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SOME NEW GRONWALL-BIHARI TYPE INEQUALITIES
ASSOCIATED WITH GENERALIZED FRACTIONAL

OPERATORS AND APPLICATIONS

Amira Ayari and Khaled Boukerrioua

Abstract. In this paper, we derive some generalizations of certain
Gronwall-Bihari type inequality for generalized fractional operators uni-
fying Riemann-Liouville and Hadamard fractional operators for functions
in one variable, which provide explicit bounds on unknown functions.To
show the feasibility of the obtained inequalities, two illustrative examples
are also introduced.

1. Introduction and preliminaries

It is well known that the Gronwall-Bellman inequality [2, 11] and their
generalizations can provide explicit bounds for solutions to differential and
integral equations as well as difference equations. Many authors have re-
searched various inequalities and investigated the boundedness, global exis-
tence, uniqueness, stability, and continuous dependence on the initial value
and parameters of solutions to differential equations, integral equations (see
[3–6, 14]). However, we notice that the existing results in the literature are
inadequate for researching the qualitative and quantitative properties of so-
lutions to some fractional integral equations (see [13–15,17,22,23]).

Fractional calculus is the field of mathematical analysis which deals with
the investigation and applications of integrals and derivatives of arbitrary or-
der (see [21]). However, in this branch of mathematics we are not looking at
the usual integer order but at the non-integer order integrals and derivatives.
These are called fractional derivatives and fractional integrals. The first ap-
pearance of the concept of a fractional derivative is found in a letter written
to Guillaume de l’Hôpital by Gottfried Wilhelm Leibniz in 1695. As far as the
existence of such a theory is concerned the foundations of the subject were laid
by Liouville in a paper from 1832. The autodidact Oliver Heaviside introduce
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128 A. AYARI AND K. BOUKERRIOUA

the practical use of fractional differential operators in electrical transmission
line analysis circa 1890. Many authors have established a variety of inequali-
ties for those fractional integral and derivative operators, some of which have
turned out to be useful in analyzing solutions of certain fractional integral
and differential equations, for example, we refer the reader to [14, 15, 22, 23]
and the references therein.

In [16], the authors proved the following results.

Theorem 1.1. Let k, λ ∈ R+. Also, let h and u be nonnegative and
locally integrable functions defined on [0, X) with X ≤ +∞. Further, let ϕ(x)
be a nonnegative, non-decreasing, and continuous function on [0, X) which is
bounded on [0, X), that is, ϕ(x) ≤ M for all x ∈ [0, X) and some M ∈ R+ .
Suppose that the functions h, u, and ϕ satisfy the following inequality:

u(x) ≤ h(x) + kϕ(x)
∫ x

0
(x− ρ)

λ
k −1

u (ρ) dρ, x ∈ [0, X) .

Then

u(x) ≤ h(x) +
∞∑
n=1

{kϕ(x)Γk(λ)}n

Γk(nλ)

∫ x

0
(x− ρ)n

λ
k −1

h(ρ)dρ , x ∈ [0, X) .

Corollary 1.2. Let k, λ ∈ R+ Also, let h and u be nonnegative and
locally integrable functions defined on [1, X) with X ≤ +∞. Further, let ϕ(x)
be a nonnegative, nondecreasing, and continuous function on [0, X) which is
bounded on [1, X), that is, ϕ(x) ≤ M for all x ∈ [1, X) and some M ∈ R+.
Suppose that the functions h, u, and ϕ satisfy the following inequality:

u(x) ≤ h(x) + kϕ(x)
∫ x

0

(
ln x
ρ

)λ
k −1

u (ρ) dρ
ρ

, (x ∈ [1, X)) .

Then

u(x) ≤ h(x) +
∞∑
n=1

{kϕ(x)Γk (λ)}n

Γk (nλ)

∫ x

1

(
ln x
ρ

)nλ
k −1

h (ρ) dρ
ρ
, (x ∈ [1, X)) .

In [1], the authors proved the following result:

Theorem 1.3. Let α > 0, x(t), a(t) be nonnegative functions and b(t)
be nonnegative and nondecreasing function for t ∈ [t0, T ) ,T > 0, b(t) ≤ M ,
where M is a constant. If

(1.1) x(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1x(τ) dτ

τ1−ρ ,

then

(1.2) x(t) ≤ a(t) +
∫ t

t0

∞∑
n=1

(b(t)Γ(α))n
Γ(nα) ( t

ρ − τρ

ρ
)nα−1a(τ) dτ

τ1−ρ , t ∈ [t0, T ).
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In this paper, we establish some new Gronwall-Bihari-type inequalities as-
sociated with the generalized fractional integral operator given by (1.12) (see
Definition 1.6), which generalize some results given in [1]. We also present
some nonlinear integral inequalities with singular kernels of Bihari type, we
apply the results established to research boundedness, uniqueness for the so-
lution to some certain initial value problems within generalized fractional
derivatives given by (1.13) (see Definition 1.7).

Now, some important properties for the modified Riemann-Liouville de-
rivative and fractional integral are listed as follows :

Definition 1.4. The Riemann-Liouville fractional integral of order α on
the interval [0, x] is defined by

(1.3) (Iαf) = 1
Γ(α)

∫ x

0
(x− τ)α−1

f(τ)dτ (x > 0) ,

where
Γ(α) =

∫ ∞

0
sα−1 exp (−s) ds,

which is well defined for α > 0.

Definition 1.5. i)The modified Riemann-Liouville derivative of order α
is defined by

(1.4) (Dα
xf) (x) =

{
1

Γ(n−α)
d
dx

∫ x
0 (x− ζ)−α (f (ζ) − f(0)) dζ, 0 < α < 1,(

f (n) (x)
)(α−n)

, n ≤ α < n+ 1, n ≥ 1.
ii)The Hadamard fractional integral HDµ

1,xf of order µ > 0 is defined by

(1.5) HD
µ
1,xf = 1

Γ (µ)

∫ x

1

(
ln x
τ

)µ−1
f (τ) dτ

τ
(x > 1) .

iii)The Hadamard fractional derivative HD
µ
1,xf of order µ > 0 is defined by

(1.6) HD
µ
1,xf = 1

Γ (n− µ)

(
x
d

dx

)n ∫ x

1

(
ln x
τ

)n−µ−1
f (τ) dτ

τ
(x > 1)

[n = [µ] + 1, (x > 0) .

Here and in the following, let C,R,R+,R+,N, and Z−
0 be the sets of com-

plex numbers, real numbers, positive real numbers, nonnegative real numbers,
positive integers, and non-positive integer, respectively.

Dı̆az and Pariguan [8] introduced k-gamma function Γk defined by

(1.7) Γk(z) =
∫ ∞

0
e− tk

k tz−1dt
[
[R (z)] > 0, k ∈ R+) ,

which satisfies the following relationships:
(1.8) Γk(z + k) = zΓk(z), Γk(k) = 1,
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and
(1.9) Γk(γ) = k

γ
k −1Γ

(γ
k

)
.

Also, k-beta function Bk (α, β) is defined by
(1.10)

Bk (α, β) =
{

1
k

∫ 1
0 t

α
k −1 (1 − t)

β
k −1

dt (min {R (α) ,R (β)} > 0)
Γk(α)Γk(β)

Γk(α+β)
(
α, β ∈ C\kZ−

0
)
,

where kZ−
0 denotes the set of k-multiples of the elements in Z−

0 .
Among many generalizations of the Mittag-Leffler function, one of them

is recalled (see [18,20]):

(1.11) Eλ,β =
∞∑
n=0

zn

Γ (λn+ β) (λ, β ∈ C; R (λ) > 0) ,

Definition 1.6. The generalized fractional integral operator of order α ∈
[n− 1, n), ρ > 0, t0 ≥ 0 and t ∈ [t0,∞) is defined by

(1.12) (Iα,ρt0+
g)t = ρ1−α

Γ(α)

∫ t

t0

(tρ − τρ)α−1g(τ) dτ

τ1−ρ .

Definition 1.7. The generalized fractional derivative operator is defined
by

(1.13) (Dα,ρ
t0+
g)t = γn

Γ(n− α)

∫ t

t0

( t
ρ − τρ

ρ
)n−α−1g(τ) dτ

τ1−ρ , α ∈ [n− 1, n),

where γ = (t1−ρ d
dt ).

The relation between the above latter two fractional operators is as fol-
lows:

(1.14) (Dα,ρ
t0+
g)t = γn(In−α,ρ

t0+
g)(t), α ∈ [n− 1, n).

Note that the generalized operators (1.12)-(1.13) are reduced to Riemann–
Liouville fractional operators as ρ → 1 and Hadamard fractional operators as
ρ → 0+.

The generalized Caputo fractional derivatives were discussed in [10].

Lemma 1.8. ([10]) (i) Let α ∈ (0, 1], β ≥ 0, 0 ≤ t0, ρ > 0. Then we have

(1.15) (Iα,ρt0+
)((τ

ρ − tρ0
ρ

)β)(t) = Γ(β + 1)
Γ(α+ β + 1)( t

ρ − tρ0
ρ

)α+β .

In particular

(1.16) (Iα,ρt0+
1)(t) = 1

Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1 dτ

τ1−ρ = 1
Γ(α+ 1)( t

ρ − tρ0
ρ

)α.



SOME NEW GRONWALL-BIHARI TYPE INEQUALITIES 131

(ii) If β > 0 and 0 < α ≤ 1 then

(1.17) Dα,ρ
t0+

((τ
ρ − tρ0
ρ

)β)(t) = Γ(β + 1)
Γ(β − α+ 1)( t

ρ − tρ0
ρ

)β−α.

In particular

(1.18) (Dα,ρ
t0+

1)(t) =
( t

ρ−tρ0
ρ )−α

Γ(1 − α) ,

and for k = 0, 1.., [α] + 1, we have

(1.19) (Dα,ρ
t0+

(τ
ρ − tρ0
ρ

)α−k)(t) = 0.

Lemma 1.9. ([9]) Suppose that a ≥ 0, p ≥ q ≥ 0 and p ̸= 0, then

(1.20) a
q
p ≤ q

p
ε

q−p
p a+ p− q

p
ε

q
p .

for any ε > 0.

2. Main results

In this section, we establish a new version of Gronwall type integral in-
equality, which generalizes some previous ones.

Theorem 2.1. Let α > 0, x(t), a(t) be nonnegative functions and b(t) be
nonnegative and nondecreasing function for t ∈ [t0, T ) , T > 0, b(t) ≤ M ,
where M is a constant. If

(2.1) xp(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1xq(τ) dτ

τ1−ρ ,

where p ̸= 0,p ≥ q > 0, are constants, then
(2.2)

x(t) ≤ [ ã(t) +
∫ t

t0

∞∑
n=1

(̃b(t)Γ(α))n
Γ(nα) ( t

ρ − τρ

ρ
)nα−1ã(τ) dτ

τ1−ρ ]
1
p , t ∈ [t0, T ),

where

(2.3) ã(t) = a(t) + p− q

pα
ε

q
p b(t)( t

ρ − tρ0
ρ

)α, b̃(t) = q

p
ε

q−p
p b(t).

Proof. Denote the right-hand side of (2.1) by z(t). Then we have

(2.4) x(t) ≤ z
1
p (t), (t ∈ [t0, T )) .

So it follows that

(2.5) z(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1z

q
p (τ) dτ

τ1−ρ , (t ∈ [t0, T )) .
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Using Lemma 1.9, we obtain that
(2.6)

z(t) ≤ a(t)+b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1

(
q

p
ε

q−p
p z (τ) + p− q

p
ε

q
p

)
dτ

τ1−ρ , (t ∈ [t0, T )) .

Using Lemma 1.8, one gets

(2.7) z(t) ≤ ã(t) + b̃(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1z(τ) dτ

τ1−ρ ,

where ã and b̃ are defined as in (2.3).
Applying Theorem 1.3 to (2.7) and using (2.4), we can get the desired

inequality in (2.2).

Remark 2.2. If p = q = 1, then Theorem 2.1 reduces to Theorem 1.3.

Theorem 2.3. Let α > 0, x(t), a(t) be nonnegative functions and b(t) be
nonnegative and nondecreasing function for t ∈ [t0, T ), T > 0, b(t) ≤ M ,
where M is a constant. Further, let S ∈ C

(
R2

+,R+
)

be a continuous function
such that
(2.8) 0 ≤ S(t, x) − S(t, y) ≤ L(x− y), x ≥ y ≥ 0,
for t ∈ [t0, T ),where L > 0. If

(2.9) xp(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1S(τ, xq (τ)) dτ

τ1−ρ .

where p ̸= 0,p ≥ q > 0, are constants, then
(2.10)

x(t) ≤ [ ã(t) +
∫ t

t0

∞∑
n=1

(̃b(t)Γ(α))n
Γ(nα) ( t

ρ − τρ

ρ
)nα−1ã(τ) dτ

τ1−ρ ]
1
p , t ∈ [t0, T ),

where
(2.11)

ã(t) = a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1S(τ, p− q

p
ε

q
p ) dτ

τ1−ρ , b̃(t) = L
q

p
ε

q−p
p b(t).

Proof. Denote the right-hand side of (2.9) by z(t). Then we have

(2.12) x(t) ≤ z
1
p (t), (t ∈ [t0, T )) .

So it follows that

(2.13) z(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1S(τ, z

q
p (τ)) dτ

τ1−ρ , (t ∈ [t0, T )) .

By Lemma 1.9, we obtain for any ε > 0,

(2.14) z
q
p (t) ≤ q

p
ε

q−p
p z(t) + p− q

p
ε

q
p .

Using (2.8) and (2.14), one has for any ε > 0 that
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(2.15)
S(t, z

q
p (t)) ≤ S(t, qpε

q−p
p z(t) + p−q

p ε
q
p )

≤ S(t, p−q
p ε

q
p ) + L qpε

q−p
p z(t).

From (2.13) and (2.15), for t ∈ [t0, T ), we have

(2.16) z(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1[S(τ, p− q

p
ε

q
p ) +L

q

p
ε

q−p
p z(τ)] dτ

τ1−ρ .

The inequality (2.16) can be reformulated as

(2.17) z(t) ≤ ã(t) + b̃(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1z(τ) dτ

τ1−ρ ,

where ã and b̃ are defined as in (2.11).
Applying Theorem 1.3 to (2.17) and using (2.12), we can get the desired

inequality in (2.10).

Remark 2.4. If p = q = 1 and S(t, x) = x, then Theorem 2.3 reduces to
Theorem 1.3.

Theorem 2.5. Let α > 0, x(t), a(t) be nonnegative functions and b(t)
be nonnegative and nondecreasing function for t ∈ [t0, T ), T > 0, b(t) ≤
M , where M is a constant. Further, let g : R+ → R+ is a differentiable
increasing function on ]0,+∞[ with continuous nonincreasing first derivative
g′on ]0,+∞[. If

(2.18) xp(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1g(xq(τ)) dτ

τ1−ρ ,

where p ̸= 0,p ≥ q > 0, are constants, then
(2.19)

x(t) ≤ [ ã(t) +
∫ t

t0

∞∑
n=1

(̃b(τ)Γ(α))n
Γ(nα) ( t

ρ − τρ

ρ
)nα−1ã(τ) dτ

τ1−ρ ]
1
p , t ∈ [t0, T ),

where
(2.20)

ã(t) = a(t) + 1
α

( t
ρ − tρ0
ρ

)αb(t)g(p− q

p
ε

q
p ), b̃(t) = q

p
ε

q−p
p g

′
(p− q

p
ε

q
p )b(t).

Proof. Denote the right-hand side of (2.18) by z(t). Then we have

(2.21) x(t) ≤ z
1
p (t), (t ∈ [t0, T )) .

So it follows that

(2.22) z(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1g(z

q
p (τ)) dτ

τ1−ρ , (t ∈ [t0, T )) .
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By Lemma 1.9, we obtain for any ε > 0 that

(2.23) g(z
q
p (t)) ≤ g(q

p
ε

q−p
p z(t) + p− q

p
ε

q
p ).

Applying the mean value theorem for the function g, then for every x ≥ y > 0
there exists c ∈ ]y, x[ such that

g(x) − g(y) = g
′
(c)(x− y) ≤ g

′
(y)(x− y).

Then

(2.24)
g(z

q
p (t)) ≤ g( qpε

q−p
p z(t) + p−q

p ε
q
p )

≤ g(p−q
p ε

q
p ) + g

′(p−q
p ε

q
p ) qpε

q−p
p z(t).

From (2.22) and (2.24), for t ∈ [t0, T ), we have
(2.25)

z(t) ≤ a(t) + b(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1[g(p− q

p
ε

q
p ) + q

p
ε

q−p
p g

′
(p− q

p
ε

q
p )z(τ)] dτ

τ1−ρ .

The inequality (2.25) can be reformulated as

(2.26) z(t) ≤ ã(t) + b̃(t)
∫ t

t0

( t
ρ − τρ

ρ
)α−1z(τ) dτ

τ1−ρ ,

where ã and b̃ are defined as in (2.20).
Applying Theorem 1.3 to (2.26) and using (2.21), we can get the desired

inequality in (2.19).

3. Applications

In this section, we will use the Gronwall inequality mentioned in the
previous section in order to investigate the boundedness and uniqueness of
a certain fractional differential equation with generalized derivatives, on the
order and the initial conditions. Consider the following initial value problem
within generalized fractional derivatives:

(3.1) Dα,ρ
t0+
x(t) = f(t, x(t)),

and
(3.2) I1−α,ρ

t0+
x(t) |t=t0= c,

where 0 < α ≤ 1, 0 ≤ t < T ≤ ∞ and f : [0,∞) × R → R is a continuous
function with respect to all its arguments. The Volterra integral equations
corresponding to the problem (3.1)-(3.2) is as follows :
(3.3)

x(t) = c
( t

ρ−tρ0
ρ )α−1

Γ(α) + 1
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1f(τ, x(τ)) dτ

τ1−ρ , 0 ≤ t0 ≤ t ≤ ∞.
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In [1], the authors prove the equivalence of the Cauchy problem (3.1)-(3.2)
and the Volterra equation (3.3).

Example 3.1. Assume that f(t, x(t)) satisfies
(3.4) |f(t, x(t))| ≤ b(t)g (|x(t)|) ,
where g, b are defined as in Theorem 2.5, such that g(0) = 0, then we have
the following explicit estimate for x(t)

(3.5) |x(t)| ≤ ã(t) +
∫ t

t0

∞∑
n=1

(g′(0)b(τ))n
Γ(nα) ( t

ρ − τρ

ρ
)nα−1ã(τ) dτ

τ1−ρ , t ∈ [t0, T ),

where

(3.6) ã(t) = |c|
Γ(α) ( t

ρ − tρ0
ρ

)α−1 + 1
Γ(α+ 1)( t

ρ − tρ0
ρ

)αb(t)g(0).

Proof. The solution of the initial value problem (3.1)-(3.2) is given by
(3.7)

x(t) = c

Γ(α) ( t
ρ − tρ0
ρ

)α−1 + 1
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1f(τ, x(τ)) dτ

τ1−ρ , 0 ≤ t ≤ ∞,

then

|x(t)| ≤ |c|
Γ(α) ( tρ − tρ

0
ρ

)α−1+ 1
Γ(α)

∫ t

t0

( tρ − τρ

ρ
)α−1b(τ)g (|x(τ)|) dτ

τ1−ρ
, 0 ≤ t0 ≤ t ≤ ∞,

taking into-account that b is nondecreasing function, we obtain that

|x(t)| ≤ |c|
Γ(α) ( tρ − tρ

0
ρ

)α−1 + b(t)
Γ(α)

∫ t

t0

( tρ − τρ

ρ
)α−1g (|x(τ)|) dτ

τ1−ρ
, 0 ≤ t0 ≤ t ≤ ∞,

applying Theorem 2.5 to the last inequality, we obtain the desired inequality
in (3.5).

Example 3.2. Assume that
|f(t, x) − f(t, x)| ≤ b(t)g (|x− x|) ,

where g, b are defined as in Theorem 2.5 such that g(0) = 0 and b(t) is
nondecreasing function in t ≥ 0. Then the Cauchy problem (3.1)-(3.2) has at
most one solution.

Proof. Suppose x(t), x(t) are two solutions of the Cauchy problem
(3.1)-(3.2), then we have

x(t) = c
( t

ρ−tρ0
ρ )α−1

Γ(α) + 1
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1f(τ, x(τ)) dτ

τ1−ρ , 0 ≤ t0 ≤ t ≤ ∞.

x(t) = c
( t

ρ−tρ0
ρ )α−1

Γ(α) + 1
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1f(τ, x(τ)) dτ

τ1−ρ , 0 ≤ t0 ≤ t ≤ ∞.
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It is clear that

x(t) − x(t) = 1
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1(f(τ, x(τ)) − f(τ, x(τ))) dτ

τ1−ρ ,

which implies that

|x(t) − x(t)| ≤ 1
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1b(τ)g (|x(τ) − x(τ)|) dτ

τ1−ρ .

Taking into account that b is nondecreasing function, one gets

(3.8) |x(t) − x(t)| ≤ b(t)
Γ(α)

∫ t

t0

( t
ρ − τρ

ρ
)α−1g (|x(τ) − x(τ)|) dτ

τ1−ρ .

Through a suitable application of Theorem 2.5 to (3.8) (with p = q = 1), we
obtain that |x(t) − x(t)| ≤ 0, which implies x(t) = x(t).
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Neke nove nejednakosti Gronwall-Biharijevog tipa povezane s
generaliziranim frakcijskim operatorima i primjenama

Amira Ayari i Khaled Boukerrioua

Sažetak. U ovom članku izvodimo neke generalizacije
odredenih nejednakosti Gronwall-Biharijevog tipa za generalizi-
rane frakcijske operatore koji objedinjuju Riemann-Liouvilleove
i Hadamardove frakcijske operatore za funkcije jedne varijable,
koje daju eksplicitne granice na nepoznate funkcije. Za prikaz
dobivenih nejednakosti, dana su i dva ilustrativna primjera.
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