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MATRIX MORPHOLOGY AND COMPOSITION OF HIGHER
DEGREE FORMS WITH APPLICATIONS TO

DIOPHANTINE EQUATIONS

Ajai Choudhry

Abstract. In this paper we use matrices to obtain new composi-
tion identities f(xi)f(yi) = f(zi), where f(xi) is an irreducible form,
with integer coefficients, of degree n in n variables (n being 3, 4, 6 or
8), and xi, yi, i = 1, 2, . . . , n, are independent variables while the
values of zi, i = 1, 2, . . . , n, are given by bilinear forms in the vari-
ables xi, yi. When n = 2, 4 or 8, we also obtain new composition
identities f(xi)f(yi)f(zi) = f(wi) where, as before, f(xi) is an irre-
ducible form, with integer coefficients, of degree n in n variables while
xi, yi, zi, i = 1, 2, . . . , n, are independent variables and the values of
wi, i = 1, 2, . . . , n, are given by trilinear forms in the variables xi, yi, zi,
and such that the identities cannot be derived from any identities of the
type f(xi)f(yi) = f(zi). Further, we describe a method of obtaining both
these types of composition identities for forms of higher degrees. We also
describe a method of generating infinitely many integer solutions of cer-
tain quartic and octic diophantine equations f(x1, . . . , xn) = 1 where
f(x1, . . . , xn) is a form that admits a composition identity and n = 4, 6
or 8.

1. Introduction

Let f : Rn → R be an algebraic form, or simply a form, i.e., a homo-
geneous polynomial in n variables. A form f is said to be a form admitting
composition or a composable form if
(1.1) f(x1, x2, . . . , xn)f(y1, y2, . . . , yn) = f(z1, z2, . . . , zn),
where each variable zi, i = 1, 2, . . . , n, is a bilinear form in the variables
xi, yi, i = 1, 2, . . . , n, that is,

(1.2) zi = ϕ(x1, . . . , xn, y1, . . . , yn) =
n∑
j=1

n∑
k=1

λijkxjyk, i = 1, 2, . . . , n,
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for certain constants λijk and for all xi, yi ∈ R.
The subject of higher degree forms that admit composition has been stud-

ied by several authors [1, 2, 4–7]. Dickson [1, pp. 222, 224] has given general
theorems describing all high degree ternary and quaternary forms admitting
composition. While these theorems yield higher degree composable forms with
complex coefficients, they are of little help in finding higher degree forms that
admit composition and have only integer coefficients. It seems that the ex-
isting literature contains only two explicit nontrivial examples of high degree
composable forms with integer coefficients, namely the determinant of an n×n
matrix yields a composable form of degree n in n2 variables, and the norm of
an algebraic integer yields a composable form of degree n in n variables.

In this paper we will study forms admitting composition with a view to
obtaining infinitely many integer solutions of certain higher degree diophan-
tine equations and accordingly, we will consider only those forms which have
integer coefficients, i.e., f ∈ Z[x1, x2, . . . , xn], and such that the constants
λijk in the relations (1.2) are also all integers. Further, when we refer to a
form being irreducible, we mean irreducibility over Q.

We describe a new technique of finding composition identities (1.1) by
using matrices. We use this technique to obtain composition identities (1.1)
when f is an irreducible form of degree n in n variables and n = 3, 4, 6 or 8.

Further, by using the new technique described in this paper, we also
obtain forms that satisfy a law of composition that is an extension of the
usual composition law defined by (1.1). We say that a form f admits threefold
composition if, for all xi, yi, zi ∈ R,
(1.3) f(x1, . . . , xn)f(y1, . . . , yn)f(z1, . . . , zn) = f(w1, . . . , wn),
where each wi = ϕ(x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn) is a trilin-
ear form in the variables xi, yi, zi, and the identity (1.3) cannot be derived
from an identity of type (1.1). In fact, the form f need not admit any com-
position identity of type (1.1) for it to admit a threefold composition identity.

We will show that every binary quadratic form admits threefold compo-
sition. We also obtain examples of quaternary quartic forms and octonary
octic forms that admit threefold composition. Such threefold composition of
forms has not been studied till now and all these results are new.

It would be recalled that, when d is a positive integer which is not a
perfect square, the well-known identity for composition of forms, namely

(x2
1 − dy2

1)(x2
2 − dy2

2) = (x1x2 − dy1y2)2 − d(x1y2 − x2y1)2,

may be applied to generate infinitely many integer solutions of Pell’s equation
x2 − dy2 = 1 starting from a single known integer solution. We describe an
analogous method for obtaining infinitely many integer solutions of certain
quartic and higher degree diophantine equations,
(1.4) f(x1, x2, . . . , xn) = 1,



MATRIX MORPHOLOGY AND COMPOSITION OF FORMS 67

by using the composition identities (1.1) and (1.3). We give several examples
to illustrate the method.

In Sect. 2 we discuss how matrices may be used to obtain forms that satisfy
composition identities. In Sect. 3 we construct examples of higher degree
forms admitting composition and solve certain related diophantine equations.
Similarly, in Sect. 4 we construct forms admitting threefold composition and
consider related diophantine equations. We conclude the paper with certain
remarks and open problems regarding matrix morphology, composition of
higher degree forms and related diophantine equations.

2. Matrix morphology, composable forms and diophantine
equations

All the matrices considered in this paper are square matrices over the
field of real numbers. The determinant of the product of square matrices is
equal to the product of their determinants. So, if A = [xij ] and B = [yij ] are
two arbitrary n× n matrices and C = AB, then
(2.1) detAdetB = detC.
The identity (2.1) and the fact that the entries of the matrix C are bilinear
forms in the entries of the matrices A and B immediately yield the composable
form f of degree n in n2 variables:

f : Rn
2

→ R, f(x11, x12, . . . , xnn) = det [xij ].
The form f is, however, of little interest as the number of variables is too
large compared to the degree of the form. In Sect. 2.1 we will show that the
identity (2.1) can be used to obtain composable forms of degree n in just n
variables for several values of n ≥ 3.

2.1. The morphology of matrices. The set Mn(R) of all real square matrices
of order n is a vector space over the field of real numbers with vector addi-
tion being the usual matrix addition and scalar multiplication being the usual
scalar multiplication of matrices. Since matrix multiplication is distributive,
and (aM1)(bM2) = (ab)(M1M2) when a, b ∈ R and M1,M2 ∈ Mn(R), it fol-
lows that matrix multiplication is bilinear. Thus, the vector space Mn(R)
is equipped with a bilinear product, and hence the set Mn(R) of all n × n
matrices over R is an algebra over the field R. In fact, Mn(R) is a unital
associative algebra since matrix multiplication is associative and there is a
neutral element, namely the identity matrix, for the bilinear product (matrix
multiplication). Every subalgebra of Mn(R) is closed under the operations of
matrix addition, scalar multiplication, and multiplication of matrices. Fur-
ther, the set of all n × n matrices whose entries are integers, namely the set
Mn(Z), is also closed under addition, scalar multiplication by integers, and
multiplication of matrices.
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Let L be a subalgebra of Mn(R) whose dimension is 0 < h < n2, dim L =
h, and whose basis is {A1, . . . , Ah}. Every matrix in L can be written in a
unique way as a finite linear combination of elements of the basis, i.e., for
each A ∈ L, there exist unique coefficients x1, . . . , xh ∈ R such that

A = x1A1 + · · ·xhAh.
Obviously, each entry of the matrix A is a linear form in the variables x1, . . .,
xh. Since the coefficients x1, . . . , xh of A are unique, with respect to the basis
{A1, . . . , Ah}, each matrix A ∈ L can be seen as a function,
(2.2) A : Rh → L, A(x1, . . . , xh) = x1A1 + · · ·xhAh.
Therefore, each matrix in L can be naturally denoted by A(x1, . . . , xh).

Since the subalgebra L is closed with respect to matrix multiplication,
the product of two arbitrary matrices A(x1, . . . , xh), A(y1, . . . , yh) ∈ L may
be written as A(z1, . . . , zh) ∈ L where the values of zi, i = 1, . . . , h, are given
by bilinear forms in the variables x1, . . . , xh, y1, . . . , yh. It follows from the
relation A(x1, . . . , xh)A(y1, . . . , yh) = A(z1, . . . , zh) that
(2.3) det (A(x1, . . . , xh)) det (A(y1, . . . , yh)) = det (A(z1, . . . , zh)),
and hence the form f : Rh → R, f(x1, . . . , xh) = det (A(x1, . . . , xh)), satisfies
the identity,
(2.4) f(x1, . . . , xh)f(y1, . . . , yh) = f(z1, . . . , zh),
for all xi, yi ∈ R, and is thus a composable form of degree n. If the matrices
A1, . . . , Ah have integer entries, we get a form f : Zh → Z with integer
coefficients.

We note here that the set
(2.5) L(Z) = {A(x1, . . . , xh) = x1A1 + · · ·xhAh : xi ∈ Z, i = 1, . . . , h},
is also closed under addition, scalar multiplication by integers and multipli-
cation of matrices.

We now give an example of a subalgebra of Mn(R). Let the minimal poly-
nomial of the matrix M ∈ Mn(R) be g(x) = a0 + a1x+ · · · + ahx

h, ah ̸= 0.
Obviously, the set {In,M,M2, . . . ,Mh−1} is linearly independent. Fur-
ther, Mh = a−1

h (a0In + a1M + · · · + ah−1M
h−1) implies that all powers

Mk, k ≥ h, can be written as linear combinations of In,M, . . . ,Mh−1.
Hence, span{In,M,M2, . . . ,Mh−1}, i.e.,
(2.6) {x1In + x2M + · · · + xhM

h−1 : x1, . . . , xh ∈ R},
represents a subalgebra of Mn(R). In fact, this particular subalgebra is also
commutative and contains unity (In). Thus, it is an example of a unital
commutative algebra over R. We could choose the matrix M suitably and try
to obtain examples of composable forms but this approach did not yield any
interesting results.
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We give below a couple of preliminary lemmas that we will use to con-
struct further examples of subalgebras of Mn(R). In these lemmas and,
in fact, throughout this paper, whenever we refer to the span of a set
of matrices, M1,M2, . . . ,Mn, we mean the set of all linear combinations
x1M1 + x2M2 + · · · + xnMn where x1, x2, . . ., xn ∈ R.

Lemma 2.1. If V = span{A1, A2, . . . , Ah}, where {A1, A2, . . . , Ah} is a
linearly independent set of matrices in Mn(R), and the matrix product AiAj ∈
V, for all i, j ∈ {1, . . . , h}, then V is closed under matrix multiplication.

Proof. The product of two arbitrary matrices in V is readily seen to be
expressible as a linear combination of the matrix products AiAj and hence it
is in V. This proves the lemma.

Lemma 2.2. If A1 and A2 are two matrices defined by

(2.7) A1 = I2, A2 =
[

0 1
−n m

]
,

where m,n, are arbitrary integers, then L = span{A1, A2} is a unital com-
mutative subalgebra of M2(R). Further, for arbitrary parameters x1, x2 ∈ R,
if the matrix A(x1, x2) is defined by A(x1, x2) = x1A1 + x2A2, the form f
defined by
(2.8) f : R2 → R, f(x1, x2) = det (A(x1, x2)) = x2

1 +mx1x2 + nx2
2,

is a composable binary quadratic form that satisfies, for all xi, yi ∈ R, i = 1, 2,
the identity,
(2.9) f(x1, x2)f(y1, y2) = f(z1, z2),
where
(2.10) z1 = x1y1 − nx2y2, z2 = x1y2 + x2y1 +mx2y2.

Proof. Clearly L is a 2-dimensional vector subspace of M2(R). It is
readily seen that A2

2 = −nA1 + mA2 and A1A2 = A2A1. It now follows
from Lemma 2.1 that L is closed under matrix multiplication and is hence a
unital commutative subalgebra of M2(R). Further, as discussed in Sect. 2.1,
the form f satisfies the identity (2.9). The values of zi, i = 1, 2, stated in
(2.10), are readily obtained by direct computation. The identity (2.9) is the
well-known identity on composition of binary quadratic forms.
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2.2. A subalgebra of M3(R) and a composable cubic form.

Theorem 2.3. If A1, A2, A3 are three matrices defined by

(2.11)

A1 = I3,

A2 =

 0 1 0
−λ3(λ1 − λ2 − λ3 + λ5) λ1 λ3

−λ3(λ2 − λ4) λ2 λ3

 ,
A3 =

 0 0 1
−λ3(λ2 − λ4) λ2 λ3

−λ1λ4 + λ2
2 − λ2λ5 + λ3λ4 λ4 λ5

 ,
where λi, i = 1, . . . , 5, are arbitrary integers, then L = span{A1 = I3, A2, A3},
is a unital commutative subalgebra of M3(R). Further, for arbitrary parame-
ters x1, x2, x3 ∈ R, if the matrix A(x1, x2, x3) is defined by

(2.12) A(x1, x2, x3) = x1A1 + x2A2 + x3A3,

the form f , defined by f : R3 → R, f(x1, x2, x3) = det (A(x1, x2, x3)), is a
composable ternary cubic form.

Proof. Clearly, L is a 3-dimensional vector subspace of M3(R). It is
readily verified that AiAj = AjAi for 1 ≤ i < j ≤ 3, and further,

(2.13)
A2

2 = λ3(−λ1 + λ2 + λ3 − λ5)I3 + λ1A2 + λ3A3 ∈ L,
A2A3 = (−λ2λ3 + λ3λ4)I3 + λ2A2 + λ3A3 ∈ L,
A2

3 = (λ2
2 − λ1λ4 + λ3λ4 − λ2λ5)I3 + λ4A2 + λ5A3 ∈ L.

It now follows from Lemma 2.1 that L is closed under multiplication of ma-
trices, and is thus a unital commutative subalgebra of M3(R). It now follows,
as before, that f(x1, x2, x3) = det (A(x1, x2, x3)) is a ternary cubic form ad-
mitting composition.

The form f(x1, x2, x3), which may be written explicitly as

(2.14) f(x1, x2, x3) = x3
1 + (λ1 + λ3)x2

1x2 + (λ2 + λ5)x2
1x3

+ λ3(2λ1 − 2λ2 − λ3 + λ5)x1x
2
2 + (λ1λ5 + 2λ2λ3 − 3λ3λ4)x1x2x3

+ (λ1λ4 − λ2
2 + 2λ2λ5 − 2λ3λ4)x1x

2
3 + λ2

3(λ1 − 2λ2 − λ3 + λ4 + λ5)x3
2

− λ3(2λ1λ4 − λ1λ5 − 2λ2
2 − λ2λ3 + 3λ2λ5 − λ3λ4 + λ3λ5 − λ2

5)x2
2x3

+ (λ2
1λ4 − λ1λ

2
2 + λ1λ2λ5 − 3λ1λ3λ4 + λ2

2λ3 + λ2λ3λ4

+ 2λ2
3λ4 − 2λ3λ4λ5)x2x

2
3 + (λ1λ2λ4 − λ3

2 + λ2
2λ5 − 2λ2λ3λ4 + λ3λ

2
4)x3

3,

satisfies the composition identity,

(2.15) f(x1, x2, x3)f(y1, y2, y3) = f(z1, z2, z3),
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for all xi, yi ∈ R, i = 1, 2, 3, and the values of zi i = 1, 2, 3, are given by

(2.16)

z1 = x1y1 − λ3(λ1 − λ2 − λ3 + λ5)x2y2 − λ3(λ2 − λ4)x2y3

− λ3(λ2 − λ4)x3y2 + (−λ1λ4 + λ2
2 − λ2λ5 + λ3λ4)x3y3,

z2 = x1y2 + x2y1 + λ1x2y2 + λ2x2y3 + λ2x3y2 + λ4x3y3,

z3 = x1y3 + λ3x2y2 + λ3x2y3 + x3y1 + λ3x3y2 + λ5x3y3.

We note that for various numerical values of the parameters λi, i = 1, . . . , 5,
(for instance, when (λ1, λ2, λ3, λ4, λ5) = (1, 1, 1, 1, 2) or (1, 1, 1, 2, 1)), the form
f(x1, x2, x3) is irreducible.

2.3. Subalgebras of Mmn(R) where m ≥ 2 and n ≥ 2. We will now construct a
unital commutative algebra of matrices of order mn by combining two unital
commutative subalgebras of Mn(R) and Mm(R), respectively, by using the
right Kronecker product of matrices denoted by ⊗. We note that the Kro-
necker product of two matrices satisfies the associative and distributive laws,
and is bilinear. Further, it satisfies the following mixed-product property [3, p.
408]:

“If A,C ∈ Mn(R) and B,D ∈ Mm(R), then

(2.17) (A⊗B)(C ⊗D) = AC ⊗BD.”

Theorem 2.4. If {A1 = In, A2, . . . , Ah} and {B1 = Im, B2, . . . , Bk} are
linearly independent sets of matrices in Mn(Z) and Mm(Z), respectively, such
that

(2.18)
Ln = span{A1 = In, A2, . . . , Ah},

and Lm = span{B1 = Im, B2, . . . , Bk},

are unital commutative subalgebras of Mn(R) and Mm(R), respectively, then

(2.19) L = span{Bi ⊗Aj , i = 1, . . . , k, j = 1, . . . , h}

is a unital commutative subalgebra of Mmn(R).

Proof. We first construct a set S of kh square matrices of order mn
given by {Bi ⊗ Aj , i = 1, . . . , k, j = 1, . . . , h}. We note that B1 ⊗ A1 =
Im ⊗ In = Imn, and hence the neutral element Imn ∈ L. Further, since
{A1, . . . , Ah} and {B1, . . . , Bk} are linearly independent sets of matrices, it is
readily seen that the set S consists of kh linearly independent square matrices.
It follows that the set L, defined by (2.19) as the span of all the matrices in
the set S, is a subspace of the vector space Mmn(R) and dim L = kh.

Since Lm and Ln are commutative subalgebras of of Mm(R) and Mn(R),
respectively, we note that for any i1, i2 ∈ {1, . . . , k} and any j1, j2 ∈
{1, . . . , h}, we have Aj1Aj2 = Aj2Aj1 ∈ Ln and Bi1Bi2 = Bi2Bi1 ∈ Lm. We
may thus write Aj1Aj2 =

∑h
j=1 sjAj , sj ∈ R, and Bi1Bi2 =

∑k
i=1 riBi, ri ∈
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R. It now follows from (2.17) that

(Bi1 ⊗Aj1)(Bi2 ⊗Aj2) = (Bi1Bi2) ⊗ (Aj1Aj2) = (
k∑
i=1

riBi) ⊗ (
h∑
j=1

sjAj).

In view of the bilinearity of the Kronecker product, we may now write,

(2.20) (Bi1 ⊗Aj1)(Bi2 ⊗Aj2) =
k∑
i=1

h∑
j=1

risj(Bi ⊗Aj) ∈ L.

It now follows from Lemma 2.1 that the subspace L is closed under ma-
trix multiplication, and hence L is a subalgebra of Mmn(R). Further, since
Aj1Aj2 = Aj2Aj1 and Bi1Bi2 = Bi2Bi1 , it immediately follows from (2.17)
that (Bi1 ⊗ Aj1)(Bi2 ⊗ Aj2) = (Bi2 ⊗ Aj2)(Bi1 ⊗ Aj1). This proves that L is
a unital commutative subalgebra of Mmn(R).

Corollary 2.5. If {A1 = In, A2, . . . , Ah} is a linearly independent set
of matrices in Mn(Z) such that Ln = span{A1, A2, . . . , Ah} is a unital com-
mutative subalgebra of Mn(R), and the matrix C(x1, . . . , x2h) is defined by

(2.21) C(xi) =
[

A(x1, . . . , xh) A(xh+1, . . . , x2h)
−qA(xh+1, . . . , x2h) A(x1, . . . , xh) + pA(xh+1, . . . , x2h)

]
,

where A(x1, . . . , xh) =
∑h
j=1 xjAj and p, q are arbitrary integers, the form f

defined by
(2.22) f : R2h → R, f(x1, . . . , x2h) = det (C(x1, . . . , x2h)),
is a composable form of degree 2n in the variables x1, x2, . . . , x2h.

Proof. In view of Lemma 2.2, if p, q, are arbitrary integers, span{B1 =

I2, B2 =
[

0 1
−q p

]
}, is a unital commutative subalgebra of M2(R). It now

follows from Theorem 2.4 that L = span{Bi ⊗ Aj , i = 1, 2, j = 1, . . . , h}
is a unital commutative subalgebra of M2n(R). An arbitrary matrix C =
C(x1, x2, . . . , x2h) ∈ L may be written as

(2.23)

C(x1, x2, . . . , x2h) =
h∑
j=1

xjB1 ⊗Aj +
h∑
j=1

xh+jB2 ⊗Aj

= B1 ⊗
h∑
j=1

xjAj +B2 ⊗
h∑
j=1

xh+jAj

= B1 ⊗A(x1, . . . , xh) +B2 ⊗A(xh+1, . . . , x2h)
which, on using the definition of the Kronecker product, may be written as
stated in (2.21). Since L is closed under multiplication of matrices, it follows,
as before, that the form f defined by (2.22) is a composable form of degree
2n in the variables x1, x2, . . . , x2h.
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2.4. Composable forms and diophantine equations. Let {A1 = In, A2, . . . , An}
be a linearly independent set of n× n matrices with integer entries such that
(2.24) L = {A(x1, x2, . . . , xn) = x1A1 +x2A2 + · · ·+xnAn : x1, . . . , xn ∈ R}
is a unital commutative algebra, that is, a subalgebra of Mn(R), so that the
form

f(x1, x2, . . . , xn) = det (A(x1, x2, . . . , xn)),
is a composable form of degree n in n variables xi, i = 1, . . . , n.

We also assume that the set of the first rows of the matrices A1 =
In, A2, . . . , An forms the canonical basis for Rn (that is, the first rows are
given by (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)) so that the first row of
the matrix A(x1, x2, . . . , xn) may be written as (x1, x2, . . . , xn).

Let S denote the set of all integer solutions of the diophantine equation,
(2.25) f(x1, x2, . . . , xn) = 1,
that is,
(2.26) S = {(x1, x2, . . . , xn) ∈ Zn : f(x1, x2, . . . , xn) = 1}.
We will show that S is an abelian group under a suitably defined operation
of multiplication.

We first note that f(1, 0, . . . , 0) = det (A(1, 0, . . . , 0)) = det In = 1. Thus
(1, 0, . . . , 0) ∈ S, and hence the set S is nonempty. Let (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) be two arbitrary elements of S so that f(x1, x2, . . . , xn) = 1
and f(y1, y2, . . . , yn) = 1. As we have already noted, the set L(Z) is closed
under multiplication and accordingly, we define the multiplication operation
on elements of S as follows:
(2.27) (x1, , x2, . . . , xn) · (y1, y2, . . . , yn) = (z1, z2, . . . , zn),
where
(2.28) A(x1, x2, . . . , xn)A(y1, y2, . . . , yn) = A(z1, z2, . . . , zn).
In view of our assumption that the set of the first rows of the matrices A1 =
In, A2, . . . , An forms the canonical basis for Rn, it is sufficient to compute the
first row of the matrix product A(x1, . . . , xn)A(y1, . . . , yn) to determine the
values of zi, i = 1, . . . , n.

Since f is a composable form,
f(z1, z2, . . . , zn) = f(x1, x2, . . . , xn)f(y1, y2, . . . , yn) = 1,

and hence (z1, z2, . . . , zn) ∈ S. Thus, the set S is closed under the binary
operation defined by (2.27). Further, the binary operation defined on the set
S is associative (since matrix multiplication is associative) and commutative
since matrix multiplication is commutative on the ambient space L). It is also
readily seen that (1, 0, . . . , 0) ∈ S is a neutral element for our binary operation
since A(1, 0, . . . , 0) = In.
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Finally, we will show that any arbitrary element (x1, x2, . . . , xn) ∈ S has
its inverse in S. Since det (A(x1, x2, . . . , xn)) = f(x1, x2, . . . , xn) = 1, the ma-
trix A(x1, x2, . . . , xn) is invertible and in fact, (A(x1, x2, . . . , xn))−1 ∈ Mn(Z).
Further, it follows from the well-known Cayley-Hamilton theorem [3, Theorem
4, p. 252] that there exists a polynomial p such that (A(x1, x2, . . . , xn))−1 =
p(A(x1, x2, . . . , xn)) and hence (A(x1, x2, . . . , xn))−1 ∈ L. Moreover, all the
entries of (A(x1, x2, . . . , xn))−1 are integers, and so are the entries of the first
row, say y1, y2, . . . , yn. Hence (A(x1, x2, . . . , xn))−1 = A(y1, y2, . . . , yn) ∈
L(Z) where yi ∈ Z, i = 1, . . . , n. It follows that

A(x1, x2, . . . , xn)A(y1, y2, . . . , yn) = In = A(1, 0, . . . , 0),

and hence f(y1, y2, . . . , yn) = det(A(y1, y2, . . . , yn) = 1, and further, we have,
(x1, x2, . . . , xn)·(y1, y2, . . . , yn) = (1, 0, . . . , 0). This shows that (y1, y2, . . . , yn)
= (x1, x2, . . . , xn)−1 ∈ S.

We have thus proved that the set S of integer solutions of the diophantine
equation (2.25) is an abelian group with the binary operation on S defined
by (2.27).

3. Higher degree forms admitting composition and related
diophantine equations

We will now construct composable forms of degree n in n variables when
n = 4, 6 and 8 and solve certain related diophantine equations of type (2.25).

3.1. Quartic forms. In Sect. 3.1.1 we will obtain a quaternary quartic form
admitting composition and in Sect. 3.1.2 we will consider a related quartic
diophantine equation.

3.1.1. A composable quartic form.

Theorem 3.1. If Ci, i = 1, . . . , 4, are four 4 × 4 matrices defined by

(3.1)

C1 = I4, C2 =


0 1 0 0

−n m 0 0
0 0 0 1
0 0 −n m

 ,

C3 =


0 0 1 0
0 0 0 1

−q 0 p 0
0 −q 0 p

 , C4 =


0 0 0 1
0 0 −n m
0 −q 0 p
qn −qm −pn pm

 ,
where m,n, p and q are arbitrary integers, then L = span{C1, C2, C3, C4} is
a unital commutative subalgebra of M4(R). Further, for arbitrary parameters
xi ∈ R, i = 1, . . . , 4, if the matrix C is defined by

(3.2) C(x1, x2, x3, x4) = x1C1 + x2C2 + x3C3 + x4C4,
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the form f , defined by

(3.3) f : R4 → R, f(x1, x2, x3, x4) = det(C(x1, x2, x3, x4)),

is a composable quaternary quartic form that satisfies the identity

(3.4) f(x1, x2, x3, x4)f(y1, y2, y3, y4) = f(z1, z2, z3, z4),

where the values of zi, i = 1, . . . , 4, are given in terms of arbitrary parameters
xi, yi, i = 1, . . . , 4, by

z1 = x1y1 − nx2y2 − qx3y3 + qnx4y4,

z2 = x1y2 + x2y1 +mx2y2 − qx3y4 − qx4y3 −mqx4y4,

z3 = x1y3 − nx2y4 + x3y1 + px3y3 − nx4y2 − npx4y4,

z4 = x1y4 + x2(y3 +my4) + x3(y2 + py4) + x4(y1 +my2 + py3 +mpy4).

Proof. In view of Lemma 2.2, if the matrices A1, A2 are defined by
(2.7) and matrices B1, B2 are defined by B1 = I2, B2 =

[
0 1

−q p

]
, where

p, q are arbitrary integers, both span{A1, A2} and span{B1, B2} are unital
commutative subalgebras of M2(R). We note that

C1 = B1 ⊗A1, C2 = B1 ⊗A2, C3 = B2 ⊗A1, C4 = B2 ⊗A2,

and it now follows from Theorem 2.4 that L = span{C1, C2, C3, C4} is a unital
commutative subalgebra of M4(R), and hence the form f defined by (3.3) is
a composable form which satisfies the identity (3.4). We note that the form
f(x1, x2, x3, x4) is irreducible for various values of the parameters m,n, p and
q (for instance, when (m,n, p, q) = (1, 2, 1, 1) or (1, 3, 1, 1)). The values of zi
in the identity (3.4) are readily obtained by direct computation.

3.1.2. A related quartic diophantine equation. We will now consider the
diophantine equation,

(3.5) f(x1, x2, x3, x4) = 1,

where f(x1, x2, x3, x4) is the quartic form defined by (3.3). We note that the
conditions mentioned in Sect. 2.4 are satisfied. Thus, the integer solutions of
Eq. (3.5) form a group and we can combine two integer solutions of Eq. (3.5)
using the binary operation (2.27) and obtain a new solution of Eq. (3.5).
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We will now consider a special case of Eq. (3.5) when m = 5, n =
−23, p = 2, q = −7, that is, the equation,

(3.6) x4
1 + 10x3

1x2 + 4x3
1x3 + 10x3

1x4 − 21x2
1x2

2 + 30x2
1x2x3 − 42x2

1x2x4

− 10x2
1x2

3 − 50x2
1x3x4 − 589x2

1x2
4 − 230x1x3

2 − 42x1x2
2x3 − 690x1x2

2x4

− 50x1x2x2
3 + 1388x1x2x3x4 + 1150x1x2x2

4 − 28x1x3
3 − 210x1x2

3x4

+ 294x1x3x2
4 + 1610x1x3

4 + 529x4
2 − 230x3

2x3 + 2116x3
2x4 − 589x2

2x2
3

+ 1150x2
2x3x4 − 5290x2

2x2
4 − 70x2x3

3 + 294x2x2
3x4 + 4830x2x3x2

4

− 14812x2x3
4 + 49x4

3 + 490x3
3x4 − 1029x2

3x2
4 − 11270x3x3

4 + 25921x4
4 = 1.

It is readily verified that Eq. (3.6) is irreducible, and (6, 2, 3, 1) is a
numerical solution of Eq. (3.6). If (α1, α2, α3, α4) is an arbitrary integer
solution of Eq. (3.6) such that αi > 0 for each i, on combining (6, 2, 3, 1) with
the solution (α1, α2, α3, α4) using the binary operation (2.27), we obtain a
new solution of Eq. (3.6), and we may now combine (6, 2, 3, 1) with the new
solution just obtained to obtain yet another solution, and in fact, by repeated
application of this process, we can obtain an infinite sequence of solutions in
positive integers of Eq. (3.6). If we denote the nth solution of the sequence by
(α(n)

1 , α
(n)
2 , α(n)

3 , α
(n)
4 ), the (n+ 1)th solution is given by the following linear

recursive relations:
α

(n+1)
1 = 6α(n)

1 + 46α(n)
2 + 21α(n)

3 + 161α(n)
4 ,

α
(n+1)
2 = 2α(n)

1 + 16α(n)
2 + 7α(n)

3 + 56α(n)
4 ,

α
(n+1)
3 = 3α(n)

1 + 23α(n)
2 + 12α(n)

3 + 92α(n)
4 ,

α
(n+1)
4 = α

(n)
1 + 8α(n)

2 + 4α(n)
3 + 32α(n)

4 .

If we take (6, 2, 3, 1) as the initial solution of the sequence, the next
three solutions of Eq. (3.6) obtained by the above process are (352, 121, 192,
66), (22336, 7680, 12215, 4200), and (1420011, 488257, 776628, 267036).

3.2. Sextic forms. In Sect. 3.2.1 we obtain two senary sextic forms admitting
composition and in Sect. 3.2.2 we consider related diophantine equations.

3.2.1. Composable sextic forms.

Theorem 3.2. If A(x1, x2, x3) = x1A1 + x2A2 + x3A3 where A1, A2, A3
are the three matrices defined by (2.11), and the matrix C(x1, x2, . . . , x6) is
defined by

(3.7) C(x1, . . . , x6) =
[
A(x1, x2, x3) A(x4, x5, x6)

−qA(x4, x5, x6) A(x1, x2, x3) + pA(x4, x5, x6)

]
,

where p and q are arbitrary integers, the form f , defined by
(3.8) f : R6 → R, f(x1, x2, . . . , x6) = det(C(x1, x2, . . . , x6)),
is a composable senary sextic form.



MATRIX MORPHOLOGY AND COMPOSITION OF FORMS 77

Proof. In view of Theorem 2.3, when the matrices A1, A2, A3 are defined
by (2.11), span{A1, A2, A3} is a unital commutative subalgebra of M3(R),
and it immediately follows from Corollary 2.5 that the form f defined by
(3.8) is a senary sextic composable form. It has been verified, using the
software MAPLE, that the sextic form f(x1, . . . , x6) is irreducible for various
numerical values of the parameters λi, p and q. We do not give the sextic
form f(x1, . . . , x6) explicitly as it is too cumbersome to write. According to
MAPLE, there are 11926 terms in the expansion of f(x1, . . . , x6).

As in the case of Eq. (3.5), it is readily established that the integer
solutions of the sextic equation f(x1, . . . , x6) = 1 form an abelian group.

We note that if Ai, i = 1, 2, 3, are any three matrices ∈ M3(R) such that
span{A1, A2, A3} is a unital commutative subalgebra of M3(R), Theorem 3.2
is still valid since exactly the same proof remains applicable. In the following
lemma we obtain three such matrices and we use them in the next theorem
to obtain a second example of a senary sextic form admitting composition.

Lemma 3.3. If A1, A2, A3 are three matrices defined by

(3.9) A1 = I3, A2 =

0 1 0
0 0 1
1 0 0

 , A3 =

0 0 1
1 0 0
0 1 0

 ,
then L = span{A1 = I3, A2, A3} is a unital commutative subalgebra of M3(R).

Proof. Clearly, L is a 3-dimensional vector subspace of M3(R). Since
the matrices A1, A2, A3 satisfy the relations A2A3 = A3A2 = I3, A2

2 = A3,
A2

3 = A2, it follows from Lemma 2.1 that L is closed under multiplication of
matrices, and it is thus a unital commutative subalgebra of M3(R).

Theorem 3.4. If the matrix C(x1, x2, . . . , x6) is defined by

(3.10) C(x1, . . . , x6) =


x1 x2 x3 x4 x5 x6
x3 x1 x2 x6 x4 x5
x2 x3 x1 x5 x6 x4
qx4 qx5 qx6 x1 x2 x3
qx6 qx4 qx5 x3 x1 x2
qx5 qx6 qx4 x2 x3 x1

 ,

where q is an arbitrary integer, the form f , defined by

(3.11) f : R6 → R, f(x1, x2, . . . , x6) = det(C(x1, x2, . . . , x6)),

is a composable senary sextic form which satisfies the identity

(3.12) f(x1, x2, . . . , x6)f(y1, y2, . . . , y6) = f(z1, z2, . . . , z6),
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where the values of zi, i = 1, . . . , 6, are given by

(3.13)

z1 = x1y1 + x2y3 + x3y2 + qx4y4 + qx5y6 + qx6y5,

z2 = x1y2 + x2y1 + x3y3 + qx4y5 + qx5y4 + qx6y6,

z3 = x1y3 + x2y2 + x3y1 + qx4y6 + qx5y5 + qx6y4,

z4 = x1y4 + x2y6 + x3y5 + x4y1 + x5y3 + x6y2,

z5 = x1y5 + x2y4 + x3y6 + x4y2 + x5y1 + x6y3,

z6 = x1y6 + x2y5 + x3y4 + x4y3 + x5y2 + x6y1.

Proof. In view of Lemma 3.3, we may apply Theorem 3.2 with the
matrices A1, A2, A3 defined by (3.9). In the matrix C(x1, . . . , x6) defined
by (3.7), we take p = 0 and replace q by −q, and thus obtain the matrix
C(x1, . . . , x6) defined by (3.10). It now immediately follows that the form f
defined by (3.11) is a composable senary sextic form that satisfies the identity
(3.12) in which the values of zi, i = 1, . . . , 6, obtained by direct computation,
are given by (3.13).

We note that the senary form defined by (3.11) has two irreducible factors
given by
(3.14) f(x1, x2, . . . , x6) = f1(x1, x2, . . . , x6)f2(x1, x2, . . . , x6),
where
(3.15) f1(x1, x2, x3, x4, x5, x6) = (x1 + x2 + x3)2 − q(x4 + x5 + x6)2,

(3.16) f2(x1, x2, x3, x4, x5, x6) = x4
1 − (2x2 + 2x3)x3

1 + (3x2
2 + 3x2

3 − 2qx2
4

+ 2qx4x5 + 2qx4x6 + qx2
5 − 4qx5x6 + qx2

6)x2
1 + (−2x3

2 + 2qx2x2
4 − 8qx2x4x5

+ 4qx2x4x6 + 2qx2x2
5 + 4qx2x5x6 − 4qx2x2

6 − 2x3
3 + 2qx3x2

4 + 4qx3x4x5

− 8qx3x4x6 − 4qx3x2
5 + 4qx3x5x6 + 2qx3x2

6)x1 + x4
2 − 2x3

2x3 + 3x2
2x2

3 + qx2
2x2

4

+ 2qx2
2x4x5 − 4qx2

2x4x6 − 2qx2
2x2

5 + 2qx2
2x5x6 + qx2

2x2
6 − 2x2x3

3 − 4qx2x3x2
4

+ 4qx2x3x4x5 + 4qx2x3x4x6 + 2qx2x3x2
5 − 8qx2x3x5x6 + 2qx2x3x2

6 + x4
3 + qx2

3x2
4

− 4qx2
3x4x5 + 2qx2

3x4x6 + qx2
3x2

5 + 2qx2
3x5x6 − 2qx2

3x2
6 + q2x4

4 − 2q2x3
4x5

− 2q2x3
4x6 + 3q2x2

4x2
5 + 3q2x2

4x2
6 − 2q2x4x3

5 − 2q2x4x3
6 + q2x4

5 − 2q2x3
5x6

+ 3q2x2
5x2

6 − 2q2x5x3
6 + q2x4

6,

and, in accordance with a theorem of Dickson [1, p. 219, Theorem 3], we now
get the simultaneous composition identities,

(3.17)
f1(x1, x2, . . . , x6)f1(y1, y2, . . . , y6) = f1(z1, z2, . . . , z6),
f2(x1, x2, . . . , x6)f2(y1, y2, . . . , y6) = f2(z1, z2, . . . , z6),

where xi, yi, i = 1, 2, . . . , 6, are arbitrary while the values of zi, i =
1, 2, . . . , 6, are given by (3.13).
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3.2.2. A related pair of simultaneous diophantine equations. We will now
consider a pair of simultaneous diophantine equations related to the forms
f1(x1, . . . , x6) and f2(x1, . . . , x6) defined by (3.15) and (3.16), respectively,
in the special case when q = 3. We note that the form f1(x1, . . . , x6) has
just two independent variables and accordingly, we make a suitable linear
transformation after which we can rewrite the formulae (3.17) for simultaneous
composition of forms as follows:
(3.18) f1(ui)f1(vi) = f1(wi), f2(ui)f2(vi) = f2(wi),
where f1(ui) = u2

1 − 3u2
2, and

(3.19) f2(ui) = u4
1 − 6u3

1u3 − 6u3
1u6 + 3u2

1u2
2 − 18u2

1u2u5 + 15u2
1u2

3 + 24u2
1u3u6

− 9u2
1u2

4 + 18u2
1u4u5 + 18u2

1u2
5 + 15u2

1u2
6 − 18u1u2

2u6 − 36u1u2u3u4

+ 36u1u2u3u5 + 36u1u2u4u6 + 72u1u2u5u6 − 18u1u3
3 − 36u1u2

3u6 + 54u1u3u2
4

−54u1u3u2
5 −36u1u3u2

6 −108u1u4u5u6 −54u1u2
5u6 −18u1u3

6 +9u4
2 −54u3

2u4 −54u3
2u5

− 9u2
2u2

3 + 18u2
2u3u6 + 135u2

2u2
4 + 216u2

2u4u5 + 135u2
2u2

5 + 18u2
2u2

6 + 54u2u2
3u4

− 108u2u3u5u6 − 162u2u3
4 − 324u2u2

4u5 − 324u2u4u2
5 − 54u2u4u2

6 − 162u2u3
5

− 54u2u5u2
6 + 9u4

3 + 18u3
3u6 − 54u2

3u2
4 − 54u2

3u4u5 + 27u2
3u2

5 + 27u2
3u2

6

− 54u3u2
4u6 + 108u3u4u5u6 + 108u3u2

5u6 + 18u3u3
6 + 81u4

4 + 162u3
4u5 + 243u2

4u2
5

+ 27u2
4u2

6 + 162u4u3
5 + 108u4u5u2

6 + 81u4
5 + 27u2

5u2
6 + 9u4

6,

and the values of wi, i = 1, 2, . . . , 6, in the simultaneous composition formu-
lae (3.18) are given by

(3.20)

w1 = u1v1 + 3u2v2,

w2 = u1v2 + u2v1,

w3 = u1v3 + 3u2v4 + u3v1 − 2u3v3 − u3v6 + 3u4v2

− 6u4v4 − 3u4v5 − 3u5v4 + 3u5v5 − u6v3 + u6v6,

w4 = u1v4 + u2v6 − u3v4 + u3v5 + u4v1 − u4v3 − 2u4v6 + u5v3

− u5v6 + u6v2 − 2u6v4 − u6v5,

w5 = u1v5 + u2v3 + u3v2 − u3v4 − 2u3v5 − u4v3

+ u4v6 + u5v1 − 2u5v3 − u5v6 + u6v4 − u6v5,

w6 = u1v6 + 3u2v2 − 3u2v4 − 3u2v5 + u3v3 − u3v6 − 3u4v2 + 3u4v4

+ 6u4v5 − 3u5v2 + 6u5v4 + 3u5v5 + u6v1 − u6v3 − 2u6v6.

We will now consider the simultaneous diophantine equations,
(3.21) f1(ui) = 1, f2(ui) = 1.
It is readily verified that f2(ui) = 1 is an irreducible equation, and a numerical
solution of the simultaneous equations (3.21) is given by
(3.22) (u1, u2, u3, u4, u5, u6) = (2, 1, 3,−1, 3,−4).
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By applying the composition identities (3.18), we can combine any integer
solution ui = αi, i = 1, 2, . . . , 6, of the simultaneous diophantine equations
(3.21) with the known solution (3.22) to obtain a new solution, and as in the
case of Eq. (3.6), by repeatedly combining each successive solution with the
known solution (3.22), we get an infinite sequence of solutions in integers of the
simultaneous equations (3.21). If we denote the nth solution of the sequence
by (α(n)

1 , α
(n)
2 , . . . , α

(n)
6 ), the (n+1)th solution is given by the following linear

recursive relations:

(3.23)

α
(n+1)
1 = 2α(n)

1 + 3α(n)
2 ,

α
(n+1)
2 = α

(n)
1 + 2α(n)

2 ,

α
(n+1)
3 = 3α(n)

1 − 3α(n)
2 + 12α(n)

5 − 7α(n)
6 ,

α
(n+1)
4 = −α(n)

1 − 4α(n)
2 + 4α(n)

3 + 7α(n)
4 + 7α(n)

5 ,

α
(n+1)
5 = 3α(n)

1 + 3α(n)
2 − 4α(n)

3 − 7α(n)
4 − 4α(n)

6 ,

α
(n+1)
6 = −4α(n)

1 − 3α(n)
2 + 7α(n)

3 + 12α(n)
4 + 7α(n)

6 .

If we take (2, 1, 3,−1, 3,−4) as the initial solution of the sequence, the
next three solutions of the infinite sequence of integer solutions of Eqs. (3.21)
are given by (7, 4, 67, 20, 20, −30), (26, 15, 459, 525, −255, 459), and (97, 56,
−6240, 3640, −7224, 12577).

3.3. Octic forms. We will now construct an octonary octic form admitting
composition and consider a related octic diophantine equation.

3.3.1. A composable octic form.

Theorem 3.5. If the matrix P (x1, x2, . . . , x8) is defined by

P (x1, x2, . . . , x8) =
[
C(x1, . . . , x4) C(x5, . . . , x8)

−sC(x5, . . . , x8) C(x1, . . . , x4) + rA(x5, . . . , x8)

]
.

where C(x1, x2, x3, x4) is defined by (3.2) and r, s are arbitrary integers, the
form f , defined by

(3.24) f : R8 → R, f(x1, x2, . . . , x8) = det(P (x1, x2, . . . , x8)),

is a composable octonary octic form.

Proof. When the matrices Ci, i = 1, . . . , 4, are defined by (3.1), we have
already proved in Theorem 3.1 that L = span{C1, C2, C3, C4} is a unital
commutative subalgebra of M4(R). We now apply Corollary 2.5 where we
replace p, q by r, s, respectively, and immediately obtain the composable form
f defined by (3.24). It has been verified using MAPLE that the octic form
f(x1, x2, . . . , x8) is irreducible for various numerical values of the parameters
m, n, p, q, r, s.
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3.3.2. A related octic diophantine equation. We will now consider the dio-
phantine equation

(3.25) f(x1, x2, . . . , x8) = 1,

where f(x1, x2, . . . , x8) is the octic form defined by (3.24). As in Sect. 3.1.2,
the integer solutions of the octic diophantine equation (3.25) form an abelian
group, and we can combine two integer solutions of Eq. (3.25) using the
binary operation (2.27) for the group of integer solutions of Eq. (3.25).

We will now consider Eq. (3.25) when (m, n, p, q, r, s) = (0, −5, 0, −3,
0, −14). This is an irreducible equation and it is readily verified that a nu-
merical solution of this equation is given by

(3.26) (x1, x2, x3, x4, x5, x6, x7, x8) = (4, 2, 2, 1, 14, 7, 8, 4).

If (α1, α2, . . . , α8) is an arbitrary integer solution of our numerical oc-
tic equation such that αi > 0 for each i, we may use the binary operation
(2.27), and the solutions (3.26) and (α1, α2, . . . , α8), to obtain a new solu-
tion, and as before, by repeatedly combining each successive solution with
the known solution (3.26), we get an infinite sequence of solutions in positive
integers of our octic equation. If we denote the nth solution of the sequence
by (α(n)

1 , α
(n)
2 , . . . , α

(n)
8 ), the (n + 1)th solution may be written in terms of

the nth solution as follows:(
4α(n)

1 + 10α(n)
2 + 6α(n)

3 + 15α(n)
4 + 196α(n)

5 + 490α(n)
6 + 336α(n)

7 + 840α(n)
8 ,

2α(n)
1 + 4α(n)

2 + 3α(n)
3 + 6α(n)

4 + 98α(n)
5 + 196α(n)

6 + 168α(n)
7 + 336α(n)

8 ,

2α(n)
1 + 5α(n)

2 + 4α(n)
3 + 10α(n)

4 + 112α(n)
5 + 280α(n)

6 + 196α(n)
7 + 490α(n)

8 ,

α
(n)
1 + 2α(n)

2 + 2α(n)
3 + 4α(n)

4 + 56α(n)
5 + 112α(n)

6 + 98α(n)
7 + 196α(n)

8 ,

14α(n)
1 + 35α(n)

2 + 24α(n)
3 + 60α(n)

4 + 4α(n)
5 + 10α(n)

6 + 6α(n)
7 + 15α(n)

8 ,

7α(n)
1 + 14α(n)

2 + 12α(n)
3 + 24α(n)

4 + 2α(n)
5 + 4α(n)

6 + 3α(n)
7 + 6α(n)

8 ,

8α(n)
1 + 20α(n)

2 + 14α(n)
3 + 35α(n)

4 + 2α(n)
5 + 5α(n)

6 + 4α(n)
7 + 10α(n)

8 ,

4α(n)
1 + 8α(n)

2 + 7α(n)
3 + 14α(n)

4 + α
(n)
5 + 2α(n)

6 + 2α(n)
7 + 4α(n)

8
)
.

If we take (4, 2, 2, 1, 14, 7, 8, 4) as the initial solution of the sequence, the
next three solutions of our octic equation are as follows:

(12285, 5460, 7092, 3152, 468, 208, 270, 120),
(578740, 258910, 334134, 149481, 729790, 326485, 421344, 188496),
(612075793, 273723336, 353382120, 158034240, 45691800, 20433600,

26380172, 11797344).
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4. Threefold composition of forms and related diophantine
equations

We will now consider forms that admit threefold composition and solve
related diophantine equations.

4.1. Quadratic forms.

Theorem 4.1. For arbitrary integers a, b, c, the binary quadratic form
Q(x1, x2) = ax2

1 + bx1x2 + cx2
2 admits the threefold composition identity,

(4.1) Q(x1, x2)Q(y1, y2)Q(z1, z2) = Q(u1, u2) = Q(v1, v2) = Q(w1, w2),
for all xi, yi, zi ∈ R, i = 1, 2, and, if we write,
ϕ1(x1, x2, y1, y2, z1, z2) = ax1y1z1 + bx1y2z1 + cx1y2z2 − cx2y1z2 + cx2y2z1,

ϕ2(x1, x2, y1, y2, z1, z2) = ax1y1z2 − ax1y2z1 + ax2y1z1 + bx2y1z2 + cx2y2z2,

the values of ui, vi, wi are given by,
u1 = ϕ1(x1, x2, y1, y2, z1, z2), u2 = ϕ2(x1, x2, y1, y2, z1, z2),(4.2)
v1 = ϕ1(y1, y2, z1, z2, x1, x2), v2 = ϕ2(y1, y2, z1, z2, x1, x2),(4.3)
w1 = ϕ1(z1, z2, x1, x2, y1, y2), w2 = ϕ2(z1, z2, x1, x2, y1, y2).(4.4)

Proof. Let M1 and M2 be two matrices defined by

(4.5) M1 =
[
t 0
b −t

]
, M2 =

[
0 1
c 0

]
, t, b, c ∈ Z, t ̸= 0.

Clearly M = span{M1,M2} is a 2-dimensional vector space which is not
closed under multiplication of matrices since it is readily seen that M2

1 /∈ M.
An arbitrary matrix in M may be written as M(x1, x2) = x1M1 + x2M2
where x1, x2 ∈ R. It is readily verified that
(4.6) M(x1, x2)M(y1, y2)M(z1, z2) = M(u1, u2),
where u1 and u2 are trilinear forms in the variables xi, yi, zi defined by

(4.7)
u1 = t2x1y1z1 + bx1y2z1 + cx1y2z2 − cx2y1z2 + cx2y2z1,

u2 = t2x1y1z2 − t2x1y2z1 + t2x2y1z1 + bx2y1z2 + cx2y2z2.

It follows from (4.6) that the product M(x1, x2)M(y1, y2)M(z1, z2) ∈ M.
Taking determinants on both sides of (4.6), and replacing t2 by a, we get the
threefold composition identity,
(4.8) Q(x1, x2)Q(y1, y2)Q(z1, z2) = Q(u1, u2).

We note that on permuting the three pairs of variables (x1, x2), (y1, y2),
(z1, z2) in the identity (4.8), while the left-hand side of the identity remains
unchanged, the values of u1, u2 get changed either to v1, v2, or to w1, w2,
whose values are given by (4.3) and (4.4), respectively. We thus get the
complete identity (4.1).
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In the form Q(x1, x2), we may choose the integers a, b and c such that
Q(x1, x2) is a negative definite form. The product Q(x1, x2)Q(y1, y2) is thus
necessarily positive, and hence cannot be expressed by the form Q(z1, z2).
Thus there cannot exist an identity Q(x1, x2)Q(y1, y2) = Q(z1, z2) for arbi-
trary a, b, c, and hence the form Q(x1, x2) indeed admits threefold composi-
tion.

It follows from the identity (4.1) that a solution of the diophantine chain,

(4.9) Q(u1, u2) = Q(v1, v2) = Q(w1, w2),

is given in terms of arbitrary parameters xi, yi, zi by (4.2), (4.3) and (4.4).

4.2. Higher degree forms admitting threefold composition. We will now give a
theorem, analogous to Theorem 2.4, for constructing forms that admit three-
fold composition. If S is a set of matrices, we will denote the span of S by
[S].

Theorem 4.2. If S1 = {A1, A2, . . . , Ah} and S2 = {B1, B2, . . . , Bk} are
linearly independent sets of matrices in Mn(Z) and Mm(Z), respectively, such
that for any three, not necessarily distinct, matrices in Si, their product is
in [Si], both for i = 1 and i = 2, and either [S1] or [S2] is not closed under
multiplication of matrices, then

(4.10) V = span{Bi ⊗Aj , i = 1, . . . , k, j = 1, . . . , h},

is a vector subspace of Mmn(R) such that for any three arbitrary matrices in
V, their product is also in V. Further, for arbitrary parameters xij ∈ R, i =
1, . . . , k, j = 1, . . . , h, if the matrix C = C(xij) is defined by

(4.11) C(xij) =
k∑
i=1

h∑
j=1

xij(Bi ⊗Aj),

the form f , of degree mn in the variables xij , i = 1, . . . , k, j = 1, . . . , h,
defined by

(4.12) f : Rkh → R, f(x11, x12, . . . , xkh) = det (C(x11, x12, . . . , xkh)),

satisfies a threefold composition identity.

Proof. As in the proof of Theorem 2.4, we first construct the set S =
{Bi⊗Aj , i = 1, . . . , k, j = 1, . . . , h} of kh linearly independent square matrices
of order mn so that V is a vector subspace of Mmn(R) and dim V = kh.

For any i1, i2, i3 ∈ {1, . . . , k} and j1, j2, j3 ∈ {1, . . . , h}, our assumption
implies that Aj1Aj2Aj3 ∈ [S1] and Bi1Bi2Bi3 ∈ [S2]. We may thus write
Aj1Aj2Aj3 =

∑h
j=1 sjAj , sj ∈ R, and Bi1Bi2Bi3 =

∑k
i=1 riBi, ri ∈ R.
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Hence, in view of (2.17), we have,

(Bi1 ⊗Aj1)(Bi2 ⊗Aj2)(Bi3 ⊗Aj3) = ((Bi1Bi2) ⊗ (Aj1Aj2))(Bi3 ⊗Aj3),
= (Bi1Bi2Bi3) ⊗ (Aj1Aj2Aj3)

= (
k∑
i=1

riBi) ⊗ (
h∑
j=1

sjAj)

=
k∑
i=1

h∑
j=1

risj(Bi ⊗Aj) ∈ V.

It now follows by a straightforward extension of the argument given in Lemma
2.1 that for any three arbitrary matrices in V, their product is also in V.

An arbitrary matrix C = C(xij) ∈ V may be written as stated in (4.11).
Since for any three arbitrary matrices C(xij), C(yij), C(zij) ∈ V, their product
is also in V, we may write this product as C(wij), wij ∈ R, i = 1, . . . , k, j =
1, . . . , h, that is, C(xij)C(yij)C(zij) = C(wij), and, on taking determinants,
we get, det (C(xij)) det (C(yij)) det (C(zij)) = det (C(wij)), which gives the
threefold composition identity satisfied by the form f defined by (4.12). The
values of wij are given by trilinear forms in the variables xij , yij and zij .

Finally, we note that if both [S1] and [S2] are closed under matrix mul-
tiplication, then the form f will satisfy the usual composition identity (1.1),
which may be used twice to yield the composition identity (1.3), hence the
stipulation imposed in the theorem.

4.3. Quartic forms and a related quartic diophantine equation.

Theorem 4.3. The quartic form f(x1, . . . , x4) defined by

(4.13) f(x1, . . . , x4) = s4t4x4
1 + 2s2t4mx3

1x2 + 2s4t2px3
1x3 + s2t2mpx3

1x4

+ (m2 + 2s2n)t4x2
1x2

2 + 3s2t2mpx2
1x2x3 + (m2 + 2s2n)t2px2

1x2x4

+ (p2 + 2t2q)s4x2
1x2

3 + (p2 + 2t2q)s2mx2
1x3x4 + (s2np2 + t2m2q − 2s2t2nq)x2

1x2
4

+ 2t4mnx1x3
2 + (m2 + 2s2n)t2px1x2

2x3 + 3t2mnpx1x2
2x4 + (p2 + 2t2q)s2mx1x2x2

3

+ (m2p2 + 8s2t2nq)x1x2x3x4 + (p2 + 2t2q)mnx1x2x2
4 + 2s4pqx1x3

3

+ 3s2mpqx1x2
3x4 + (m2 + 2s2n)pqx1x3x2

4 + mnpqx1x3
4 + t4n2x4

2 + t2mnpx3
2x3

+ 2t2n2px3
2x4 + (s2np2 + t2m2q − 2s2t2nq)x2

2x2
3 + (p2 + 2t2q)mnx2

2x3x4

+ (p2 + 2t2q)n2x2
2x2

4 + s2mpqx2x3
3 + (m2 + 2s2n)pqx2x2

3x4 + 3mnpqx2x3x2
4

+2n2pqx2x3
4 +s4q2x4

3 +2s2mq2x3
3x4 +(m2 +2s2n)q2x2

3x2
4 +2mnq2x3x3

4 +n2q2x4
4,

where s ̸= 0, t ̸= 0 and m,n, p, q, s, t ∈ Z, admits threefold composition, and
for all xi, yi, zi ∈ R, i = 1, . . . , 4, it satisfies the identity,

(4.14) f(x1, . . . , x4)f(y1, . . . , y4)f(z1, . . . , z4) = f(w1, . . . , w4),
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where the values of wi, i = 1, . . . , 4, are given by

(4.15)

w1 = s2t2x1y1z1 +mt2x1y2z1 + nt2x1y2z2 − nt2x2y1z2

+ · · · + nqx4y1z4 − nqx4y2z3 − nqx4y3z2 + nqx4y4z1,

w2 = s2t2x1y1z2 − s2t2x1y2z1 + s2t2x2y1z1 +mt2x2y1z2

+ · · · + npx2y4z2 + nqx2y4z4 − nqx4y2z4 + nqx4y4z2,

w3 = s2t2x1y1z3 − s2t2x1y3z1 + s2t2x3y1z1 +mt2x1y2z3

+ · · · + npx4y2z3 + nqx3y4z4 − nqx4y3z4 + nqx4y4z3,

w4 = s2t2x1y1z4 − s2t2x1y2z3 − s2t2x1y3z2 + s2t2x1y4z1

+ · · · +mpx4y1z4 +mqx4y3z4 + npx4y2z4 + nqx4y4z4.

Proof. In the matrices M1,M2 defined by (4.5), we first replace the
parameters t, b, c by s,m, n, respectively, to get the matrices A1, A2, and we
then replace the parameters b, c in the matrices M1,M2 by p, q, respectively,
to get the matrices B1 and B2. The matrices A1, A2, B1, B2 may be written
as

(4.16) A1 =
[
s 0
m −s

]
, A2 =

[
0 1
n 0

]
, B1 =

[
t 0
p −t

]
, B2 =

[
0 1
q 0

]
,

where s ̸= 0, t ̸= 0 and m,n, p, q, s, t ∈ Z. We note that the matrices {A1, A2}
and {B1, B2} satisfy the conditions of Theorem 4.2. A straightforward appli-
cation of Theorem 4.2 now gives the form f(x1, . . . , x4) which satisfies the
threefold composition identity (4.14). It has been verified using MAPLE that
the quartic form f(x1, . . . , x4) is irreducible for various numerical values of
the parameters m,n, p, q, s and t. The values of wi, i = 1, . . . , 4, given by
(4.15) are obtained by direct computation.

We will now show that the form f(x1, . . . , x4) defined by (4.13) does not
satisfy any composition identity of type (1.1). If such an identity exists, it
would be valid for all values of the integer parameters m, n, p, q, s, t. We now
choose (m, n, p, q, s, t) = (0, 1, 0, 2, 0, 0) when (1.1) reduces to (4x4

4)(4y4
4) =

4z4
4 which is false since the value of z4 must be given by a bilinear form with

integer coefficients. Thus the form f(x1, . . . , x4) does not satisfy any identity
of type (1.1) and is indeed a form admitting threefold composition.

We will now consider the quartic diophantine equation f(x1, . . . , x4) = 1
when (m, n, p, q, s, t) = (−1, −4, 1, −1, 1, 1), that is, the equation,

(4.17) x4
1 − 2x3

1x2 + 2x3
1x3 − x3

1x4 − 7x2
1x2

2 − 3x2
1x2x3 − 7x2

1x2x4 − x2
1x2

3 + x2
1x3x4

− 13x2
1x2

4 + 8x1x3
2 − 7x1x2

2x3 + 12x1x2
2x4 + x1x2x2

3 + 33x1x2x3x4 − 4x1x2x2
4

− 2x1x3
3 + 3x1x2

3x4 + 7x1x3x2
4 − 4x1x3

4 + 16x4
2 + 4x3

2x3 + 32x3
2x4 − 13x2

2x2
3

− 4x2
2x3x4 − 16x2

2x2
4 + x2x3

3 + 7x2x2
3x4 − 12x2x3x2

4 − 32x2x3
4 + x4

3 − 2x3
3x4

− 7x2
3x2

4 + 8x3x3
4 + 16x4

4 = 1.
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It is readily verified that (4.17) is an irreducible equation, and two nu-
merical solutions of Eq. (4.17) are (1, 0, 0, 0), and (21, 8, 33, 13).

If (α1, α2, α3, α4) is any integer solution of Eq. (4.17) such that αi > 0
for each i, in the identity (4.14) we take, (x1, x2, x3, x4) = (α1, α2, α3, α4),
(y1, y2, y3, y4) = (1, 0, 0, 0), (z1, z2, z3, z4) = (21, 8, 33, 13), and, on us-
ing the relations (4.15), we obtain a new solution of Eq. (4.17). As before,
we combine the solution just obtained with the solutions (y1, y2, y3, y4) =
(1, 0, 0, 0) and (z1, z2, z3, z4) = (21, 8, 33, 13) to obtain yet another solu-
tion of Eq. (4.17), and by repeatedly applying this process, we get an infinite
sequence of solutions in positive integers of Eq. (4.17). If we denote the nth
solution of the sequence by (α(n)

1 , α
(n)
2 , α

(n)
3 , α

(n)
4 ), the (n + 1)th solution is

given by the following linear recursive relations:

α
(n+1)
1 = 21α(n)

1 + 32α(n)
2 + 33α(n)

3 + 52α(n)
4 ,

α
(n+1)
2 = 8α(n)

1 + 13α(n)
2 + 13α(n)

3 + 20α(n)
4 ,

α
(n+1)
3 = 33α(n)

1 + 52α(n)
2 + 54α(n)

3 + 84α(n)
4 ,

α
(n+1)
4 = 13α(n)

1 + 20α(n)
2 + 21α(n)

3 + 33α(n)
4 .

If we take (21, 8, 33, 13) as the initial solution of the sequence, the next
three solutions of Eq. (4.17) obtained by the above process are as follows:

(2462, 961, 3983, 1555), (294753, 115068, 476920, 186184),
(35291917, 13777548, 57103521, 22292541).

4.4. Octic forms and a related octic diophantine equation. We will now obtain
an octic form that admits threefold composition by applying Theorem 4.2 to
the linearly independent sets of matrices {M1,M2} and {Ci, i = 1, . . . , 4}
where the matrices Mi and Ci are defined by (4.5) and (3.1), respectively.
Denoting the 8 matrices Ci ⊗Mj , i = 1, . . . , 4, j = 1, 2, by Pi, i = 1, . . . , 8, we
write V = span{P1, . . . , P8}. Any arbitrary matrix P = P (x1, . . . , x8) ∈ V
may now be written as P =

∑8
i=1 xiPi where xi ∈ R, i = 1, . . . , 8. It follows

from Theorem 4.2 that the form f defined by f : R8 → R, f(x1, . . . , x8) =
det (P (x1, . . . , x8)) admits a threefold composition identity.

Since the entries of the matrices Mi and Ci are in terms of arbitrary pa-
rameters b, c, t,m, n, p, and q, the coefficients in the form f are polynomials
in these parameters. As the matrices Pi, the form f and the related compo-
sition formula are too cumbersome to write, we do not give them explicitly.
We have, however, verified, using MAPLE that the form f is irreducible for
various numerical values of the parameters b, c, t,m, n, p, and q. Further, it
has been verified, as in the case of the quartic form (4.13), that the form
f(x1, . . . , x8) does not satisfy any composition identity of the type (1.1) and
it is indeed a form that admits threefold composition.
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We now consider the octic diophantine equation f(x1, . . . , x8) = 1 when
(b, c, t,m, n, p, q) = (0,−14, 1, 3,−1, 0,−3), so that the matrix P (x1, . . . , x8)
may be written as,

P =


x1 x2 x3 x4 x5 x6 x7 x8

3x1 − x2 −x1 3x3 − x4 −x3 3x5 − x6 −x5 3x7 − x8 −x7
3x3 3x4 x1 x2 3x7 3x8 x5 x6

9x3 − 3x4 −3x3 3x1 − x2 −x1 9x7 − 3x8 −3x7 3x5 − x6 −x5
14x5 14x6 14x7 14x8 x1 x2 x3 x4

42x5 − 14x6 −14x5 42x7 − 14x8 −14x7 3x1 − x2 −x1 3x3 − x4 −x3
42x7 42x8 14x5 14x6 3x3 3x4 x1 x2

126x7 − 42x8 −42x7 42x5 − 14x6 −14x5 9x3 − 3x4 −3x3 3x1 − x2 −x1

 ,
and now the octic equation is given by

(4.18) detP = 1.

It is readily verified that (4.18) is an irreducible equation. We will show that
Eq. (4.18) has infinitely many solutions in positive integers.

We note that two numerical solutions of Eq. (4.18) are (1, 0, 0, 0, 0, 0, 0, 0)
and (2, 6, 1, 3, 7, 21, 4, 12). If (α1, . . . , α8) is an arbitrary solution of Eq. (4.18)
such that αi > 0 for each i, we may use the threefold composition iden-
tity satisfied by the form f to combine the three solutions (α1, . . . , α8),
(1, 0, 0, 0, 0, 0, 0, 0) and (2, 6, 1, 3, 7, 21, 4, 12), taken in that order, and get a
new solution, and by repeatedly applying this process, we get an infinite se-
quence of solutions in positive integers of Eq. (4.18). As before, following
our earlier notation, the (n+ 1)th solution of the sequence may be written in
terms of the nth solution (α(n)

1 , α
(n)
2 , . . . , α

(n)
8 ) as follows:(

2α(n)
1 + 6α(n)

2 + 3α(n)
3 + 9α(n)

4 + 98α(n)
5 + 294α(n)

6 + 168α(n)
7 + 504α(n)

8 ,

6α(n)
1 + 20α(n)

2 + 9α(n)
3 + 30α(n)

4 + 294α(n)
5 + 980α(n)

6 + 504α(n)
7 + 1680α(n)

8 ,

α
(n)
1 + 3α(n)

2 + 2α(n)
3 + 6α(n)

4 + 56α(n)
5 + 168α(n)

6 + 98α(n)
7 + 294α(n)

8 ,

3α(n)
1 + 10α(n)

2 + 6α(n)
3 + 20α(n)

4 + 168α(n)
5 + 560α(n)

6 + 294α(n)
7 + 980α(n)

8 ,

7α(n)
1 + 21α(n)

2 + 12α(n)
3 + 36α(n)

4 + 2α(n)
5 + 6α(n)

6 + 3α(n)
7 + 9α(n)

8 ,

21α(n)
1 + 70α(n)

2 + 36α(n)
3 + 120α(n)

4 + 6α(n)
5 + 20α(n)

6 + 9α(n)
7 + 30α(n)

8 ,

4α(n)
1 + 12α(n)

2 + 7α(n)
3 + 21α(n)

4 + α
(n)
5 + 3α(n)

6 + 2α(n)
7 + 6α(n)

8 ,

12α(n)
1 + 40α(n)

2 + 21α(n)
3 + 70α(n)

4 + 3α(n)
5 + 10α(n)

6 + 6α(n)
7 + 20α(n)

8
)
.

If we take (2, 6, 1, 3, 7, 21, 4, 12) as the initial solution of the sequence, the
next three solutions of Eq. (4.18) obtained by the above process are as follows:

(13650, 45045, 7880, 26004, 520, 1716, 300, 990),
(1660070, 5482800, 958437, 3165480, 2093345, 6913800, 1208592, 3991680),

(4520236757, 14929326951, 2609759880, 8619450840,
337438200, 1114482600, 194820028, 643446804).
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5. Concluding remarks

The composable forms constructed in Sections 3 and 4 above are illustra-
tive examples, and many more forms admitting composition may be obtained
in a similar manner. In fact, the general methods given in this paper may be
used to construct forms of arbitrarily high degree admitting the composition
identity (1.1) or the threefold composition identity (1.3).

It would also be of interest to explore the existence of forms that admit
m-fold composition where m > 3, that is, we seek forms which satisfy a
composition identity,
(5.1) f(x11, . . . , x1n)f(x21, . . . , x2n) · · · f(xk1, . . . , xkn) = f(w1, . . . , wn),
where k = m and the identity (5.1) cannot be derived from a similar identity
with k < m.

The examples of diophantine equations given in Sections 3 and 4 are also
only illustrative in nature. It would be of interest to construct diophantine
equations f(xi) = 1 with infinitely many solutions in positive integers when
f(xi) is a form of degree n in n variables and n > 8.
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Morfologija matrica i kompozicija formi višeg stupnja s
primjenama na diofantske jednadžbe

Ajai Choudhry

Sažetak. U ovom članku koristimo matrice za dobivanje
novih kompozicijskih identiteta f(xi)f(yi) = f(zi), gdje je f(xi)
ireducibilna forma s cjelobrojnim koeficijentima stupnja n u n

varijabli (n je 3, 4, 6 ili 8), xi, yi, i = 1, 2, . . . , n su nezavisne
varijable, dok su vrijednosti od zi, i = 1, 2, . . . , n dane bilin-
earnim formama u varijablama xi, yi. Za n = 2, 4 ili 8, takoďer
dobivamo nove kompozicijske identitete f(xi)f(yi)f(zi) = f(wi)
gdje je, kao prije, f(xi) ireducibilna forma s cjelobrojnim koefici-
jentima stupnja n u n varijabli, dok su xi, yi, zi, i = 1, 2, . . . , n

nezavisne varijable i vrijednosti od wi, i = 1, 2, . . . , n su
dane trilinearnim formama u varijablama xi, yi, zi, takve da se
ovi identiteti ne mogu izvesti iz identiteta oblika f(xi)f(yi) =
f(zi). Nadalje, opisujemo metodu dobivanja obje ove vrste
kompozicijskih identiteta za forme viših stupnjeva. Takoder
opisujemo metodu generiranja beskonačno mnogo cjelobrojnih
rješenja odredenih kvartičnih i oktičnih diofantskih jednadžbi
f(x1, . . . , xn) = 1, gdje je f(x1, . . . , xn) forma koja dozvoljava
kompozicijski identitet i n = 4, 6 ili 8.
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