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DIOPHANTINE QUINTUPLES CONTAINING TWO PAIRS
OF CONJUGATES IN SOME QUADRATIC FIELDS

Zrinka Franušić

Abstract. In this paper, we describe constructions of Diophantine
quintuples of the special form in rings Z[

√
D] for certain positive integer D.

The term “special form” refers to Diophantine quintuples of the form {e, a+
b
√

D, a − b
√

D, c + d
√

D, c − d
√

D}, where a, b, c, d, e are integers. Also, we
assume these quintuples contain two regular Diophantine quadruples.

1. Introduction

The two most significant historical examples of Diophantine quadruples
are { 1

16 ,
33
16 ,

17
4 ,

105
16 } and {1, 3, 8, 120} found by Diophantus and Fermat, re-

spectively (see [5], pp. 517-520). Each of them has the property that the
product of every two distinct elements increased by 1 gives perfect square of a
rational number (in the first example) and an integer (in the second example).
Therefore, it makes sense to set the following definition:

Definition 1.1. Let R be a commutative ring with the unity. A Dio-
phantine m-tuple in R is a set of m elements in R\{0} with the property
that the product of any two of its distinct elements increased by the unity is a
square in R.

The reasonable question is how large these sets can be, i.e., can we find
an upper bound on m for a particular ring? So far, the complete answer
is known for the case of Diophantine m-tuples in the ring of integers (Z)
where it is proved that an integer Diophantine quintuple does not exist (see
[15]). For the case of Diophantine m-tuples in the field of rational integers
(Q), i.e., for so called rational Diophantine m-tuples, infinitely many rational
Diophantine sextuples have been found (see [9]) but there is no example of
rational Diophantine septuple. Also, no Diophantine quintuples were found in
imaginary quadratic number rings (Z[

√
D], D < 0) although the only known

result on the upper bound says that m is less then 43 (see [1]). It is easy to
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see that in some real quadratic number rings (Z[
√
D], D > 0 and D is not

a perfect square) there exist Diophantine quintuples since every Diophantine
triple can be extended to a Diophantine quadruple (see [3]). So, for instance
if {a1, a2, a3, a4} is a Diophantine quadruple in Z then the triple {a2, a3, a4}
can be extended by the fourth element a5 and {a1, a2, a3, a4, a5} represents a
Diophantine quintuple in Z[

√
a1a5 + 1].

As just mentioned, any Diophantine triple {a1, a2, a3} can be extended
to a Diophantine quadruple. It can be done by adding one of the following
two elements
(1.1) d± = a1 + a2 + a3 + 2a1a2a3 ± 2rst,
where a1a2+1 = r2, a1a3+1 = s2, a2a3+1 = t2, but just in case the appended
element (d− or d+) is not zero or one of the first three elements (a1, a2, a3).
Obviously, {a1, a2, a3, d−, d+} is a Diophantine quintuple if d−d+ + 1 = □
and d−, d+ ̸∈ {a1, a2, a3, 0}. In this context we state the following definition:

Definition 1.2. A Diophantine quadruple {a1, a2, a3, a4} such that a4 =
d− or a4 = d+, where d± are given by (1.1), is called regular.

A Diophantine quintuple containing two regular Diophantine quadruples
is called biregular.

A classification of Diophantine quadruples and quintuples with examples
in Q can be found in [13]. Also, biregular quintuples in Q were applied to
construction of high-rank elliptic curves and rational Diophantine sextuples
(see [6, 10]).

In this paper, we deal with the construction of explicit examples of Dio-
phantine quintuples of the special form in Z[

√
D] for infinite families of pos-

itive integers D. Namely, in [14], Gibbs listed 160 examples of Diophantine
quintuples in real quadratic number rings Z[

√
D] for all square free D with

1 < D < 50 except for D ∈ {23, 35, 42, 43, 47}. (The example of Diophan-
tine quintuple in Z[

√
43] was found in [11]). Among these, we observed the

examples of biregular Diophantine quintuples of the form
(1.2) {e, a+ b

√
D, a− b

√
D, c+ d

√
D, c− d

√
D}

where e, a, b, c, d ∈ Z, i.e., Diophantine quintuples containing two pairs of
conjugate elements. So here, by “Diophantine quintuples of the special form”
we mean on Diophantine quintuples of the form (1.2) where elements c±d

√
D

are regular extensions (1.1) of the set {e, a ± b
√
D}. In [11], some explicit

polynomial formulas for such quintuples for certain values of D (e.g. for
D = n2(n+ 1)2 + 1) were found. It has also been shown that the set (1.2) is
a biregular Diophantine quintuple if the following conditions hold:
(1.3) e(a+ b

√
D) + 1 = (u+ v

√
D)2,

(1.4) (a+ b
√
D)(a− b

√
D) + 1 = x2D,
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(1.5) c± d
√
D = e+ 2a+ 2e(a2 −Db2) ± 2(u2 −Dv2)x

√
D,

(1.6) (c+ d
√
D)(c− d

√
D) + 1 = y2 or = y2D,

for some u, v, x, y ∈ Z.
Here, we present some new families of biregular Diophantine quintuples

of the form (1.2) in Z[
√
D], for certain values of D. The main theorems are

as follows:

Theorem 1.3. If D = a2+1
10 , where a > 3 is an integer solution of the

equation 5χ2 − 2a2 = 27, then there exists a biregular Diophantine quintuple
of the form (1.2) in the ring Z[

√
D].

Theorem 1.4. Let n be a positive integer and D = n2(8n±1)2 +1. There
exists a biregular Diophantine quintuple of the form (1.2) in the ring Z[

√
D].

2. Proof of Theorem 1.3

The proof is carried out in several steps.
1) Let us consider the equation

(2.1) 5χ2 − 2a2 = 27,
a Diophantine equation of Pellian type. Since 19 + 6

√
10 is a fundamental

solution of a related Pell’s equation X2 −10A2 = 1, and 15±3
√

10, 25±7
√

10
are fundamental solutions of a related Pellian equation X2 − 10A2 = 135, all
integer solutions of equation (2.1) with a > 0 are given by:

χ±
n

√
5 + a±

n

√
2 = (3

√
5 ± 3

√
2)(19 + 6

√
10)n,

χ′±
n

√
5 + a′±

n

√
2 = (5

√
5 ± 7

√
2)(19 + 6

√
10)n, n ∈ N0.

Sequences (a±
n ), (a′±

n ), (χ±
n ), (χ′±

n ) satisfy the same binary recurrence
(2.2) Xn+2 = 38Xn+1 −Xn, n ≥ 0,
with initial conditions:

(2.3)

(a+
0 , χ

+
0 ) = (3, 3), (a+

1 , χ
+
1 ) = (147, 93),

(a−
0 , χ

−
0 ) = (−3, 3), (a−

1 , χ
−
1 ) = (33, 21),

(a′+
0 , χ

′+
0 ) = (7, 5), (a′+

1 , χ
′+
1 ) = (283, 179),

(a′−
0 , χ

′−
0 ) = (−7, 5), (a′−

1 , χ
′−
1 ) = (17, 11).

2) We show that D = a2+1
10 is well-defined, i.e., D is an integer which is

not a perfect square. Let a ∈ {a±
n , a

′±
n : n ∈ N0}. Then a ≡ ±3 (mod 10).

Indeed, using (2.2) and (2.3) and arguing by induction, we easily prove that

a+
n , a

′−
n ≡ (−1)n3 (mod 10), n ≥ 0,

a−
n , a

′+
n ≡ (−1)n+13 (mod 10), n ≥ 0.

So, for any integer solution of equation (2.1), D = a2+1
10 is an integer.
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If, for some integer z, D = z2, then the system of equations

5χ2 − 2a2 = 27, a2 − 10z2 = −1

is solvable in integers and vice versa. It is easy to see that the only integer
solutions (in a) of this system are a = ±3 and they correspond to D = 1.

3) In this step we construct a Diophantine triple {e, a+ b
√
D, a− b

√
D}

in Z[
√
D]. Let b = 3 and a ∈ {a±

n , a
′±
n : n ∈ N0}, a > 3. Further, let us define

(2.4) u =


1
3

(
2a−

√
2a2+27√

5

)
, if a ∈ (a−

n ), (a′+
n ),

1
3

(
2a+

√
2a2+27√

5

)
, if a ∈ (a+

n ), (a′−
n ),

and

(2.5) e = 4u
3 .

Note that u is a positive integer since 2a2 + 27 = 5χ2, for some χ ∈ Z and

2a−
√

2a2 + 27√
5

= 2a2 − 27√
5(2a+

√
2a2 + 27)

> 0,

for a ≥ 4.
Now let us verify that e is a positive integer. Using (2.2), (2.3), and the

induction principle, we conclude that u = 1
3 (2a ± χ) ≡ 0 (mod 3) in each of

the following four cases:
a = a−

n : Since a−
0 , a

−
1 ≡ 6 (mod 9), then a−

n ≡ 6 (mod 9) for n > 1. Also
χ−

0 , χ
−
1 ≡ 3 (mod 9) and so is χ−

n ≡ 3 (mod 9) for n > 1. Therefore,

2a−
n − χ−

n ≡ 0 (mod 9),

for all n > 0.
a = a+

n : It is easy to see that a+
n , χ

+
n ≡ 3 (mod 9) and therefore

2a+
n + χ+

n ≡ 0 (mod 9),

for all n ≥ 0.
a = a′−

n : We have
a′−
n ≡ 2, 8, 5, 2, 8, . . . (mod 9),

χ′−
n ≡ 5, 2, 8, 5, 2, . . . (mod 9).

So, (a′−
n , χ

′−
n ) mod 9 ∈ {(2, 5), (8, 2), (5, 8)} and 2a′−

n + χ′−
n ≡ 0

(mod 9), for all n ≥ 0.
a = a′+

n : Since
a′+
n ≡ 7, 4, 1, 7, 4 . . . (mod 9),

χ′+
n ≡ 5, 8, 2, 5, 8 . . . (mod 9),

we get 2a′+
n − χ′+

n ≡ 0 (mod 9), for all n ≥ 0.
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Finally, we have to check that the product of any two elements in {e, a±
b
√
D} increased by 1 is a square in Z[

√
D]. So,

e(a+ b
√
D) + 1 = 4u

3 (a+ 3
√
D) + 1 = 4(2a± χ)

9 a+ 4u
√
D + 1

= 8
9a

2 ± 4
9aχ+ 1 + 4u

√
D

= 1
9(2a± χ)2 + 4

9a
2 − 1

9χ
2 + 1 + 4u

√
D

= 1
9(2a± χ)2 + 4

9a
2 − 1

45(2a2 + 27) + 1 + 4u
√
D

= u2 + 4D + 4u
√
D = (u+ 2

√
D)2 =: r2.

Analogously,
e(a− b

√
D) + 1 = (u− 2

√
D)2 =: s2.

And, it is easy to see that
(a+ b

√
D)(a− b

√
D) + 1 = a2 − 9D + 1 = D =: t2.

4) The triple {e, a± b
√
D}, defined in the previous step, can be extended

to a Diophantine quadruple with its regular extensions given by (1.1):

c± d
√
D = e+ (a+ b

√
D) + (a− b

√
D) + 2e(a+ b

√
D)(a− b

√
D) ± 2rst

= e+ 2a+ 2e (a2 − b2D)︸ ︷︷ ︸
=D−1

±2(u2 − 4D)
√
D

= 2a+ e(2D − 1) ± 2(u2 − 4D)
√
D,

if each of them does not equal zero or repeat one of the first three numbers
which is clearly not the case here. Finally, if the product of these two appended
elements increased by 1 is a square, i.e., if

(c+ d
√
D)(c− d

√
D) + 1 = □,

then {e, a + b
√
D, a − b

√
D, c + d

√
D, c − d

√
D} is a biregular Diophantine

quintuple. In our case, it turns out to be true. We have
(c+ d

√
D)(c− d

√
D) + 1 = (2a+ e(2D − 1))2 − 4(u2 − 4D)2D.

Implementing (2.4), (2.5) and D = (a2 + 1)/10 into previous expression, we
get

74a2

81 ± 16
81

√
5
√

2a2 + 27a+ 5
3 ,

where “−” is obtained for u+ = 1
3

(
2a+

√
2a2+27√

5

)
= 1

3 (2a+ χ) and vice
versa. Further, taking into account that a is a solution of 5χ2 − 2a2 = 27, we
have

5
3 + 74

81a
2 ± 80

81aχ = 1
81(25χ2 ± 80aχ+ 64a2) = (5χ± 8a)2

81 .
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So,

(c+ d
√
D)(c− d

√
D) + 1 =

(
5χ± 8a

9

)2
.

It remains to conclude that (5χ ± 8a)/9 is an integer. All cases are listed
below:
a = a−

n : (a−
n , χ

−
n ) mod 9 = (6, 3) implies 5χ−

n + 8a−
n ≡ 0 (mod 9).

a = a+
n : (a+

n , χ
+
n ) mod 9 = (3, 3) implies 5χ+

n − 8a+
n ≡ 0 (mod 9).

a = a′−
n : (a′−

n , χ
′−
n ) mod 9 ∈ {(2, 5), (8, 2), (5, 8)} implies 5χ′−

n − 8a′−
n ≡ 0

(mod 9).
a = a′+

n : (a′+
n , χ

′+
n ) mod 9 ∈ {(7, 5), (4, 8), (1, 2)} implies 5χ′+

n + 8a′+
n ≡ 0

(mod 9).

We obtained examples expressed in the following table:

Table 1. Some Diophantine quintuples from Theorem 1.3

D e (a, b) (c, d)
5 4 (7, 3) (50, 22)
29 20 (17, 3) (1174, 218)
109 20 (33, 3) (4406, 422)
2161 172 (147, 3) (743506, 15994)
8009 172 (283, 3) (2755490, 30790)
42641 764 (653, 3) (65155990, 315530)

3. Proof of Theorem 1.4

We show how we effectively constructed Diophantine quintuples of the
form (1.2) in Z[

√
D] for D = n2(8n± 1)2 + 1, n ∈ N.

Let us assume that e, a, b, u, v, x ∈ Z\{0} satisfy (1.3) and (1.4), i.e.,
(3.1) ea+ 1 = u2 + v2D,

(3.2) eb = 2uv,
and
(3.3) a2 −Db2 + 1 = x2D.

Therefore, {e, a+ b
√
D, a− b

√
D} is a Diophantine triple in Z[

√
D]. Observe

that in the previous case we had x = 1. Now, assume that x is “small” again,
i.e., x = 2. So, (3.3) gives

(3.4) D = a2 + 1
b2 + 4 .
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Also suppose that there is a linear connection between a and u, and b and v:
(3.5) a = u+ k, b = v + l, k, l ∈ Z.

Putting (3.2), (3.4), (3.5) into (3.1) yields
2uv(u+ k)

v + l
+ 1 = u2 + v2 (u+ k)2 + 1

(v + l)2 + 1 .

The previous expression can be recognized as a quadratic equation in the
variable u:
(3.6) (4l+ l3 −4v+ l2v)u2 −2kv(4+ l2 + lv)u−(l+v)(4+ l2 +2lv−k2v2) = 0.
Since u ∈ Z, the discriminant of the previous equation
p(v) = 4k2v2(4 + l2 + lv)2 + 4(4l + l3 − 4v + l2v)(l + v)(4 + l2 + 2lv − k2v2)
should be a perfect square. This is fulfilled for l = 2k− 2 because the expres-
sion 2k − l − 2 divides the discriminant of the quartic polynomial p(v) (i.e.,
the discriminant of p(v) is zero for l = 2k − 2). In that case (l = 2k − 2),
solutions of (3.6) are:

u− = 1
2(v − 2), u+ =

2k3(v + 2) + k2 (v2 − 12
)

− 4k(v − 4) + 4(v − 2)
4k3 + 2k2(v − 6) − 4k(v − 4) − 8 .

We can reject the solution u− since it yields D = 1
4 .

For k = 1 we get u+ = − 1
2 (2 + v) and D = 1

4 . For k = 2 we obtain

u+ = 1
2(2 + 3v + v2)

which is an integer for all v ∈ Z and corresponding D = 1
4 (5 + 2v + v2) is

an integer for v = 2m − 1, m ∈ Z. Taking all that (k = l = 2, v = 2m − 1,
u = 2m2 +m) into account we get that

{e, a± b
√
D} = {2m(2m− 1), 2m2 +m+ 2 ± (2m+ 1)

√
m2 + 1}

is a Diophantine triple in Z[
√
m2 + 1], for m ∈ Z, m ̸= 0.

Next we try to find conditions on m such that regular extensions given
by (1.5), i.e., by

c± d
√
D = e+ 2a+ 2e(a2 −Db2) ± 4(u2 − v2D)

√
D

extend the triple {e, a± b
√
D} to a quintuple. This is fulfilled, if

c2 − d2D + 1 = 32m+ 1 = y2,

for y ∈ Z. Assuming that 32m + 1 = y2D = y2(m2 + 1), y ∈ Z, we get
only finitely many solutions of which only one corresponds to a Diophantine
quintuple (m = 32). On the other hand, 32m + 1 = y2, y ∈ Z, implies that
y = 16n± 1, n ∈ Z, i.e.,

m = ((16n± 1)2 − 1)/32 = n(8n± 1).
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Finally, for
D = n2(8n± 1)2 + 1,
e = 2n(8n± 1)(2n(8n± 1) − 1),
a = n(8n± 1)(2n(8n± 1) + 1) + 2 = 128n4 ± 32n3 + 10n2 ± n+ 2,
b = 2n(8n± 1) + 1 = 16n2 ± 2n+ 1,
c = 4(8n4(8n± 1)4 − 4n3(8n± 1)3 + 8n2(8n± 1)2 − 3n(8n± 1) + 1

= 4(32768n8 ± 16384n7 + 1024n6 ∓ 512n5 + 424n4 ± 124n3 − 16n2 ∓ 3n+ 1),
d = 4(8n3(8n± 1)3 − 4n2(8n± 1)2 + 4n(8n± 1) − 1),

= 4(4096n6 ± 1536n5 − 64n4 ∓ 56n3 + 28n2 ± 4n− 1),
{e, a± b

√
D, c± d

√
D} is a biregular Diophantine quintuple in Z[

√
D].

Examples obtained by evaluating the above expressions for the first few
values of n are listed in the following table:

Table 2. Some Diophantine quintuples from Theorem 1.4

D e (a, b) (c, d)
50 182 ( 107, 15) ( 72832, 10300)
82 306 (173, 19) (200776, 22172)
901 3540 (1832, 61) (25516444, 850076)
1157 4556 ( 2348, 69) (42170476, 1239772)
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Diofantove četvorke koje sadrže dva para konjugata u nekim
kvadratnim poljima

Zrinka Franušić
Sažetak. U ovom radu opisujemo konstrukcije Diofantovih

petorki posebnog oblika u prstenima Z[
√

D], za neke prirodne
brojeve D. Pojam Diofantove petorke “posebnog oblika” odnosi
se na petorke oblika {e, a + b

√
D, a − b

√
D, c + d

√
D, c − d

√
D},

gdje su a, b, c, d, e cijeli brojevi. Nadalje, pretpostavljamo da ove
petorke sadrže dvije regularne Diofantove četvorke.

Zrinka Franušić
Department of Mathematics
University of Zagreb
10 000 Zagreb, Croatia
E-mail: fran@math.hr

Received: 14.5.2021.
Revised: 13.7.2021.
Accepted: 14.9.2021.


