipij.2015.6206,

[22] Abderrahmanea, Z., et al.: Haptic ZSL: Recognition of objects never touched before.
Robotics and Autonomous Systems 105, 11-25, 2018,

http://dx.doi.org/10.1016/j.robot.2018.03.002,

[23] Kaggle dataset: Food Images (Food-101).
https://kaggle.com/datasets/kmader/food41, accessed November 2020.

http://dx.doi.org/10.1145/3293318
http://dx.doi.org/10.1109/TGRS.2017.2754648
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.48550/arXiv.1502.03167
http://dx.doi.org/10.48550/arXiv.1609.04747
http://dx.doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.icte.2020.04.010
http://dx.doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.5121/sipij.2015.6206
https://doi.org/10.1016/j.robot.2018.03.002
https://kaggle.com/datasets/kmader/food41

