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AN IMMUNE DETECTOR-BASED METHOD FOR THE DIAGNOSIS
OF COMPOUND FAULTS IN A PETROCHEMICAL PLANT

Summary

Aiming at the serious overlap of traditional dimensionless indices in the diagnosis of
compound faults in petrochemical plants, we use genetic programming to construct optimal
indices for that purpose. In order to solve the problem of losing some useful fault feature
information due to classification processing, during the generation of the dimensionless index
immune detector, such as reduction and clustering, we propose an integrated diagnosis method
using each dimensionless index immune detector. Simulation results show that this method has
high diagnostic accuracy.
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1. Introduction

With the rapid development of petrochemical industry, petrochemical plants are
becoming larger and more complicated. Due to the complexity of the structure and the
processes of these plants, multiple compound faults often occur. When this happens, different
fault characteristic signals are mixed with each other, which presents complex symptoms such
as complex coupling and fuzziness; this often makes various diagnosis methods based on the
frequency-domain analysis as the basic technology helpless [1-3]. Therefore, compound fault
diagnosis is a difficult problem in the field of fault diagnosis in petrochemical plants [4-6]; this
is especially true in the research on integrated diagnosis methods with the focus on accuracy
and real-time performance [7-14].

In complex environments, vibration monitoring signals of petrochemical plants often
contain a large number of nonlinear and random information, which causes great difficulties in
the analysis of fault signals [7, 15]. Considering that vibration time-domain signals are the most
basic and original signals, it would be very beneficial to maintain their basic features. For fault
diagnosis, it is of major importance that fault features can be directly extracted from such time-
domain signals [15]. In the time-domain analysis, the probability density function of vibration
signals can better reflect the fault information., Dimensional indices, such as mean value and
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root mean square value, and dimensionless indices in the amplitude domain, such as waveform
index, margin index, and pulse index, have been derived through the probability density
function of vibration signals [16]. In practice, although the dimensional index is sensitive to
fault characteristics and its value will rise with the development of faults, it will also change
due to a change in the operating conditions (such as load and rotational speed), it is easily
affected by interference, and its performance is not stable enough. In contrast, the dimensionless
index is insensitive to the disturbance in the vibration monitoring signal, and its performance is
relatively stable. In particular, the dimensionless indicators are insensitive to changes in the
amplitude and frequency of the signal, i.e. they have little to do with the operating conditions
of the machine. Consequently, the dimensionless index has been widely used in the fault
diagnosis of petrochemical plants [17]. Among the dimensionless indices, the kurtosis index
and the pulse index are more sensitive to the impact fault, especially in the early stage of the
fault; in the case of the impact fault, the high value of the pulse is reduced, and the values of
other indices do not increase much, but the values of the kurtosis and the pulse index increase
more sharply [18]. Therefore, these two indices are more sensitive to the early failure of the
petrochemical plant. However, in the actual operating conditions, the failure of the
petrochemical plant is usually caused by a compound fault, that is, the fault of the equipment is
a result of multiple single concurrent faults. The statistical data show that 80% of the faults in
large petrochemical plants are complex and concurrent. The main difficulties are: (1) how to
determine a corresponding range of dimensionless indices in the complex petrochemical
environment; (2) how to distinguish between the dimensionless index ranges of equipment in
proper working order and the dimensionless index ranges of faulty equipment since there is
some overlapping between the fault ranges corresponding to each dimensionless index
calculated using vibration monitoring data. This results in the uncertainty of diagnosis
results. The above two difficulties greatly increase the complexity and difficulty of applying
existing fault diagnosis methods.

Based on the above analysis, first, we use genetic programming to construct a new
dimensionless index, we take genetic programming as an intelligent hierarchical structure
optimization algorithm, we take the existing dimensionless index as the initial parameter and
form a new composite parameter through the recombination and optimization of the original
parameter. Secondly, in order to solve the problem of some useful fault feature information
being lost due to classification processing, such as reduction and clustering, during the
generation of the dimensionless index immune detector, we adopt an integrated diagnosis
method using each dimensionless index immune detector. Simulation results show that this
method has high diagnostic accuracy.

2. Compound Fault Diagnosis Model

A compound fault diagnosis model to be used in petrochemical plants, which is based on
an immune detector, is shown in Fig. 1. In the process of diagnosis, the traditional
dimensionless indices are recombined and optimized by genetic programming to construct new
dimensionless indices, with the aim of overcoming the shortcomings of traditional
dimensionless indices in the classification of faults in petrochemical plants. The classification
effect is taken as a criterion for judging whether the new dimensionless index is good or bad.
Finally, through this method, we obtain the index with the best classification ability; this index
is used in the diagnosis of compound faults in petrochemical plants. Then, a variety of
dimensionless immune detectors are defined based on the diversity principle of artificial
immune system. Excellent detector sets that can be mapped to a unique fault feature space one
by one are formed. Multiple dimensionless immune detectors are used for diagnosis at the same
time. Cross detection of different detectors is used to increase the amount of available
information, and finally integrated diagnosis is carried out to obtain the final diagnosis result.

2 TRANSACTIONS OF FAMENA XLVI-3 (2022)



An Immune Detector-Based Method for the Diagnosis of L.Q. Shao, Q.H. Zhang, G.W. Lei,
Compound Faults in a Petrochemical Plant N.Q. Su, P.H. Yuan

| Petrochemical plant |

v

| Traditional dimensionless indices |

v

[ Genetic programming |

| Optimum index |

v

| Immune detector |

v

| Integrated diagnosis |

| Final diagnosis result |

Fig. 1 An immune detector-based model for the diagnosis of compound faults in petrochemical plants

3. The Principle of Genetic Programming

The basic idea of genetic programming is based on the theory of biological evolution and
the principle of heredity. An initial population suitable for a given problem is randomly
generated, and the genotype of each individual in the population is represented as a tree. The
adaptive value of each individual is calculated. According to the principle of survival of the
fittest, genetic operators (replication, crossover and mutation, etc.) are selected for continuous
iterative optimization of the population until the optimal solution or approximate optimal
solution is found in a certain generation [19].

The function set, terminating character set, control parameter, fitness function, and the
evolution terminating criterion should be determined when genetic programming is applied to
solve problems. The details are as follows:

(D

)

Selection of the function set and the terminating set. After mathematical operations,
such as addition, subtraction, multiplication, and division, performed among
dimensionless indices, the obtained indices are still dimensionless. In this paper, six
basic mathematical operations, including addition, subtraction, multiplication, division,
extraction of the square root and squaring, are selected as function sets. Five traditional
dimensionless indices, i.e. the waveform index, pulse index, margin index, peak index,
and the kurtosis index) were selected as the terminating set.

Selection of a control parameter. Population size refers to the total number of
individuals contained in each generation of population. There is no definite method for
selecting the population size. It is generally evaluated empirically and then modified
according to the effect of system operation, which is 100 in this paper. Choosing an
appropriate number of iterations can shorten the processing time without affecting the
running effect too much. The maximum number of iterations depends on the size of
the problem and can be determined by experiment. In this paper, the number of
iterations is 100. Individual scale is the number of nodes that make up an
individual. For more complex objects identified, more nodes must be used to describe
them. However, for simple expressions, using larger individuals not only wastes
computer resources, but may also make the form of the solution too complicated. In
this paper, the maximum size of individuals is six. The basic operations of genetic
programming include replication, crossover, and mutation. In general, the above
operations are performed randomly on the basis of fitness, i.e. the greater the fitness
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of an individual, the greater the probability that it will be selected. The selection
method of fitness is a roulette selection method. According to the importance of these
operations in genetic programming, the probability of replication is 0.2, the probability
of crossover is 0.7, and the probability of mutation is 0.1.

Design of fitness function. Fitness function is the basis of evolution and the driving
force of natural selection, mainly to ensure the survival of the fittest. In the feature
extraction of fault diagnosis, the idea of the Fisher information criterion can be used
to make the classification effect achieve large between-class and small within-class
scatters. In this paper, the fitness function is taken as follows:

F(v)= M (1)
De

In the formula, Dij represents the class spacing between classes i and j. The numerator
represents the minimum value of between-class scatter, and the denominator
represents the average value of within-class scatter. In the evolutionary calculation of
genetic programming, the individuals with the highest fitness are selected; this ensures
the classification ability of the optimal feature index to make the between-class scatter
large and the within-class scatter small.

Evolution terminating criterion. There are two criteria for termination:
1) The maximum fitness value of two adjacent generations did not change much, i.e.

M - M|<o 2)

In the formula, M is the maximum fitness value of generation i, Mi+1 is the
maximum fitness value of generation (i+1), and 0 is a predetermined minimum
value.

2) Evolution to a pre-specified maximum evolutionary algebra, which is specified as
100 in this paper.

4. Generation of Immune Detector

The new improved negative selection algorithm [20,21] proposes two types of detector
mutation search methods. In the first one, the detector is generated by using the mutation in its
own space string according to a certain rule. In the second one, the mechanism of vaccination
and the cloning selection are used to generate the detector directly in the fault space string
according to certain rules. The two methods can not only generate the detector efficiently, but
can also make the detector set fully contain the information of the fault space. The off-line
training process of each dimensionless index immune detector is shown in Fig. 2. The immune
detectors include initial detectors, maturity detectors, and excellent detectors, defined below:

(1

)

3)

Initial detector. In this paper, the genetic variation mechanism is used to search the
variation in the normal state space and the fault space of the equipment to generate a
string equal to the length of the pattern as the initial detector.

Maturity detector. The initial detector population has matured in the negative selection
mechanism by matching with all pattern strings according to certain matching rules
(such as r-continuous bits and the Hamming rule).

Excellent detector. The maturity detector is matched with all the pattern strings with
individual faults, and a unique fault detector that can correspond to various faults is
generated. Then the excellent detector that can directly match various unique faults is
extracted through reduction.
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Fig. 2 A flowchart of each non-dimensional parameter offline training

5. Integrated Diagnosis

The dimensionless index immune detectors with separate fault diagnosis capabilities are
designed to detect faults with unique characteristics. The sensitivity factor of the i type
dimensionless index immune detector with a different sensitivity degree from that of the j type
fault is set as mj;, where m;<l, i=1,2,....1, j=1,2,...,n. The value of mij should be determined by
comparing the ratio between the maximum value of a fault index and the minimum value of a
normal index among dimensionless indices. The larger the ratio is, the more sensitive to faults
the dimensionless index is, and the larger m;; is; the smaller the ratio is, the smaller mj is.
Furthermore, the degree to which the dimensionless index immune detector of type i preserves
the useful feature information lost in the classification processing of type j by reducing and
clustering is set as the useful fault information factor g, where g;<1, i=1,2,...,1, j=1,2,...,n. The
value of gi should be determined by comparing the interval of lost information. The less lost
information there is, the larger gj; is; the more lost information there is, the smaller gj; is. Finally,
the relative diagnostic ability factor of the i type dimensionless immune detector for the j type
fault is set as dj, where d;<1, i=1,2,...,1, j=1,2,...,n. The values of dj; are as follows:

dij :ll# (3)

kajgkj
k=1

The result of integrated diagnosis is expressed as:
/
i=1

where, fi; represents the j type fault detected by the i type dimensionless index immune detector.
If the fault exists, fi=1, if not, f;=0.

Rules: when F;>0, the j type fault is determined to occur and exist, where 0 is the threshold
value, and generally 6>0.8.

6. Case Study

The experimental data in this paper comes from the petrochemical plant simulation test
device of Guangdong Petrochemical Equipment Fault Diagnosis Key Laboratory. The
petrochemical plant is composed of a motor, a gearbox, and a compressor. The support mode
is simple, and the load is an 11kW five-stage centrifugal fan, as shown in Fig. 3. The common
single fault or compound faults of petrochemical plants are simulated by replacing various
faulty gears, bearings, transmission shafts, and other components.
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Fig. 3 The petrochemical plant simulation test device of Guangdong Petrochemical Equipment Fault Diagnosis
Key Laboratory

EMT390 is used to obtain 100 data sets of waveform index (5y), margin index (CLy), pulse
index (/y), peak index (Cy), and kurtosis index (Kv) of the plant operating in normal conditions
and in conditions with various faults of the equipment (cracked shaft, grinding gears, ball crack,
cracked shaft + grinding gears, cracked shaft + ball crack, grinding gears + ball crack, and
cracked shaft + grinding gears + ball crack). After the genetic programming optimization, an
optimization index is obtained:

Ny =K} +C;—-CL/I, (5)

Figure 4 shows the identification effect of the kurtosis index on the eight operating states
defined above. Figure 5 shows the identification effect of optimal index Ni on the eight
operating states. The states are represented by the following signs: "o" represents the normal
state, "x" represents the cracked shaft state, "+" represents the grinding gears state, "*"
represents the ball crack state, "A" represents the cracked shaft + the grinding gears state, "o"
represents the cracked shaft + the ball crack state, "<" represents the grinding gears + the ball
crack state, ">¢" represents the cracked shaft + the grinding gears + the ball crack state
(according to the order of sampling points). It can be seen from the figures that the kurtosis
index cannot accurately identify the eight operating states, while the optimal index Ni can
clearly identify them.

Kurtosis Index

200 300 400 500 600 700 800
Sampling Points

Fig. 4 The identification effect of the kurtosis index on the eight operating states
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Optimal Index N1
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Fig. 5 The identification effect of the optimal index N; on the eight operating states

In order to verify the diagnostic effect of the optimal index N1 on the compound fault,
additional 100 data sets were selected for verification; a 95% confidence interval of the optimal
index N1 was used as the test standard. Table 1 shows the results obtained in the verification,
where the percentage of the recognition ratio is within the confidence interval. As can be seen
from Table 1, the results of verification are satisfactory.

Table 1 The recognition ratio of optimal index N,

FAULT TYPE OF ESTIMATE OF
PETROCHEMICAL OPTIMAL INDEX C%VTFEE\E,TL:E RgfﬁgNg/I)o N
SIMULATION PLANT Ni °
NORMAL 3.632 [3.459, 3.805] 99
CRACKED SHAFT 10.422 [9.987, 10.857] 97
GRINDING GEARS 6.557 [6.296, 6.818] 96
BALL CRACK 5.295 [5.054, 5.536] 96
CRACKED SHAFT + GRINDING
CEARS 6.013 [5.745, 6.281] 93
CRACKED SHAFT + BALL
CRACK 7.766 [7.451, 8.081] 95
GRINDING GEARS + BALL
CRACK 8.289 [8.088, 8.49] 92
CRACKED SHAFT + GRINDING
GEARS + BALL CRACK 7.106 [6.903, 7.309] 90

The five dimensionless index values of the normal and various fault states of the plant are
obtained, and then the value of the optimal index N is calculated according to formula (5). The

minimum and maximum values of each index are used as the value range of this index, as shown
in Table 2.
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Table 2 The value range of every dimensionless index

FAULT TYPE OF

PETROCHEMICAL Sr Cr Ir CLr Ky Ni

SIMULATION PLANT
1215 0917 1213 1135 2205 4317
NORMAL 1227 0931 1232 1186 2297 4663
1318 1263 2023 1699 3434 9997
RACKED SHAFT
CRACKED S 1342 1285 2059 1747 3521 10328
1242 1320 1923 1657 2776 6262
GRINDING GEARS 1257 1341 1962 1676 2872 6459
1231 1292 1862  1.604 2528  5.062
BALL CRACK

CRAC 1246 1311 1897 1651 2593 5315
CRACKED SHAFT + 1267 1308 1971 168 2767  5.993
GRINDING GEARS 1283 1319 198 1702 283  6.191
CRACKED SHAFT + BALL | 1287 1253 1906  1.602 3024  7.624
CRACK 1304 1267 1927 1642 3092  8.092
GRINDING GEARS + BALL | 1302 128 1957 1659  3.085  8.162
CRACK 1322 1301 1979 1697 3178 8504
GR&‘})?lsg}é%iﬁgﬁTB;LL 1258 1337 2003 1745 2845 6504
CRACK 1274 1351 2042 1757 2909 6717

As can be seen from Table 2, except for the optimal index Ni, which has a good
classification effect, the values of the other five traditional dimensionless indices corresponding
to different faults exhibit a crossover and repetition phenomenon, and the unique characteristic
values of each fault can only be obtained through the classification processing. The kurtosis
index is taken as an example to illustrate the classification process. The known characteristic
values of each fault are:

(1) Cracked shaft: 3.434 (Cmin)~ 3.521 (Cmax);

(2) Grinding gears: 2.776 (Gmin)~ 2.872 (Gmax);

(3) Ball crack: 2.528 (Bmin)~ 2.593 (Bmax);

(4) Cracked shaft + Grinding gears: 2.767 (CGMmin)~ 2.836 (CGmax);

(5) Cracked shaft + Ball crack: 3.024 (CBmin)~ 3.092 (CBmax);

(6) Grinding gears + Ball crack: 3.085 (GBmin)~ 3.178 (GBmax);

(7) Cracked shaft + Grinding gears + Ball crack: 2.845 (CGBmin)~ 2.909 (CGBmax).

There iS Bmin<Bmax<CGmin<Gmin<CGmax<Gmax<CGBmax<CBmin<GBmin<CBmax<GBmax<Cmin<Cmax, in thlS
order:

(1) Ball crack + Crack shaft: 2.528 (Bmin)~ 2.593 (Bmax);
(2) Cracked shaft + Grinding gears: 2.767 (CGMmin)~ 2.776 (Gmin);
(3) Grinding gears: 2.836 (CGmax)~ 2.845 (CGBmin);
(4) Cracked shaft + Grinding gears + Ball crack: 2.872 (Gmax)~ 2.909 (CGBmax);
(5) Cracked shaft + Ball crack: 3.024 (CBmin)~ 3.085 (GBmin);
(6) Grinding gears + Ball crack: 3.092 (CBmax)~ 3.178 (GBmax);
(7) Cracked shaft: 3.434 (Cmin)~ 3.521 (Cmax).
The classification processing is complete.

The other four dimensionless indices are classified in the same way. After the processing
of the dimensionless index, the unique characteristics of each fault are highlighted, see Table 3
for details. After classification, each fault obtains unique fault characteristics, but some
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information about the fault is lost. In addition, some of the unique fault features are even too
small to make the diagnosis capability decline. Using the diversity principle of artificial
immune system, a variety of dimensionless immune detectors are defined, as shown in Fig.
2. Multiple dimensionless index immune detectors are used for diagnosis at the same time, and
the cross detection of different detectors is used to increase the amount of available information;
finally, an integrated diagnosis is carried out.

Table 3 The value range of every dimensionless index after classification processing

FAULT TYPE OF
PETROCHEMICAL Sr Cr Ir CLr Ky Ni
SIMULATION PLANT
1215 0917 1213 1.135 2205 4317
NORMAL 1227 0931 1232 1186 2297 4663
1322 1267 2042 1702 3434 9997
RACKED SHAFT
CRACKED § 1342 1285 2059 1745 3521 10328
1246 1320 1927 1657 283 6262
GRINDING GEARS 1257 1337 1957 1659 2845 6459
1231 1301 1862 1642 2528  5.062
BALL CRACK

CRAC 1242 1308 1897 1651 2593 5315
CRACKED SHAFT + 1274 1311 1979  1.697 2767 5993
GRINDING GEARS 1283 1319 198 1699 2776  6.191
CRACKED SHAFT + BALL | 1287 1253 1906 1602  3.024  7.624
CRACK 1302 1263 1923 1604 3085  8.092
GRINDING GEARS + BALL | 1304 128 1962 1676  3.092  8.162
CRACK 1322 1292 1971 1686  3.178  8.504
GR&%?;E%])Ezﬁ‘;ﬁTBZLL 1258 1341 2003 1747 2872 6504
CRACK 1267 1351 2023 1757 2909 6717

In the simulation experiment, five types of dimensionless index immune detectors, except
the optimal index Ni immune detector, were used for integrated diagnosis. The relative
diagnostic capability factors of each immune detector were calculated according to formula (3),
as shown in Table 4. The simulation results are shown in Table 5.

Table 4 The relative diagnose ability factor values of five types of dimensionless immune detectors

RELATIVE DIAGNOSTIC CAPABILITY FACTORS OF
FAULT TYPE OF

PETROCHEMICAL WAVEFORM PEAK PULSE MARGIN KURTOSIS
SIMULATION PLANT IMMUNE IMMUNE IMMUNE IMMUNE IMMUNE
DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR

CRACKED SHAFT 0.174 0.199 0.139 0.224 0.264
GRINDING GEARS 0.228 0.339 0.338 0.06 0.035
BALL CRACK 0.189 0.124 0.349 0.066 0.272
CRACKED SHAFT +

GRINDING GEARS 0.232 0.357 0.268 0.076 0.067
CRACKED SHAFT +

BALL CRACK 0.225 0.215 0.273 0.03 0.257
GRINDING GEARS +

BALL CRACK 0.261 0.149 0.168 0.107 0.315
CRACKED SHAFT +

GRINDING GEARS + 0.143 0.234 0.192 0.266 0.165
BALL CRACK
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Table 5 The result statistics of compound fault diagnosis by five types of dimensionless immune detectors

CRACKED CRACKED GRINDING CS'}{‘ZCFI;EP
FAULT Typ. CRACKED GRINDING BALL ~ SHAFT+ SHAFT+ GEARS+  iailc
SHAFT GEARS CRACK GRINDING BALL BALL P
GEARS ~CRACK ~CRACK o GPA*
gg‘gﬁsgc 91.2% 93% 92.7%  87.5% 85.8% 88% 80.1%

Then, six dimensionless index immune detectors, including the optimal index N1 immune
detector, were used for integrated diagnosis. The relative diagnostic ability factors of each
immune detector were calculated according to formula (3), as shown in Table 6. The simulation
results are shown in Table 7.

Table 6 The relative diagnose ability factor value of six types of dimensionless immune detectors

FAULT TYPE OF RELATIVE DIAGNOSTIC CAPABILITY FACTORS OF
PETROCHEMICAL WAVEFORM PEAK PULSE MARGIN KURTOSIS
SIMULATION IMMUNE IMMUNE IMMUNE IMMUNE IMMUNE W IMMUNE
DETECTOR
PLANT DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR
CRACKED SHAFT 0.135 0.154 0.108 0.173 0.204 0.226
GRINDING GEARS 0.156 0.23 0.23 0.041 0.024 0.319
BALL CRACK 0.14 0.09 0.26 0.049 0.201 0.26
CRACKED SHAFT
+ GRINDING 0.146 0.224 0.168 0.048 0.042 0.372
GEARS
CRACKED SHAFT
+ BALL CRACK 0.166 0.158 0.202 0.022 0.19 0.262
GRINDING GEARS
 BALL CRACK 0.185 0.105 0.119 0.075 0.223 0.293
CRACKED SHAFT
+ GRINDING
GEARS + BALL 0.105 0.171 0.140 0.194 0.121 0.269
CRACK

Table 7 The result statistics of compound fault diagnosis by six types of dimensionless immune detectors

CRACKED
CRACKED CRACKED GRINDING SHAFT +
CRACKED GRINDING BALL SHAFT+ SHAFT+ GEARS+ GRINDING

FAULTTYPE "GHAFT ~ GEARS CRACK GRINDIN BALL  BALL  GEARS+
GGEARS CRACK CRACK  BALL

CRACK

Ay | 96% 97.8%  967%  93.5% 95% 94.6% 90.3%

Table 5 and Table 7 show that: (1) integrated diagnosis has a high diagnostic accuracy
rate for the detection of simulated state; (2) the optimal index Ni obtained by genetic
programming optimization has a good diagnostic capability for compound faults, such as
cracked shaft + grinding gears, cracked shaft + ball crack, grinding gears + ball crack, and split
cracked shaft + grinding gears + ball crack.
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7. Conclusion

A compound fault diagnosis method based on immune detector is proposed for
petrochemical plants. Based on genetic programming, an optimal index for the compound fault
diagnosis of petrochemical plants was constructed, and an integrated diagnosis method was
proposed to solve the problem of fault information loss after classification. The simulation
results show that the proposed method has high diagnostic accuracy, which provides an
effective method for the diagnosis of compound faults in petrochemical plants.
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