
ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) Original scientific paper
https://doi.org/10.31803/tg-20220528171032 Received: 2022-05-28, Accepted: 2022-08-31

Performance Comparison of Open Source and Commercial Computing Tools in
Educational and Other Use — Scilab vs. MATLAB

Matija Mikac*, Robert Logožar, Miroslav Horvatić

Abstract: In this paper, the authors compare the features and the overall performance of the two high-level numerical computing and modeling software environments: the freeware
Scilab and commercially available industry-standard MATLAB. The motivation for the work emanated from the educational use of these tools at the college and university level,
but with a perspective to their professional and scientific use as well. Their performance is tested by measuring the execution times of several combined-task benchmarks
implemented as test functions, built upon nine common numerical tasks that are often found in programs for solving standard engineering problems. They include basic algebra
and matrix calculations, signal generation, signal analysis, and storing and retrieving data to and from the hard disk drive. Although MATLAB outperforms Scilab in all the
benchmarks except the disk file manipulations, in the presumed vectorization versions of the benchmarks, it is not for much. The overall performance of the freeware rival is very
satisfactory, making it a good choice not only for educational use but also for scientific and professional purposes, especially when funding is critical.

Keywords: calculation benchmarks; mathematical and modeling software; MATLAB; programming; performance comparison; Scilab

1 INTRODUCTION

In contemporary education oriented to science, techno-

logy, engineering, and mathematics — now covered by the

widely popular acronym STEM — there are many courses in

which numerical, modeling, and simulation problems are

solved by computers running specialized, high-level numeri-

cal programming software. One of the most known software

packages of that kind is MATLAB® [1]. Although there are

discounted and student versions of this software, MATLAB

is primarily a commercial product with a stern licensing

policy. Thus, unless the special fees are paid, the students and

teachers will not be able to use this software on their compu-

ters, outside the classrooms. This notably limits the use of

MATLAB in the educational process.

The answer to the high-cost and licensing renewal prob-

lems with a commercial product can be in turning to free and

open source substitutes, such as Scilab, GNU Octave, Sage

FreeMat, and Maxima [2, 3, 4, 5, 6]. However, they are all

mainly considered as the "MATLAB alternatives". Their

functionality and performance are standardly compared to

the functionality and performance of MATLAB, today’s

undisputed standard and the leader in the field [7].

Having mentioned that, the question that many lecturers,

scientists, and professionals raise is what to choose. Is it

better to stick to the proven though expensive commercial

tool with its standard syntax and superior performance or to

use Scilab and other similar products with possibly different

syntax and less than superior performance — just for the sake

of their unrestricted use and financial savings?

Without pretensions to answer this ubiquitous question

unanimously, this article aims to provide an objective perfor-

mance comparison of the commercial MATLAB and the

free, open-source Scilab, and thus help the reader to answer

the question herself.

After presenting the motivation for this paper, here we

briefly describe its further contents. The second section

begins with some basic information about the two compared

tools: MATLAB as the educational and industry standard,

and Scilab as its alternative. The section continues with a

description of the benchmarking test environment. In the

third section, we outline the most important features of

MATLAB and Scilab programming languages and a few

useful recommendations for translating the source code from

one language to another. We start the fourth section with a

short survey of the previous research on MATLAB and

Scilab performances and then carry on with the description

of our benchmarking methodology and the original bench-

marks introduced in this work. Section five presents and co-

mments on the obtained execution times of the implemented

benchmarks and compares the performances of both calcula-

tion tools. The last, sixth section concludes the paper with the

final thoughts and remarks about possible future work.

2 MATLAB, SCILAB, AND THE TESTING PLATFORM

In this section, we present basic information about

MATLAB and Scilab and describe the test platform that we

used for their performance measurements.

2.1 MATLAB and Scilab

 MATLAB — as it was already pointed out in the

introduction — is almost consensually described as the lead-

ing numerical computing and simulation software nowadays.

Since its appearance in the 1980s, it has been used and

approved in many high-scale scientific and professional

projects and has become the de-facto standard in many

scientific and industrial areas, starting from mathematics,

automatic control, digital signal processing, machine learn-

ing, numerical simulations of all kinds, system modeling, and

many more. It is often the first choice of professionals and

because of that, it is also used in higher-level educational

institutions all over the world.

MATLAB releases are commercially available with

different licensing options, including academic and student

licensing [8]. Although these licenses are considered the low-

cost versions, they are still not free, and this can present a

TEHNIČKI GLASNIK 16, 4(2022), 509-518 509

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

510 TECHNICAL JOURNAL 16, 4(2022), 509-518

serious obstacle to recommending MATLAB to students.

Furthermore, the "low-cost" versions, either for educational

or professional use, may still be quite pricy for the buyers,

especially in the underdeveloped parts of the world.

If the user’s finances are critical or highly limited, one

should consider the MATLAB alternatives as the way to

equip more educational or professional workplaces, includ-

ing those at home. The free open-source software alternative

to MATLAB discussed in this paper is Scilab, available

under GNU v3 license [9].

Scilab was initiated by two French institutions: INRIA

(Institut National de Recherche en Informatique et en Auto-

matique) and ENPC (École Nationale des Ponts et Chaussé-

es), and was first released in 1994. Since 2003, it is governed

by the Scilab Consortium and is now part of the ESI Group

[10, 11]. Although it originated from a scientific and acade-

mic background, Scilab soon proved its usage in industry

applications, too, and has evolved into a reputable numeri-

cally oriented modeling platform, with a good user interface

and a large number of versatile simulation modules [12].

For several years, Scilab has been used at the University

North in Varaždin in the courses Signals and Systems,

Automatic Control, and Digital Signal Processing. Even after

the purchase of MATLAB licenses for classrooms, it serves

as a versatile numerical software that can be freely distri-

buted to students.

2.2 Testing Platform and the Software Versions

All our benchmark tests were performed on the same

Windows 10 64-bit computer with an Intel Core i3 5005U

CPU, 8 GB of RAM memory, and a 1TB standard hard disk

drive, which was running the following:

1. MATLAB Version 9.5 (R2018b), 64-bit release (2018);

2. Scilab Version 6.0.2, 64-bit release (2019).

At the time of performing the tests, which was in the first

half of 2019, MATLAB 9.6 was released, but we had no

official commercial license and kept using the 9.5 version.

Both tools were installed with the standard setup and settings.

3 UNDERLYING PROGRAMMING LANGUAGES

MATLAB and Scilab software packages contain a

development environment and a numerically oriented high-

level programming language suitable for matrix calculations.

The first part of this section describes the most important

features of these programming languages. Since there are

certain differences in the syntax of the MATLAB and Scilab

programming languages, the second part of this section ends

with a few useful recommendations for translating the source

code from one language to another.

3.1 High-Level, Matrix-Based Programming Languages

Besides the usual programming forms and structures,

like the data types, arithmetic and other operations, program

flow (conditional statements and loops), functions, and all

other aspects of the standard programming languages, the

MATLAB and Scilab programming languages have many

standard and specialized functions and features for numerical

and, in general, mathematical solving of scientific and

technical problems.

The basic and essentially only inherent data structure of

the MATLAB and Scilab languages is the multidimensional

matrix, implemented as a multidimensional array. The

standard specializations of such an array are as follows:

1. 2-dimensional 𝑁 × 𝑀 matrix, which is equivalent to the

common 𝑁 × 𝑀 matrix;

2. 1-dimensional matrix, equivalent to a 1-row matrix or

vector with 𝑁 elements, or the standard 1-dim array;

3. 0-dimensional matrix, or 1-component vector,

equivalent to a scalar, i.e. a single numerical value.

The elements of the multidimensional arrays are weakly

typed. The numbers are implicitly of the double-floating

point type but can be simply declared as different integer or

other standard data types.

This was designed with one aim in mind: to provide a

software environment for (heavy) numerical matrix and

vector computation. Thus, these languages provide the

standard matrix and vector (array) operations, with elements

that are both real and complex numbers, right "out of the

box". There is no need for any additional programming or

inclusion of any extra libraries and packages. Also, the

MATLAB and Scilab languages offer many advanced and

specialized functions and features for dealing with these

structures — either as with the standard mathematical objects

or merely as with data sets organized in that way. For

example, an n-component 1-dimensional matrix, or a vector,

can be used to represent a data series.

The MATLAB and Scilab languages were originally

designed as interpreters. Later on, MATLAB introduced the

possibility of the code compilation, as well as the concept of

just-in-time (JIT) compilation [13]. Thus, although

MATLAB documentation emphasizes the improved JIT

compilation and its many benefits in the recent software

versions, it also advises the users to write the "normal

programming code", without forcing the compilation by any

side tools, and to obey the standard rules for writing "good

interpreted computer programs" [14]. Regarding that, Scilab

programming language has been always clearly defined as

being interpreted-only [15], which makes it especially

sensitive to the used programming practice (cf. §4.2).

3.2 MATLAB and Scilab Source Code Conversion

The MATLAB programming language was copy-right-

protected from its very beginning. Nevertheless, the Scilab

programming language was — as it seems — designed with

the aim to be as alike the MATLAB language as possible but

without being a direct copy. Scilab provided M2SCI tools to

convert the MATLAB code to Scilab code [16]. The list of

equivalent functions in MATLAB and Scilab is also

available, together with the conversion tips [17].

The M2SCI tools were not used in this paper. Namely, in

the case of relatively simple programming, as was done here,

the conversions from one language to the other could be done

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

TEHNIČKI GLASNIK 16, 4(2022), 509-518 511

simply in the code editor of the targeted software by using its

find-replace function. Some of the replacements that were

used in this work are listed in Tab. 1. By this method, our

benchmark source codes were easily and effectively

translated from one language to the other. Of course, the

programmer who performs such translations should be

acquainted with the syntax of both languages, because if

some problems occur, she should be able to correct the code

and effectively use the available user manuals.

4 BENCHMARKING METHODOLOGY

Because numerical computing and modeling software

packages often solve difficult computational tasks, the

measurement of their performance is of crucial interest to

both their designers and users. After a survey of the existing

MATLAB and Scilab benchmarking in the works of others,

this section describes and justifies the concept of the

benchmark programs designed by the authors and used for

benchmarking purposes in this paper.

4.1 Benchmarking in the Works of Others

For measuring the performance of a particular software

version installed on a certain computer platform, MATLAB

offers the bench function [18]. It performs the required num-

ber of runs of the following six tasks: standard matrix calcu-

lations, solving the system of linear equations and the nonli-

near differential equations, finding Fast Fourier Transform

(FFT), and performing one 2-D and one 3-D animated gra-

phics. The common result is returned in the form of the

execution speed, which is inversely proportional to the exe-

cution time. Scilab uses the bench_run() function [19],

which performs a large series of predefined tests and returns

their execution time in milliseconds, along with the number

of the test repetitions. For the performance comparison of

two or more software packages, one must choose the same

benchmark tests and run them in the same environment.

The first comparison of features and performances of

numerical and mathematical software packages known to the

authors of this paper is given in [20]. The report compared

some commercial software, including MATLAB, and some

free software tools, including Scilab.

In [21], MATLAB, Scilab, GNU Octave, and NSP (a

descendant of the early, pre-Java version of Scilab) were

compared by testing their performance on a set of originally

proposed benchmarks given in the form of closed functions.

The author documented the descriptions and source codes of

these functions in Scilab, which makes this work a good

ground for vendor-independent benchmarking. The obtained

summarized results of all those tests showed that MATLAB

was a winner. Scilab was better than or equal to MATLAB

in 6 of the 28 tests (21.4%), with the best performances in

the calculation of Fibonacci numbers and summation of

harmonic series, where it was 1.58 , i.e. 1.48 times faster than

MATLAB. Of the remaining 22 tests (78.6%), Scilab had

the worst behavior in the for-loop tests, where it was more

than 124 times slower! The obvious reason for that was its

lack of the JIT compilation (see also §5.1).

Table 1 Some basic differences between MATLAB and Scilab syntax

Syntax form MATLAB Scilab

Inline comments. % //

𝜋, the Ludolf’s number

In MATLAB: a keyword,

In Scilab: a constant.

pi %pi

In Scilab, the keyword

then appears after the

condition in parenthesis.

There is no then in

MATLAB.

if (cond.)
statement1

else
statement2

end;

if (cond.) then
 statement1
else
 statement2
end

The end of function. end endfunction

Standard writing function

with several target and

format options.

fprintf mprintf

Quicksort function. sort gsort

MATLAB, Scilab, and GNU Octave were further

compared in [22], where the author examined how their

performance is influenced by the use of different versions of

BLAS (Basic Linear Algebra Subprograms) library. Scilab

and Octave were tested with four different versions:

RefBLAS, Atlas, OpenBLAS, and Intel’s MKL (Math

Kernel Library, a versatile library, free for non-commercial

use). MATLAB was tested with the MKL only. Besides the

afore-mentioned benchmark set from [21], there were two

more sets composed by the other authors: poisson [23] and

ncrunch [20]. That work showed the expected overall

supremacy of MATLAB over Scilab and GNU Octave,

especially in some of the tests.

In [24], the authors give a comparative analysis of

several numerical computationally-demanding tests that

were performed in MATLAB, GNU Octave, Scilab, Free-

Mat, R, and IDL, and run on a high-performance computing

facility. Their execution time measurements (some lasting

even up to 20 hours!) showed dramatically decreased perfor-

mance of those 2012-Scilab with the increased problem sizes.

Various special aspects of MATLAB versus its alternatives

were also investigated in [25, 26].

4.2 Benchmark Methodology Used in This Work

In this paper, our primary goal is to check and compare

the performance of the observed computational tools on

several common vector and matrix calculations, which can

be found in standard scientific professional and educational

use. To that aim, we have created several original benchmark

functions with the following types of calculations and

operations:

 basic algebra on the number series,

 basic matrix operations,

 simple matrix equations,

 signal generation and analysis,

 disk access operations, for storing and retrieving data.

Both MATLAB and Scilab, as well as other similar

computing environments, are famous for using vectorization

[27, ch. 29], in which the standard loop-based implemen-

tation of an iterative operation on a single matrix (vector)

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

512 TECHNICAL JOURNAL 16, 4(2022), 509-518

element is substituted by the inherently optimized single

operation on multiple elements of the same type. This is the

core concept of array programming [28]. In recent decades,

it can be accomplished also without the explicit parallelism

(which requires multiple processors), thanks to the CPU’s

vector-based instructions, implemented on the modern

general-purpose processors [29]. In this way, the implicit

parallelism is achieved.

For example, in scalar-based languages (like C/C++),

creating a vector of 𝑁 randomly generated values requires a

loop to generate 𝑁 single random values. In contrast to that,

the rand function, available in both tools, does it without

programming on the programmer’s side. Similarly, instead of

finding the minimum or maximum value in a vector by using

a loop, one uses the optimized min/max functions. Instead of

multiplying the matrices A and B by multiplying their

elements within the nested for-loops, one simply writes the

product as A*B, leaving the evaluation of the code and its

optimization to the underlying language. This approach not

only simplifies the task for programmers but also replaces

either interpreted or JIT-compiled execution of the operation

on a single value with highly optimized operations on multi-

ple values. In general, as already hinted in §3.1, using vecto-

rization by applying the math-like syntax of vector and

matrix operations is the standard good-programming practice

in array programming [27, ch. 29]. The advantages of using

it instead of writing the standard code will be especially

important for the interpreted-only languages, as is Scilab. We

shall elaborate on this in sec. 5 (cf. also [30]).

MATLAB and Scilab include many functions to

visualize the numerical results, but such functions, as well as

all GUI-related operations, were all turned off during the

benchmark test computations. No special and advanced

computing techniques, like multi-threading, multi-core, or

GPU-based computing were applied to any of the

implemented functions. Both compared tools support several

of these techniques, but in this work, we have restricted the

investigation to their basic performance.

4.3 Benchmarks Designed for This Work

For the basic calculation benchmarks, we have chosen
nine different common calculation tasks. Most of them have
a few internal implementation variants, which will be
discussed soon. These tasks were then implemented as
separate functions written in the corresponding MATLAB
and Scilab programming languages. The benchmarks are
listed in Tab. 2. They follow the ideas of the tasks performed
by the internal MATLAB and Scilab benchmark functions
mentioned in §4.1, as well as implement the tasks that the
authors of this paper have encountered in solving problems
in the areas mentioned at the end of §2.1, in their educational,
professional, and scientific practice.

As can be seen from the table, all the implemented

benchmarks have the Nrp parameter, which defines the num-

ber of repetitions of the whole function by an additional for-

loop. Regarding the other parameters, the most common is N.

It is the vector size, i.e. the number of elements in the cor-

responding 1-dim array, which governs both the needed

Table 2 List of the implemented benchmarks

Abbr. Function name / Description

𝑏1 sumIntSquared(N, Nrp)

Sum of the squares of integers 1, 2, . . . , 𝑁; implemented by

using the vectorization concept, and for comparison also with a

for-loop and while-loop.

𝑏2 mtrxGenMN(N, M, r, Nrp)

Generation of a 𝑁 × 𝑀 matrix populated by the floating-point

elements 𝑥𝑖,𝑗 = 𝑖𝑗 𝑟⁄ , where 𝑖 (𝑗) is the row (column) index:

𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑀, and 𝑟 ∈ ℝ is a decimal num.

𝑏3 mtrxGenNNPow(N, k, r, Nrp)

Generation and calculation of the 𝑘-th power of the (square)

𝑁 × 𝑁 matrix, initially populated by the elements 𝑥𝑖,𝑗 = 𝑖2 𝑟⁄ ,

where 𝑖 and 𝑗 are the row and column indices, respectively:

𝑖, 𝑗 = 1, 2, … , 𝑁, and 𝑟 ∈ ℝ is a decimal number.

𝑏4 rndMtrxMulti(N, M, Nrp)

Multiplication of the two, 𝑁 × 𝑀 and 𝑀 × 𝑁 matrices, with

randomly generated elements.

𝑏5,i

𝑏5,b

rndMtrxDivInv(N, Nrp)

rndMtrxDivBack(N, Nrp)

Solution of the matrix equation 𝐀𝐱 = 𝐛 for the 𝑁 × 1 vector

𝐱, where 𝐀 is a randomly generated 𝑁 × 𝑁 matrix, and 𝐛 is

a 𝑁 × 1 randomly generated vector. 𝑏5,i finds the solution by

the standard method, i.e. by using the 𝐀−𝟏 inverse matrix, 𝐱 =
𝐀−𝟏𝐛 . 𝑏5,b finds the solution by the back-divide method (matrix

operator) written as 𝐱 = 𝐀\𝐛.

𝑏6

𝑏6,0c
rndMtrxDet(N, Nrp)

rndMtrxDet0c(N, Nrp)

𝑏6 calculates the determinant of a randomly generated square

matrix of dimension 𝑁 × 𝑁. 𝑏6,0𝑐 does the same, but for a

matrix with a randomly chosen zero-column (Fig. 1a and 1b).

𝑏7 rndSort(N, Nrp)

Sorting the 𝑁 randomly generated floating point numbers, or,

equivalently, sorting the vector’s 𝑁 elements, using the internal

implementation of the quicksort algorithm.

𝑏8 sigAMSinFFT(Fc, Fm, Nrp)

Generation of an AM signal with the sinus carrier and sinus

modulation signal of frequencies 𝐹𝑐 and 𝐹𝑚 , respectively. After

that, the spectrum is calculated by using FFT.

𝑏9 rndMtrxSaveLoad(N, Nrp)

Disk read/write test; a randomly generated 𝑁 × 𝑁 matrix is first

saved to a file, and then the file is reloaded to another matrix.

memory space and the overall size of the problem that is

being solved. For the square matrices, this size is 𝑁2. For

the non-square matrices, the parameter M is added, defining

the problem size of 𝑁 × 𝑀. The meaning of other parameters

is explained in Tab. 2.

The calculation results of the benchmark functions are

returned via two output vectors: D, of size Nrp, for the

function results, and T, of size 2 for the time measurements.

With them, the functions with 𝑝 parameters (and with 𝑝1 =
𝑝 − 1) are declared in MATLAB and Scilab as:

function [D, T] = bfunctName(N, Par2, …, Parp1, Nrp) .

The return parameters are defined in the square brackets after

the keyword function. The function name is followed by the

list of input parameters in parenthesis. For the i-th repetition

of the function, 𝑖 = 1, 2, … , 𝑁𝑟𝑝 , the function result is return-

ed via the i-th element of vector D. Via the two components

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

TEHNIČKI GLASNIK 16, 4(2022), 509-518 513

of vector T, the overall Ttot execution time for the Nrp

repetitions and the average Tavg time per one repetition of

the benchmark routine are returned.

For some benchmarks that operate on the 𝑁-size vectors

or on the 𝑁 × 𝑀 (𝑁2) matrices, besides the “default,”

vectorized form, we have provided the alternative, loop-

form. Additionally, the same benchmarks were implemented

with different data types. All this was done to investigate the

influence of different factors on benchmark performance.

In the following sub-subsections, we shall first briefly

discuss the implemented benchmarks and then present the

source code of a selected exemplary benchmark function.

4.3.1 Description and Discussion of the Benchmarks

Benchmark 𝑏1 sums the squares of the successive inte-

gers. It is one of the benchmarks realized in the vectorized

version and in the version with the standard for- and while-

loops. Furthermore, it has versions with 64-bit integer and

64-bit floating point types. Benchmark 𝑏2 creates an 𝑁 × 𝑀

matrix and populates it with the elements whose values are

calculated from their indices and a given constant real num-

ber as 𝑥𝑖,𝑗 = 𝑖𝑗 𝑟⁄ . Again, besides the version with vectori-

zation, it has the loop-based version, too. Benchmark 𝑏3

creates a square, 𝑁 × 𝑁 matrix, populates it with the elements

whose values are calculated in a similar way as in 𝑏2 , and

then, additionally, calculates the 𝑘-th power of the matrix.

Benchmarks from 𝑏4 to 𝑏7 create the matrices initially

populated with randomly generated elements and — on top of

that — perform some additional calculations. Benchmark 𝑏4

multiplies the two generated matrices. There are two versions

of benchmark 𝑏5, which solve the linear system of equations,

𝐀𝐱 = 𝐛 , in two ways: 𝑏5,𝑖 by finding the inverse matrix of

𝐀, and 𝑏5,𝑏 by using the back-divide method (operator) for

the matrix division (cf. [31, 32]). Benchmark 𝑏6 calculates

the determinant of a matrix by applying the det function

(valid in both tools). The standard version of the benchmark

forms the matrix with the randomly generated elements. In

addition to that, the variant 𝑏6,0𝑐 inserts a randomly chosen

zero-column into the matrix, making the determinant equal

to zero. Thus, one can test if the det function checks the

existence of zero-columns before performing the standard

calculation of the determinant.1 Benchmark 𝑏7 generates an

𝑁-size vector populated with random values and then sorts its

elements by using the function sort (gsort) in MATLAB

(Scilab), which performs the standard quicksort algorithm.

Benchmark 𝑏8 illustrates a standard educational example

in the field of signals and digital signal processing: the

generation of an amplitude-modulated (AM) signal with the

sinus carrier signal of frequency 𝐹𝑐, modulated (multiplied)

by the sinusoidal signal of frequency 𝐹𝑚 [33]. The Fast

Fourier Transform (FFT) is applied to the obtained AM

signal by using the original MATLAB and Scilab FFT

1 For the matrices with two or more rows or columns being equal — and

because of that having the zero determinant — we have encountered a

precision problem worth noticing. Namely, in some cases, especially when

such matrices are very large, both MATLAB and Scilab do not return the

zero result but a value of the order of magnitude of 10−20. This problem

functions. After that, the benchmark draws the spectra of the

individual signals and the modulated signal.

Finally, benchmark 𝑏9 checks the efficiency of the

operations with the external memory, which was in our case

the standard hard disk (cf. §2.2). After randomly generating

an 𝑁 × 𝑁 matrix, it saves the matrix to the disk and then

reloads it into another matrix. The original save and load

functions from both tools were used.

4.3.2 Source Code of an Exemplary Benchmark

Because the presentation of the source code for all our

benchmarks would be too voluminous for this paper format,

here we exemplify the source code of the 𝑏6,0𝑐 benchmark

function. It is a bit more elaborate version of 𝑏6 , with a few

specifics. Its MATLAB and Scilab versions are shown in Fig.

1a and 1b. The similarity between the two codes is striking.

In lines number 1, rndMtrxDet0c benchmark function

is declared. In lines number 2, the return parameters D and T

are declared as the vectors of size Nrp and 2, respectively,

and their elements are set to zero. In lines number 3, the

specialized stopwatch timer function tic starts the measure-

ment of the execution time. Both MATLAB and Scilab

include the stopwatch time functions tic and toc, which

measure the elapsed time with millisecond precision [34, 35].

In our case, they will measure the time of the Nrp repetitions

of the same task, governed by the for-loops which start at

lines number 4. The rationale for measuring the total (Ttot)

and not the particular time of each repetition was to avoid the

possible errors when the measured time is shorter than the

not-so-great precision of the provided stopwatch functions.

The body of the for-loops, in lines 5 to 19, is the actual

task routine of the benchmark. Each routine starts with the

declaration and initialization of the single-row and single-

column vectors, zrow and zcol (lines 5 and 6). After that,

the benchmark generates the random 𝑁 × 𝑁 square matrix A

(lines 7). Generally, the declarations in the array program-

ming are demanding and important benchmark parts.

The code part from lines 8 to 10 is used for zeroing the

randomly selected column of the matrix A, assuring that (at

least) one such column exists in the matrix.

The lines from 11 to 19 contain the parts of the

benchmarks that calculate the matrix-A determinant. First,

there is a check if there is at least one zero-column or one

zero-row in the matrix. Although in this benchmark we did

not provide the insertion of (at least) one zero-row, we still

provide the check for such a row for the sake of complete-

ness. These checks are done in lines 11 to 16. The variable

is0 serves as a logic flag that is first set to 0 (false). An

additional for loop is started that runs the column or row

indices from 1 to N, and checks if some of the columns, A(:,

r), or rows, A(r, :), are equal to the previously defined zero-

valued zcol and zrow. If either of these is true, the is0 flag

is set to 1 (true) and the for-loop is exited by the break in

probably occurs because of the accumulation of errors after many additions

and subtractions of numbers with the absolute values differing less than the

calculation precision. Although small, the occurrence of such results require

additional checking and zeroing if they are lower than a certain threshold.

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

514 TECHNICAL JOURNAL 16, 4(2022), 509-518

1

2

3

4
5
6
7
8
9
10

11
12
13
14
15
16

17
18
19

20

21

22
23
24

25

function [D, T] = rndMtrxDet0c(N, Nrp)

 D = zeros(Nrp); T = zeros(2);

 tic;

 for j = 1 : Nrp
 zrow = zeros(1, N);
 zcol = zeros(N, 1);
 A = rand(N, N);
 c0 = round(N*rand());
 if (c0 == 0) c0 = 1; end
 A(:, c0) = 0;

 is0 = 0;
 for r = 1 : N
 if (A(:, r) == zcol) is0 = 1; end
 if (A(r, :) == zrow) is0 = 1; end
 if (is0 == 1) break; end
 end

 if (is0 == 1) d = 0;
 else d = det(A); end
 D(j) = d;

 end

 Ttot = toc;

 Tavg = Ttot/Nrp;
 T(1) = Ttot;
 T(2) = Tavg;

end

Figure 1a Source code of the benchmark 𝑏6,0𝑐 function in MATLAB

1

2

3

4
5
6
7
8
9
10

11
12
13
14
15
16

17
18
19

20

21

22
23
24

25

function [D, T] = rndMtrxDet0c(N, Nrp)

 D = zeros(Nrp); T = zeros(2);

 tic();

 for j = 1 : Nrp
 zrow = zeros(1, N);
 zcol = zeros(N, 1);
 A = rand(N, N);
 c0 = round(N*rand());
 if (c0 == 0) then c0 = 1; end
 A(:, c0) = 0;

 is0 = 0;
 for r = 1 : N
 if (A(:, r) == zcol) then is0 = 1; end
 if (A(r, :) == zrow) then is0 = 1; end
 if (is0 == 1) then break; end
 end

 if (is0 == 1) then d = 0
 else d = det(A); end
 D(j) = d;

 end

 Ttot = toc();

 Tavg = Ttot/Nrp;
 T(1) = Ttot;
 T(2) = Tavg;

endfunction

Figure 1b Source code of the benchmark 𝑏6,0𝑐 function in Scilab

lines number 15. In this part of the benchmark, we combine

vectorization (for the comparison of rows and columns) with

the standard implementation of the iterative programming

structure. A careful reader will note that by adding one more

conditional break after line 13, an unnecessary checking for

the zero-row could have been avoided if a zero-column had

been found. If is0 = 1, the determinant d is set to zero (lines

17). In our case, matrix A will always have at least one zero-

column, so this will always be the case. Still, the other

possibility, in which the determinant is calculated by using

the det function (lines 18), is also accounted for.

Lines 19 finish the benchmark routine by assigning the

determinant value (here d = 0) found in the 𝑗-th iteration of

the outer for-loop to the 𝑗-th element of vector D.

The last part of the function starts by assigning the value

returned by the end of the time-measurement function toc to

the variable Ttot (lines 21). After that, the average 𝑇̅B time

per one repetition of the benchmark routine is calculated and

stored in the variable Tavg (cf. tables in sec. 5). Finally, both

of these times are returned via vector T (lines 23 and 24).

The source code of the other benchmark functions

developed in this work is available in [36].

4.3.3 Benchmarking Scripts

The benchmarking scripts for each of the two observed

calculation tools include the following parts:

1. Definitions of all constants needed to run the benchmark

routines and their capturing function:

 the number 𝑁𝑠𝑒𝑡 of the benchmark measurement sets,

i.e. of the repetition of each benchmark function, in

our case Nset = 5;

 the number 𝑁𝑟𝑝 of the benchmark repetitions in each

measurement, i.e. in each benchmark function, which

is most often Nrp = 100;

 the problem size (𝑁, 𝑁 × 𝑀), which is taken as a value

of an element from the vector Nps of size 5.

2. Procedure for executing the benchmark functions.

3. Procedure for storing the obtained results in a text file,

suitable for additional analysis in spreadsheets or other

types of software.

Fig. 2 depicts a piece of Scilab script source code for

measuring the 𝑏6,0𝑐 benchmark performance. It results with

Nset = 5 benchmark measurement sets, one for each prede-

fined problem size, Nps(i), in the Nps vector. As explained

in the previous sub-subsection (§4.3.2), each benchmark

function executes the benchmark routine Nrp times and

returns the total and average execution times. The shown

script outputs these results to the standard output (the Scilab

window). To store the results to a text file, instead of

mprintf, one should use the mfprintf function.

1
2
3

4
5

6
7
8
9

Nset = 5;
Nrp = 100;
Nps = [100, 500, 1000, 2000, 4000];

mprintf('Repetitions=%d\n', Nrp);
mprintf('Function(size)\tTotal\tAvg\n');

for i= 1 : Nset
 [r,t] = rndMtrxDet0c(Nps(i), Nrp);
 mprintf('rndMtrxDet0c(%d)\t%f\t%f\n',Nps(i),t(1),t(2));
end

Figure 2 Part of Scilab script, which calls the benchmark function

rndMtrxDet0c (𝑏6,0𝑐) and displays the obtained results for Nset benchmark

measurement sets with the problem size Nps(i), i = 1, 2, … , Nset.

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

TEHNIČKI GLASNIK 16, 4(2022), 509-518 515

5 MATLAB AND SCILAB BENCHMARK PERFORMANCE

In this section, we present the results of the benchmark

execution times measurements performed in MATLAB and

Scilab and discuss them.

In modern, multitasking operation systems, there are a

lot of background processes that cannot be controlled by the

user and whose running may interfere with the execution of

the benchmark functions. Indeed, when analyzing the

obtained results, there were sporadic cases of enlargements

of the execution times of some benchmarks. To exclude that

kind of result deviation, we were selecting the three best out

of the five performed time measurements and took their mean

value as the indicator of the benchmark performance. The

benchmarks described in the previous section were grouped

according to the division in §4.2, and the results of their

benchmark execution times are presented in the following

subsections.

5.1 Basic Calculation Benchmarks (𝑏1 – 𝑏3)

Tab. 3 presents the average execution times of the basic

vector and matrix calculations in benchmarks 𝑏1 and 𝑏2 ,

and slightly more complex operations in 𝑏3 (cf. Tab. 2). For

these benchmarks, there are versions with and without the use

of vectorization. Additionally, for 𝑏3 , the execution times for

the 𝑘-th matrix power are given with 𝑘 = 3 and 𝑘 = 11.

By observing the obtained results, we can easily note that

the execution times for both of the calculation tools are

proportional to the total problem size, i.e. to the number of

elements in the vectors or matrices. Next, if we focus on

comparing the benchmark versions with and without vectori-

zation, we can note that — for benchmark 𝑏1 — MATLAB

gives surprisingly better results for the version without

vectorization! The respective performance, for the problem

size 𝑁 = 1 × 106 (𝑁 = 4 × 106), is even 7.95 (8.11) times

better than for the corresponding vectorized versions. It must

be that the simplicity of this benchmark operation performed

on the number series in a vector, combined with the effective

MATLAB JIT compiler, results in a very efficient code that

largely surpasses vectorization. Anyhow, this peculiarity

does deserve additional investigation.

For the remaining two benchmarks, MATLAB versions

with vectorization outperform those without it, but still not

by much. For 𝑏2 with 𝑁2 = 1 × 106 (𝑁2 = 4 × 106), the

vectorized benchmarks are 49.3% (82.2%) faster than the

non-vectorized. However, for 𝑏3 , this superiority is severely

diminished. With 𝑘 = 3 and 𝑁2 = 1 × 106 (𝑁2 = 4 × 106),

vectorization improves performance for only 3.1% (2.0%).

For 𝑘 = 11 and the same problem size(s), the improvement

is only 1.4% (1.1%). Again, we may attribute this to the

effective JIT compilation.

On the other hand, in Scilab, the benchmarks with

vectorization consistently and hugely outperform those

without it. The cause of that is the strictly interpreted

programming code in Scilab, without any sort of compilation,

which leads to the very bad performance of the code with

programmed loops (§4.2). Thus, the vectorized versions of

Table 3 Average 𝑇̅B execution times of the basic calculation benchmarks,

𝑏1 – 𝑏3 . The averages are calculated from the 3 best out of the total of 5 sets of

measurements, each with Nrp = 100 repetitions of every benchmark.

 B e n c h m a r k Problem size 𝑇̅B ms⁄ 𝑇̅B,Sci
/ 𝑇̅B,MAT

Abbr. Variant 𝑁 or 𝑁 × 𝑀 MATLAB Scilab

𝑏1 Vectoriz. 1 × 106 12.25 22.46 1.83

4 × 106 49.15 92.35 1.88

No vectoriz.

(for-loop)
1 × 106 1.54 1 239.72 805.01

4 × 106 6.06 4 956.01 818.82

𝑏2 Vectoriz. 1 × 103 × 1 × 103 7.93 25.04 3.16

2 × 103 × 2 × 103 31.18 101.00 3.24

No vectoriz.

(for-loop)

1 × 103 × 1 × 103 11.84 1 910.73 161.38

2 × 103 × 2 × 103 56.81 7 668.45 134.98

𝑏3 Vectoriz.

(𝑘 = 3)

1 × 103 × 1 × 103 109.64 191.86 1.75

2 × 103 × 2 × 103 748.54 1 185.42 1.58

Vectoriz.

(𝑘 = 11)
1 × 103 × 1 × 103 263.50 325.96 1.24

2 × 103 × 2 × 103 1 766.77 2 151.14 1.22

No vectoriz.

(k = 3)
1 × 103 × 1 × 103 113.06 2 180.06 19.28

2 × 103 × 2 × 103 763.21 8 789.01 11.52

No vectoriz.

(𝑘 = 11)

1 × 103 × 1 × 103 267.30 2 263.58 8.47

2 × 103 × 2 × 103 1 785.77 9 736.38 5.45

∑ (vectr. only): 20 × 106 2 988.96 4 095.23 1.37

∑(non-vectr. only): 20 × 106 3 005.59 38 743.94 12.89

∑ (all): 40 × 106 5 994.55 42 839.17 7.15

Figure 3 Graphical presentation of the benchmark execution times in MATLAB and

Scilab: 𝑏1 and 𝑏2 (up) and 𝑏3 (down). Shorter is better.

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

516 TECHNICAL JOURNAL 16, 4(2022), 509-518

the benchmarks with 𝑁2 = 1 × 106 (𝑁2 = 4 × 106) are

faster than the non-vectorized ones as follows: for 𝑏1 , 55.2

(53.7) times; for 𝑏2 , 76.3 (75.9) times; for 𝑏3 , with 𝑘 = 3 ,

11.4 (7.41) times, and with 𝑘 = 11 , 6.9 (4.5) times. It turns

out the efficiency of vectorization highly depends on the

character of the benchmark calculations.

As for the comparison of the MATLAB and Scilab

benchmark performances, the last column in Tab. 3 shows

that MATLAB is better in all of them and — as discussed in

the previous paragraph — greatly superior in all cases without

vectorization. Furthermore, it is interesting to note that Scilab

vectorized benchmark versions perform worse than the

corresponding MATLAB vectorized or non-vectorized versi-

ons of the same problem size.

The last three rows in Tab. 3 show the cumulative

execution times of all the benchmarks and their ratio in the

last column. Overall, MATLAB is faster than Scilab by more

than 7 times. Even more, it is faster by almost 13 times when

observing the non-vectorized benchmark routines only.

On the other hand, for the benchmark routines with

vectorization — which is, after all, the recommended form of

programming code in this sort of languages — Scilab shows

very good performance. It is slower than MATLAB from

only 1.22 for 𝑏3 up to 3.24 for 𝑏2 . Overall, it is 37% slower

than MATLAB, which can be considered an excellent perfor-

mance. Fig. 3 shows these relations graphically.

5.2 Matrix Calculation and Sorting Benchmarks (𝑏4 – 𝑏7)

Tab. 4 shows the performance of the benchmarks 𝑏4 to

𝑏7 , all with vectorized versions only. An interesting thing to

note is that the execution times are only nearly linearly

proportional to the problem size, and not dependent only on

it. In 𝑏4 , the four total problem sizes are 1 × 106, 2 ×
106, 2 × 106, and 4 × 106, and the corresponding execution

times in MATLAB (Scilab) expressed relative to the first

problem size go as: 1.00 (1.00), 1.91 (1.91), 2.88 (2.73),

and 5.49 (5.11). The matrices in the second and third cases

have the same number of elements, but in the latter case, there

is a slowdown of 51% for MATLAB and 43% for Scilab.

The possible cause of this is the double number of rows (𝑁 =
2𝑀) in the matrix in the third case (the first of the two

matrices in the multiplication), which are half as long as the

rows in the second case. Recalling the matrix multiplication

rules, this means that there are twice as many element-

multiplication "chains" that are half as long as in the previous

case, possibly causing the less efficient multiplication. Still,

the proportion of this slowdown is quite surprising.

Comparing the performance of the two tools, MATLAB

is again faster in all proposed benchmarks, but Scilab per-

forms very well, especially in benchmarks 𝑏6 , 𝑏5,𝑏 , and 𝑏4

(Fig. 4). In them, Scilab lags by a factor of only 1.14 – 1.29.

It performs much worse in the quicksort (𝑏7), especially

when the numbers are not rounded to integers (Fig. 5).

Both tools solve the matrix equation (𝑏5) faster by using

the back-divide algorithm (𝑏5,𝑏) than by their internal

function (𝑏5,𝑖), suggesting its possible improvement (Fig. 4).

Table 4 Average 𝑇̅B execution times of the benchmarks 𝑏4 – 𝑏7 (cf. Tab. 3)

 B e n c h m a r k Problem size 𝑇̅B / ms 𝑇̅B,Sci
/ 𝑇̅B,MAT

Abbr. Variant 𝑁 × 𝑀 or 𝑁 MATLAB Scilab

𝑏4 Vectoriz. 1 × 103 × 1 × 103 94.06 121.42 1.29

1 × 103 × 2 × 103 179.53 232.20 1.29

2 × 103 × 1 × 103 270.68 331.25 1.22

2 × 103 × 2 × 103 516.78 620.04 1.20

𝑏5,𝑖 Vectoriz.,

invrs. mtrx.
1 × 103 × 1 × 103 106.68 193.50 1.81

2 × 103 × 2 × 103 580.96 1390.01 2.39

𝑏5,𝑏 Vectoriz.,

back-divide
1 × 103 × 1 × 103 66.31 81.81 1.23

2 × 103 × 2 × 103 307.17 373.84 1.22

𝑏6 Vectoriz.

1 × 103 × 1 × 103 55.45 63.42 1.14

2 × 103 × 2 × 103 267.98 316.94 1.18

𝑏6,0𝑐 Vectoriz.

1 × 103 × 1 × 103 23.43 48.08 2.05

2 × 103 × 2 × 103 96.70 185.37 1.92

𝑏7 (Quicksort) 1 × 106 101.61 533.04 5.25

 2 × 106 212.34 1 063.18 5.01

With. round. 2 × 106 173.94 601.06 3.46

∑(all, except 𝑏7): 20 × 106 2 565.73 3 957.88 1.54

∑ (all): 40 × 106 3 053.62 6 155.16 2.02

Figure 4 Performance of the benchmarks 𝑏4 (up) and 𝑏5 (down)

Overall, for these benchmarks, Scilab is two (2) times

slower, but if the sorting is excluded, it is only about one and

a half times (1.5) slower than MATLAB. For the relatively

short absolute times, this is again a very good performance.

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

TEHNIČKI GLASNIK 16, 4(2022), 509-518 517

5.3 Signal Generation and DSP, Disk File Manipulation (𝑏8, 𝑏9)
and the Benchmarks Overall

Tab. 5 shows the performance of the benchmark 𝑏8 . The

changes of the parameters influence the execution times

rather unexpectedly. Furthermore, the enlargement of

Nrp for ten times should not influence 𝑇̅B . Of course, this

illustrates how too small Nrp values may result in too short

times, which are below the time measurement accuracy, and

thus produce wrong measurements (grayed out in the table).

In other words, we ought to observe the times obtained for

Nrp = 50 only. Here, MATLAB is superior again, but Scilab

performs satisfactory, especially if one considers that the

whole job was done in a few milliseconds.

The performance of our last benchmarks, for the disk file

manipulation (𝑏9), is visible in Tab. 6 (cf. also §2.2 and Tab.

2). To reduce the number of disk operations, the number of

repetitions was decreased to 10. Surprisingly, in these

operations, Scilab is faster than MATLAB! The only and

very slight exception is for the load of 100 × 100 matrices.

Moreover, this advantage is better for larger files, where the

Scilab save and load operations are roughly 6 up to 15 times

faster than those of MATLAB.

Tab 7 contains the cumulative benchmark execution

times for the vectorized benchmarks from Tab. 3, 4, and 5 &

6. To reduce the influence of the disk operations, the sums

for 𝑏8 and 𝑏9 were multiplied with the weight factor of 0.1.

By that, Scilab is overall only 57% slower than MATLAB,

and without that, it would be equal (faster by 0.005%)!

6 CONCLUSION

In this research, the primary goal was to compare the

performance of the two well-known specialized computing

software environments, MATLAB and Scilab, on a set of

purposefully created benchmarks that resemble the often-

used vector and matrix calculations in the professional,

scientific and educational domain (sec. 4).

The benchmark execution times, presented in sec. 5,

generally show the supremacy of MATLAB that was known

from the previous works of others (cf. §4.1). However, after

excluding the bad Scilab performance in the non-vectorized

benchmarks due to its interpreted-only nature, we showed

that this popular freeware can compete well with its highly-

commercial rival in several tasks. For the benchmarks 𝑏3

(with 𝑘 = 11), 𝑏4 , 𝑏5,𝑏 , and 𝑏6 (the basic version), it lags

behind MATLAB for as little as 10% – 30%; for the bench-

marks 𝑏1 , 𝑏3 (with 𝑘 = 3), 𝑏5,𝑖 , and 𝑏6,0𝑐 it is slower for a

factor from approximately 1.5 to 2.4. The cumulative results

in Tab 7 — our version of bench function — show this clear-

ly, and qualify Scilab as a serious choice for several needs.

Even for the benchmarks in which Scilab performed

significantly worse than MATLAB, like those in 𝑏2 (the 𝑘-

th matrix power) and 𝑏7 (quicksort), the fact that it was

slower than MATLAB for the factor of approximately 3 up

to 5, should be considered in the context of the overall very

short absolute times of these calculations. The benchmarks in

𝑏2 perform calculations on 1 × 106 (4 × 106) array elem-

ents in around 25 ms (100 ms), and the benchmarks in 𝑏7

Figure 5 Performance of the benchmark 𝑏7 (quicksort)

Table 5 Average 𝑇̅B execution times of the benchmark 𝑏8 , for the generation and

FFT analysis of the AM signal with different 𝐹𝑐 and 𝐹𝑚 parameters and the

variable 𝑁𝑟𝑝 parameter. The rest of the markings are as in Tab. 3.

 B e n c h m a r k (Probl. size) 𝑇̅B / ms 𝑇̅B,Sci
 / 𝑇̅B,MAT

Abbr. Par. (𝐹𝑐 , 𝐹𝑚)/Hz 𝑁𝑟𝑝 MATLAB Scilab

𝑏8 1000, 100 5 0.12 1.43 11.92

 50 0.75 2.53 3.37

 4000, 100 5 0.20 0.59 2.95

 50 2.56 7.48 2.92

∑ (𝑁𝑟𝑝 = 50 only): 3.31 10.01 3.02

Table 6 Average 𝑇̅B execution times of the benchmark 𝑏9 , for the file-handling

save and load disk operations, with Nrp = 10.

 B e n c h m a r k Problem size 𝑇̅B / ms 𝑇̅B,Sci
 / 𝑇̅B,MAT

Abbr. Operation 𝑁 × 𝑀 MATLAB Scilab

𝑏9 Save 1 × 102 × 1 × 102 28.55 20.72 0.73

Load – || – 1.80 1.85 1.03

Save 1 × 103 × 1 × 103 387.80 24.18 0.06

Load – || – 99.60 14.56 0.15

Save 3 × 103 × 3 × 103 3 406.63 445.87 0.13

Load – || – 888.86 91.02 0.10

∑ (𝑎𝑙𝑙): 20.02 × 106 4 813.24 598.20 0.12

Table 7 Cumulative execution times for benchmarks with vectorization

 Benchmrks. Wght. Tot. probl. size ∑ 𝑇̅B / ms 𝑇̅B,Sci
 / 𝑇̅B,MAT

(with vectrz.) 𝑤𝑏𝑖
 ∑(𝑁, 𝑁 × 𝑀) MATLAB Scilab

𝑏1 − 𝑏3 1.0 20.0 × 106 2 988.96 4 095.23 1.37

𝑏4 − 𝑏7 1.0 34.0 × 106 3 053.62 6 155.16 2.02

𝑏8 , 𝑏9 0.1 2.0 × 106 481.66 60.82 0.13

∑: 56.0 × 106 6 524.24 10 311.21 1.58

sort 1 × 106 (2 × 106) elements in 0.53 s (1.1 s, i.e. 0.6 s for

the numbers rounded to integers). Obviously, such

performance, though worse than that of MATLAB, will

satisfy not only educational but also many demanding profes-

sional and scientific requirements.

Of the few surprises from this research, the first one con-

cerns MATLAB: benchmark 𝑏1 with vectorization per-

formed significantly slower than the one without it, as

Matija Mikac et al.: Performance Comparison of Commercial and Open Source Computing Tools in Educational and Other Use — Scilab vs. MATLAB

518 TECHNICAL JOURNAL 16, 4(2022), 509-518

commented in §5.1. The second is the rather large benchmark

𝑏4 slowdown (≈50%) in both tools when the first, non-square

matrix in multiplication has the same number of elements but

twice as many rows as columns (§5.2). Lastly, the third is that

Scilab outperforms MATLAB in the disk file operations

several times, especially for the (very) large files (§5.3).

These, and a few other observations deserve additional

investigation. Furthermore, the inclusion of multiprocessing

and distributed computing in these software environments

present challenging topics for future work.

Finally, what can we suggest to the reader? The winner

of this race is obvious and could have been predicted even

before this research (cf. §4.1). If the ultimate speed and the

compatibility of the programming code with the industry-

standard language are a must, and if the finances for the

initial and yearly renewal of the licenses are not an issue,

MATLAB is a sure pick. However, if the developers are

either writing their code from scratch or are willing to adapt

it by performing straightforward changes, this paper shows

that Scilab is an excellent calculation environment that will

in most cases perform either almost as well as MATLAB or

rather close. It will even manipulate the disk files faster than

its big rival, and — of course — it will cost you nothing!

7 REFERENCES

[1] MathWorks Inc., MATLAB: https://www.mathworks.com/

products/matlab.html

[2] Scilab Home Page, https://www.scilab.org

[3] GNU Octave, https://www.gnu.org/software/octave/index

[4] SageMath, https://www.sagemath.org

[5] FreeMat, http://freemat.sourceforge.net

[6] Maxima, https://maxima.sourceforge.io

[7] Almeida, E. S., Medeiros, A. C., & Frery, A. C. (2012). How

good are MATLAB, Octave and Scilab for computational

modelling? Computational & Applied Mathematics, 31(3),

523-538. https://doi.org/10.1590/S1807-03022012000300005

[8] MathWorks, Pricing and Licensing — MATLAB & Simulink,

https://www. mathworks.com/pricing-licensing.html

[9] Scilab Open Source, https://www.scilab.org/about/scilab-open

-source-software

[10] Scilab History, https://www.scilab.org/about/company/history

[11] ESI Group, https://www.esi-group.com

[12] Scilab, Use cases, https://www.scilab.org/use-cases

[13] MathWorks, MATLAB Execution Engine, https://www.math

works.com/products/matlab/matlab-execution-engine.html

[14] MathWorks, Techniques to Improve Performance, https://

www.mathworks.com/help/matlab/matlab_prog/techniques-

for-improving-performance.html

[15] Scilab Wiki, Introduction, https://wiki.scilab.org/Introduction

[16] Scilab Help, About M2SCI tools, https://help.scilab.org/

docs/5.3.3/en_US/About_M2SCI_tools.html

[17] Scilab Help, MATLAB to Scilab Conversion Tips, https://

help.scilab.org/docs/5.3.3/en_US/section_c592a9ecd0ed2b4d

08f8a4de718ee9aa.html

[18] MathWorks Help, bench – MATLAB benchmark, https://

mathworks.com/help/ matlab/ref/bench.html

[19] Scilab Help, bench_run, https://help.scilab.org/docs/6.1.1/

en_US/bench_run.html

[20] Steinhaus, S. (2008). Comparison of Mathematical Programs

for Data Analysis, Munich. Retr.: https://www.additive-net.de/

images/software/wolfram/publicon/downloads/numbercrunch5.pdf

[21] Pinçon, B. (2022). Quelques tests de rapidité entre différents

logiciels matriciels. University of Lorraine, Retrieved from

https://cermics.enpc.fr/~jpc/scilab-gtk-tiddly/bench.pdf

[22] Baudin, R. (2016). Run time comparison of MATLAB, Scilab

and GNU Octave on various benchmark programs, Retrieved

from http://roland65.free.fr/benchmarks/benchmarks-0.2.pdf

[23] Sharma, N. & Gobbert, M. K. (2010). A comparative evalua-

tion of MATLAB, Octave, FreeMat, and Scilab for Research

and Teaching. Department of Mathematics and Statistics,

University of Maryland, Retr. from https://userpages.

umbc.edu/~gobbert/papers/SharmaGobbertTR2010.pdf

[24] Coman E., Brewster, M. W., Popuri, S. K., Raim, A. M., &

Gobbert, M. K. (2012). A Comparative Evaluation of Matlab,

Octave, FreeMat, Scilab and R on Tara, Retrieved from

http://profs.scienze.univr.it/~caliari/pdf/octave.pdf

[25] Shaukat, K., Tahir, F., Iqbal, U., & Ajmad S. (2018), A

Comparative Study of Numerical Analysis Packages.

International Journal of Computer Theory and Engineering, 10

(3), 67-72. https://doi.org/10.7763/IJCTE.2018.V10.1201

[26] Leros, A., Andreatos, A., & Zagorianos A. (2010). Matlab —

Octave science and engineering benchmarking and compari-

son. Proc. of the 14th WSEAS inter. conf. on Computers (II)

746-754. https://dl.acm.org/doi/10.5555/1984366.1984421

[27] MathWorks (1984-2022). MATLAB Programming Fundamen-

tals (R2022a). Natic, MA. MathWorks Inc. Retr. from: https:

//www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf

[28] Wkp. article: Array Programming; https://en.wikipedia.org

[29] Intel, Vectorization Basics for Intel® Architecture Processors.

[30] Mikac, M., Horvatić, M., & Mikac, V. (2020). Using vecto-

rized calculations in Scilab to improve performances of inter-

preted environment. INTED2020 Proceedings – the 14th Inter-

national Technology, Education and Develop. Conf., Valencia,

Spain, 2127-2136. https://doi.org/10.21125/ inted.2020.0664

[31] MathWorks Help, mldivide, \, MATLAB, https://www.

mathworks.com/help/matlab/ref/mldivide.html

[32] Scilab Help, backslash, https://help.scilab.org/docs/6.0.2/en_

US/backslash.html

[33] Mikac, M. & Horvatić, M. (2020). Using Open-Source Nume-

rical Computation Software in Education — Basic Performance

Comparison and Lab Examples. EDULEARN20 Proc. – The

12th International Conf. on Education and New Learning Tech-

nologies, 2319-2327. https://doi.org/10.21125/edulearn.2020.0714

[34] MathWorks Help, Start stopwatch time, MATLAB, https://

www.mathworks.com/help/matlab/ref/tic.html

[35] Scilab Help, tic – Start a stopwatch time, https://help.scilab.

org/doc/6.0.2/en_US/tic.html

[36] Mikac, M., Logožar, R., & Horvatić M. (2022). Scilab vs.

MATLAB, The benchmark functions source-code repository:

https://papers.unin.com.hr/matscilab2022.html

Authors’ contacts:

Matija Mikac, M.Sc.E.E.
(Corresponding author)
University North,
Jurja Križanića 31b, 42000 Varaždin, Croatia
matija.mikac@unin.hr

Robert Logožar, Ph.D. C.S.
University North,
Jurja Križanića 31b, 42000 Varaždin, Croatia
robert.logozar@unin.hr

Miroslav Horvatić, M.E.E.
University North,
Jurja Križanića 31b, 42000 Varaždin, Croatia
miroslav.horvatic@unin.hr

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.scilab.org/
https://www.gnu.org/software/octave/index
https://www.sagemath.org/
http://freemat.sourceforge.net/
https://maxima.sourceforge.io/
https://doi.org/10.1590/S1807-03022012000300005
https://www.mathworks.com/pricing-licensing.html
https://www.scilab.org/about/scilab-open-source-software
https://www.scilab.org/about/scilab-open-source-software
https://www.scilab.org/about/company/history
https://www.esi-group.com/
https://www.scilab.org/use-cases
https://www.mathworks.com/products/matlab/matlab-execution-engine.html
https://www.mathworks.com/products/matlab/matlab-execution-engine.html
https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://wiki.scilab.org/Introduction
https://help.scilab.org/docs/5.3.3/en_US/About_M2SCI_tools.html
https://help.scilab.org/docs/5.3.3/en_US/About_M2SCI_tools.html
https://help.scilab.org/docs/5.3.3/en_US/section_c592a9ecd0ed2b4d08f8a4de718ee9aa.html
https://help.scilab.org/docs/5.3.3/en_US/section_c592a9ecd0ed2b4d08f8a4de718ee9aa.html
https://help.scilab.org/docs/5.3.3/en_US/section_c592a9ecd0ed2b4d08f8a4de718ee9aa.html
https://mathworks.com/help/matlab/ref/bench.html
https://mathworks.com/help/matlab/ref/bench.html
https://help.scilab.org/docs/6.1.1/en_US/bench_run.html
https://help.scilab.org/docs/6.1.1/en_US/bench_run.html
https://www.additive-net.de/images/software/wolfram/publicon/downloads/numbercrunch5.pdf
https://www.additive-net.de/images/software/wolfram/publicon/downloads/numbercrunch5.pdf
https://cermics.enpc.fr/~jpc/scilab-gtk-tiddly/bench.pdf
http://roland65.free.fr/benchmarks/benchmarks-0.2.pdf
https://userpages.umbc.edu/~gobbert/papers/SharmaGobbertTR2010.pdf
https://userpages.umbc.edu/~gobbert/papers/SharmaGobbertTR2010.pdf
http://profs.scienze.univr.it/~caliari/pdf/octave.pdf
https://doi.org/10.7763/IJCTE.2018.V10.1201
https://www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf
https://www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf
https://en.wikipedia.org/
https://www.intel.com/content/www/us/en/develop/documentation/iocl-tec-opg/top/coding-for-the-intel-architecture-processors/vectorization-basics-for-intel-architecture-processors.html
https://doi.org/10.21125/inted.2020.0664
https://www.mathworks.com/help/matlab/ref/mldivide.html
https://www.mathworks.com/help/matlab/ref/mldivide.html
https://help.scilab.org/docs/6.0.2/en_US/backslash.html
https://help.scilab.org/docs/6.0.2/en_US/backslash.html
https://doi.org/10.21125/edulearn.2020.0714
https://www.mathworks.com/help/matlab/ref/tic.html
https://www.mathworks.com/help/matlab/ref/tic.html
https://help.scilab.org/doc/6.0.2/en_US/tic.html
https://help.scilab.org/doc/6.0.2/en_US/tic.html
https://papers.unin.com.hr/matscilab2022.html
mailto:miroslav.horvatic@unin.hr

