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Abstract: Based on the one-factor CIR interest rate model, the pricing of Sherpa Target Redemption Notes (STARN) with early-excise features is investigated in this paper. 
Firstly, the characteristics of Sherpa target redemption notes were described and the partial differential equation was proposed. Secondly, both non-arbitrage jump conditions 
on the coupon date and early-excise policy on the redemption date were provided; furthermore, the boundary conditions of partial differential equations were also discussed. 
Thirdly, a numerical method for solving the partial differential equation was obtained based on the control volume in the theory of finite volume by making use of the upwind 
weighting scheme to avoid the numerical oscillation phenomenon. Finally, the sensitivity of the model parameters was analyzed. The results show that the STARN value 
decreases rapidly with the increase in short-term interest rates, furthermore, when short-term interest rates reached a turning point the rate of decline slowed. As volatility 
increases, the value of the Notes is increased; increasingly as the proportion redeemed is large, STARN value increases. 
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1 INTRODUCTION 

 
Sherpa Target Redemption Note [1] is an American-

style financial derivative. It is a target redemption note and 
the holders of STARN can redeem part of the principal of 
the notes for early termination of the contract on the agreed 
non-coupon dates before the expiration. A Target 
Redemption Note is similar to an Inverse Floating Rate 
Note. In contrast, it adds a condition that if the payment 
coupon exceeded a certain limit, the contract ended 
prematurely. For example, STARN, issued by HSBC 
(Hongkong and Shanghai Banking Corporation Limited), 
its maturity is 10 years. Besides, its interest coupon is paid 
quarterly. And its coupon payment is the face value of 
STARN at 11% in the first quarter; the remaining quarter 
is up to a reverse floating rate calculation formula 
associated with a stock market index. If the accumulated 
coupon rate reached 11.01% of the target cap, STARN 
would be terminated. Then the holder of STARN will 
recover the principal which is equal to the face value. The 
date of the payment of the principal is uncertain and it 
could be earlier than the expiration. The holders of STARN 
can also apply for HSBC to terminate the STARN 
immediately at the end of the non-payment of the month, 
but the STARN holders may only get part of the principal. 
When the interest rates are at a low level, with the attractive 
initial coupon and the characteristics of the ability to 
recover the principal in a short time, the target redemption 
notes are particularly attractive to Asian investors in the 
early 21st century [2]. When the interest rates decline, the 
time to recover the coupon and principal payments is 
shorter, and the time value of cash flows for investors has 
higher returns. However, in another extreme case, the 
interest rate continues to rise and is always higher than a 
certain level, investors can only hold the target redemption 
notes to maturity and receive the principal and remaining 
coupons of the notes at maturity. When the interest rates go 
in the negative direction, the STARN holders can choose 
to terminate the contract in advance. Thus the Sherpa 
Target Redemption Note has greater flexibility than other 
notes. 

Fluctuations in interest rates led to the number of 
coupons that STARN holders received in coupon date 
uncertain, but it also determines the uncertainty of 

termination time. When the payment accumulated coupon 
amount reaches the target level, STARN will cease 
(Knock-out feature), and when interest rates rise, STARN 
holders can also take the initiative to redeem the principal 
amount and terminate the STARN contract (Early excise 
feature). Therefore, the value of STARN is designed by 
two random state variables, one is the interest rate and the 
other is the path-dependent cumulative coupon amount. 

STARN is one of the structured note products which 
has great flexibility to respond effectively according to 
markets changing in a dynamic. Chen and Kensinger 
(1990), Chen and Sears (1990), and Baubonis et al. (1993) 
firstly analyzed the US stock-linked products (equity-
linked products) on the market [3-5]. Wasserfallen and 
Schunk (1996), Barth et al. (2001), Wilkins et al. (2003), 
Grünbichler and Wohlwend (2005) studied the SPs on the 
Swiss and German markets respectively [6-9]. Stoimenov 
and Wilkins (2005) found that the additional revenue 
decreased with the approaching expiration of products. He 
proposed the "Life Cycle Hypothesis" (life cycle 
hypothesis) [10]. Muck (2006, 2007), Wilkens and 
Stoimenov (2007), aiming at the first generation of 
leveraged products (leverage products) which have a knock 
characteristic (knock-out) for the German market, found 
that the actual prices of these products were higher than 
their theoretical price [11-13]. Muck (2007), however, 
thought that the risk of asset price jump may partly explain 
the reasonableness of such additional costs, which 
indicates that the so-called "life-cycle hypothesis" does not 
exist. Entrop et al. (2009), researching the second 
generation of leveraged products, get a similar conclusion 
[14]. Kang and Zheng (2005) used the BDT model to price 
Xiamen foreign exchange structured deposit [15]. Ren and 
Li (2005) studied "the Australian dollar into gold" which is 
a financial product design and pricing mechanism held by 
Bank of China Beijing Branch, and give an explicit pricing 
solution using the method of partial differential [16], 
similar studies including Cui Hairong, He Jianmin and Hu 
Xiaoping (2012) [17] and so on. Shefrin and Statman 
(1993) analyze the design of innovative products from the 
perspective of behavioral finance theory [18]. Breuer and 
Perst (2007) estimated the attractiveness of discount bonds 
and reverse convertible bonds to investors using 
cumulative prospect theory [19]. Hens and Rieger (2009) 
studied the relationship between the reason of investors and 
the attractiveness of SPs [20]. 
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2 PRICING MODEL 
2.1 Introduction STARN 

 
The number of coupon tickets and date of receipt of 

principal which the holders of STARN received on every 
coupon date is uncertain. In addition, STARN holders 
could be initiated to terminate the contract prematurely by 
a point agreed to get part of the principal. Therefore, 
STARN can be considered as a Contingent Claim whose 
underlying stochastic state variables are the amount of 
accumulated coupon of interest rates and path dependence. 
As used herein, short-term interest rates as a state variable, 
the short-term interest rate is assumed to obey a one-factor 
CIR (Cox-Ingersoll-Ross, 1985) model. The CIR model is 
an example of a "one-factor model" because it describes 
interest movements as driven by a sole source of market 
risk. It is used as a method to forecast interest rates and is 
based on a stochastic differential equation. The CIR model 
can be utilized, among other things, to calculate prices for 
bonds and value interest rate derivatives. 

 
d ( )dr a b r t rdWσ= − +           (1) 
 

a, b, σ is a constant greater than zero. dW is one 
dimension Brownian motion.  

Let t0 = 0 be the start date of the STARN, tk is the k-th 
polling day, k = 1, 2, …, K, tk = T, T is the maturity date of 
the STARN. We assume that the interval between two 
coupon dates is a constant τ, namely tk = kτ. N is notional 
of START. kt k mτ τ= + ∆ is coupon date. m-th STARN 
holders can take the initiative in advance to maturity of the 
contract between 1,k kt t + , 1, 2, , 1M M= − , M τ∆ = . In 
this case, noteholders may only receive a portion of the 
principal of ,0 1Nρ ρ< < , ρ is recovery ratio. As same as 
widely traded goals redeem the notes, in the coupon data 
when the contract has not been terminated. The coupon 
amount which the holders of STARN received is designed 
by the Inverse floating rate formula as follows: 

 
ˆ( , ) ( ( , ; ))k kC t r N f sL t rτ τ += −       (2) 

  
Here, ( ) max( ,0)x x+ = ; f, s are the positive constants; 

( , ; )kL t r τ is τ - the interest index at tk (like LIBOR). ( )A t
represents the accumulated coupon amount that the holders 
of STARN received up to t, assuming that STARN is still 
viable up to coupon data tk. So, 
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Let Ccap be the target cap of the STARN coupon. The 

sum of the coupons which the holder of STARN received 
is capN̂C . Therefore, ( )A t is upper bounded and the upper 

bound is capN̂C . STARN would not be ended until the sum 

of the coupon which is received gets capN̂C . Assuming that 
STARN would be ended at coupon data tk, the coupon 
which the holder received is cap

ˆ ( )kNC A t−− . Let ( , )kC t r  
be the amount of the coupons at tk, 1, 2, ,K K=  . So, 
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Let T

tP  be units of par value of default-free zero-
coupon bond value at the time t with the maturity date of 
T. ( , ; )kL t r τ in the period of τ has the following 
relationship between its value and discounted bond expired 
at the time t τ+ : 

 
1 1( , ; ) 1k t

t
L t r

P ττ
τ +

 
= −  

 
                    (5) 

 
In the CIR interest rate model in (1), it is easy to 

deduce that the price of units of par value of default-free 
zero-coupon bonds is 
 

( , )( , ) ( , )e B t T rtP t T A t T −=                    (6) 
 

where 
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N̂ - the face value of STARN is assumed to be 1. 
 

2.2 Pricing Partial Differential Equation 
 
STARN is essentially an interest rate derivative, and 

the pricing of interest rate derivatives differs from the 
pricing of financial derivatives where the underlying asset 
can be traded directly. Interest rate derivatives due to their 
subject matter (Underling) are not traded interest rate, no 
other financial derivatives pricing based on replication 
method, so use the Wilmott (2006) [22] based on the 
market prices of interest rate risk (Market Price of Interest-
rate Risk), the concept of pricing in the objective 
probability measure. 

Because its subject matter is the interest rate cannot be 
traded, the interest rate derivatives cannot be priced by 
common methods for other financial derivatives. 
Therefore, based on the market price of interest-rate risk 
introduced by Wilmott, pricing under the objective 
probability measure is proposed. ( , ; )V t r A is the value of 
STARN, depending on the time t and the interest rate r . 
Because A - the cumulative sum of the coupon changed 
only in the coupon date, the dependent variable A will not 
be found in the pricing differential equation of STARN.  
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In the non-coupon days and redemption days, based on 
Ito's Lemma, we can get the pricing partial differential 
equations 

 
2 2

1/2
2

1

( ( ) ( , )) 0,
2

, 0,1, , 1, 0,1, , 1m m
k k

V V Vr a b r r t r rV
t tr
t t t k K m M

σ σ λ

+ + −

∂ ∂ ∂
+ + − + − =

∂ ∂∂
< < = − = − 

 (7) 

 
where ( , )t rλ is the market price of interest-rate risk. We 
assumed that ( , )t rλ  is a deterministic function of time 
and interest rates. The estimation method of ( , )t rλ was 
introduced in Wilmott (2006) [22]. On coupon date tk, A 
changed variable based on the rule 
 

( ) ( ) ( , )k k kA t A t C t r+ −= +  
 
where ( ), ( )k kA t A t− +  are for the previous value and the 
changed value of A  respectively on coupon day tk. 

On the coupon dates tk, when cap( )kA t C+ = , the 
contract of STARN will terminate. The sum of the face 
value of the ticket and the remaining unpaid coupons -

( )cap kC A t−−  will be paid on the termination of the 
contract with the following equation 
 

cap( , ) 1 ( )k kV t t C A t− −= + −                   (8) 
 
STARN will change upon the no-arbitrage jump 

condition on the coupon dates when premature knock-out 
did not happen, with the following equation 
 

cap( , ) ( , ) ( , ), ( )k k k kV t r V t r C t r A t C+ − += + <          (9) 
 
On the maturity date T, the payment for STARN 

depends on ( )A T− . If premature knock-out or redemption 
did not happen, the remaining portion of the total value of 
the guarantee coupon and the face value should be paid to 
the STARN holders. Thus, right before the maturity date, 
the value of STARN is 
 

cap cap( , ) 1 ( ), ( )V T r C A T A T C− − −= + − <               (10) 
 
On the redemption dates , 1, 2,..., 1m

kt m M= − , the 
STARN holders can choose the early termination of the 
contract by applying for part of the face value. At this time, 
STARN changes as the following equation 
 

( , ) max( ( , ), )m m
k kV t r V t r ρ+ −=                (11) 

 
In the pricing equation of STARN described in Eqs. 

(7) to (11), the dependent variable A does not explicitly 
appear in the partial differential Eq. (7). So the pricing of 
STARN is implemented by solving the partial differential 
equations coupled with a different value A. 

 
 

2.3 Boundary Condition 
 
For the single-factor CIR model described in Eq. (1), 

the short-term interest rate r ranges in value [0, )+∞ . When 
r → +∞ based on Halluin (2001)[23], the boundary 
condition is  
 

( , ) 0V t +∞ =                               (12) 
 
When 0r → the condition will be relatively 

complicated. Oleinik & Radkevich (1973) pointed out that, 
for the partial differential equations with the form like 
 

( ) ( ) ( )t rr rf a r f b r f c r f= + +                  (13) 
 
as long as 0lim ( ( ) ( )) 0r a r b r→ − ≥

 , the boundary 
conditions were not required at r = 0. Houston et al. (2000) 
[23] promoted the above conclusion. They proved that, 
under the single-factor CIR model, as long as 
 

2
2 1ab
σ

≥                                           (14) 

 
there is no need to add the boundary conditions at                

r = 0 in Eq. (7). 
 

3 A NUMERICAL METHOD BASED ON THE THEORY OF 
FINITE VOLUME ELEMENT 

3.1 Equations on non Cancellable Date 
 
For STARN, the coupon payments, a possible 

knockout, and early redemption all occur at the discrete 
point. The numerical method for solving the pricing 
equation was obtained based on the control volume in the 
theory of finite volume proposed by Zvan (2001) [24] 
which was used to price for the discrete monitored path-
dependent options. The pricing algorithm can be seen as a 
problem by a series of sub-structure. Each sub-path 
problem was associated with a given path-dependent state 
variable. These state variables are the total amount of 
accrued coupon received. Only on coupon payment date, 
can communication occur between these independent sub-
problems. 

Let z T t= − , for 1, 0m m
k kT t z T t r−− < < − > and 

cap0 A C≤ < , where 1, 2, ,k K=  , 1, 2, ,m M=  , 
there be  

 
2

2 1/2
2

1 ( ( ) ( , ))
2

V V Vr a b r r z r rV
z zr

σ σ λ∂ ∂ ∂
= + − + −
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    (15) 

 
with the initial conditions 

 

cap(0 , ; ) 1V r A C A+ = + −            (16) 
 
When capA C= ,  

 
( , ) 1V z r =                (17) 
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For each given A, one dimensional subproblem 
described by Eq. (15) can be solved independently. 
Uniform-size grid point was used in this article. Calculated 
fields are decided by grid point 

max max max( , , ), 0,1, , , 0,1, , , 0,1, , ,n i jZ A r n n i i j j= = =    

where cap max

max max max
, ,

C rTZ A r
n i j

∆ = ∆ = ∆ =  

Let ,
n

i jV  be the numerical solution of STARN at grid 

point ( , , )n i jZ A r . For each fixed r, there is an initial 
condition 
 

0
, cap1 ,i j iV C A j= + − ∀              (18) 

 
Consider the control volume on the interval
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1
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+

 is the midpoint of 1,j jr r + . Solve the quadrature of the 

Eq. (15). Based on Zvan (2001), [24], we can get the 
implicit numerical equation 
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To avoid spurious oscillations in numerical 

computation, we use an upstream weighting scheme to 
calculate 1

1,
2

n
i j

V +

+
, which is defined as follows 
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The initial and boundary conditions are as follows 
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Referring to Kwok and Kuen (2006) [2], we specified 

a time-weighted factor , 0 1θ θ≤ ≤ and assessed the value 
of the spatial discretization at the old and the new points. 
Then we get the following finite volume element scheme: 
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When 10, ,
2

θ = and 1, the Eq. (22) respectively 

corresponds to fully explicit format, Crank-Nicolson 
format, and fully implicit format. Crank-Nicolson format 
and fully implicit format are unconditionally stable. But 
only when the time step is small enough relative to the 
spatial discretization step, the fully explicit format is stable. 
The advantage of the Crank-Nicolson format is that it can 
reach the second-order accuracy in the time dimension. 
And yet fully explicit format and fully implicit format can 
only achieve the first-order accuracy in the time dimension. 
And considering the oscillation of the algorithm, in the 
fully implicit format oscillations do not exist but only when 
the time step is small enough can the fully explicit format 
and Crank-Nicolson format avoid oscillation.  

 
3.2 Jump Conditions on the Coupon Date 

 
On coupon dates, the aforementioned non-arbitrage 

jump conditions should be satisfied. By assuming that the 
coupon dates were at the time grid points between znand

1nz + , i.e. 1n k nz T t z +≤ − < , we got the following finite 
difference scheme of non-arbitrage jump conditions, 
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where ,

n
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is an approximate value of ( )', ;n jV z r A . By 

using the following linear interpolation method, we 
obtained that, 
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where 
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As ' 0A = it means that no coupon is paid. At this point, 
1

0, , 0,
n n n

j i j jV V V+ = =
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. 
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We assumed that '
1 max, 1, 2, ,i iA A A i i− < < =  , 

where ,
n

i jV


is the linear interpolation of a . The second item 

of 'A is the actual payment of the coupon on the coupon 
date kt . We take the minimum of 'A to make the 
cumulative sum of coupons the STARN holders have up to 

capC and '
cap0,A C ∈   . Because 'A  was not exactly 

falling inthe computing grid, it is necessary to use 
interpolation methods to obtain approximate values of 

, .n
i jV


 
 

3.3 Early-Excise Conditions of Redemption Dates 
 
On the redemption dates , 1, 2, , 1m

kt m M= − , the 
holders of STARN can choose the early termination of the 
contract by applying for part of the face value. By 
assuming that the redemption date was at the time grid 
point between nz and 1nz + , i.e. 1

m
n k nz T t z +≤ − < , we got 

the following finite difference scheme of the early-excise 
 

( ), ,max ,n n
i j i jV V ρ=               (25) 

 
Using the Crank-Nicolson format and fully implicit 

format, it is difficult to solve the above function because 
solving ,

n
i jV  is required to use other computing grid points. 

We can use an iterative method introduced by Tavella & 
Randall (2000) [25] for solving linear equations to settle 
this problem. 

 
4 NUMERICAL EXAMPLE 

 
Refering to the contract of STARN issued by HSBC, 

the contract of STARN for numerical computation is 
described in the following Tab. 1. 

 
Table 1 The contract of STARN 

Clause Content 
Notional Amount 1 

Maturity 10 years 
Target cap rate 15% 

First-year fixed coupon rate 9% 

Inverse floater formula max(8.5% − L, 0), L = 3 − 
month LIBOR 

Coupon payment frequency Quarter 
Redemption date End of non-coupon month 

Redemption Proportion ρ = 0.8 
 
For the CIR model described in Eq. (1), the 

corresponding parameters are the mean reversion rate
0.5a = , the levels of mean reversion 0.02b = , the market 

prices of interest rate 0.01λ = , and the volatility 0.1σ = . 
We follow the direction of short-term interest rate r using 
60 grid points, where max 1.0r = . Along the direction of A 
using 30 grid points, where max cap 0.15A C= = . In Fig. 1, 
we compare the calculation accuracy of the finite volume 
element numerical method of STARN under different time 
steps. It can be found in Fig. 1 that as r increases, the value 
of notes V decreased rapidly. So V is a decreasing function 
of interest rate r. Higher interest rates mean receiving 

coupons at a slower rate and knocking out with a smaller 
opportunity. With the delay of the expiry date of the ticket, 
face value will be discounted with a bigger discounting 
factor and the value of notes becomes slower. However, as 
r reached a turning point, the rate of decline slowed. That 
is because as r is running upward to a certain extent, 
STARN holders can actively choose to get part of the face 
value of notes to terminate the contract. From Fig. 1, with 
the decrease in time step, the numerical results obtained 
from the finite volume method also converge at a very fast 
speed. 

 

 
Figure 1 Comparison of accuracy of numerical valuation of STARN with varying 

number of time steps 
 

In Fig. 2 and Fig. 3, STARN's sensitivity to interest 
rate volatility parameters σ and the proportion of 
redemptions ρ are respectively discussed. By observing 
Fig. 2, it can be found that, when σ increases, the value of 
STARN also increases. Therefore, when the short-term 
interest rate r reaches a certain critical point, due to the 
active redemption, the different values σ do not affect the 
values of STARN. Just near the calculation region's 
boundaries, lager σ easily leads to instability of numerical 
methods and makes the value of STARN at the boundary 

maxr r=  unreliable. It can be found in Fig. 3 that the value 
of STARN increases when the ρ increases. When the value 
ρ decreases, the value of STARN also decreases. When       
ρ = 0 STARN degenerates into an ordinary target 
redemption note (TARN). 
 

 
Figure 2 Plot of note value V against short rate r with varying values of 

redemption parameter ρ 
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Figure 3 Plot of note value V against short rate r with varying values of 

redemption parameter ρ 
 
5 CONCLUSION 

 
The complexity of pricing STARN lies in two features 

of STARN, a premature knock-out and early termination.  
Its pricing function occurs in discontinuous jump at the 
points of the coupon dates and has a lower bound on 
redemption days. All of these make the issue of the pricing 
of STARN difficult to solve. Therefore,the pricing partial 
differential equation and its boundary conditions of 
STARN were proposed. Then, a numerical method for 
solving the pricing equation was obtained based on the 
control volume in the theory of finite volume by making 
use of the upwind weighting scheme to avoid the numerical 
oscillation phenomenon. Finally, the sensitivity of the 
model parameters was analyzed. The results show that the 
STARN value decreases rapidly with the increase in short-
term interest rates; furthermore, when short-term interest 
rates reached a turning point, the rate of decline slowed. 
When the volatility increases, the value of the Notes is 
increasing; increasingly as the proportion redeemed gets 
larger, the STARN value increases. 
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