
RAD HAZU. MATEMATIČKE ZNANOSTI
Vol. 26 = 551 (2022): 139-153
DOI: https://doi.org/10.21857/y26kecl839

DIFFERENTIAL POLYNOMIALS GENERATED BY
SOLUTIONS OF SECOND ORDER NON-HOMOGENEOUS

LINEAR DIFFERENTIAL EQUATIONS

Benharrat Belaïdi

Abstract. This paper is devoted to studying the growth and the
oscillation of solutions of the second order non-homogeneous linear differ-
ential equation

f ′′ + Aea1zf ′ + B (z) ea2zf = F (z) ea1z ,

where A, a1, a2 are complex numbers, B (z) (̸≡ 0) and F (z) (̸≡ 0) are entire
functions with order less than one. Moreover, we investigate the growth
and the oscillation of some differential polynomials generated by solutions
of the above equation.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s value
distribution theory of meromorphic functions [13, 21]. In what follows, we
give the necessary notations and basic definitions.

Definition 1.1. [13,18,21] Let f be a meromorphic function. Then the
order ρ (f) and the hyper-order ρ2 (f) of f are defined respectively by

ρ (f) = lim sup
r→+∞

log T (r, f)
log r , ρ2 (f) = lim sup

r→+∞

log log T (r, f)
log r ,

where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire
function, then the order ρ (f) and the hyper-order ρ2 (f) of f are defined
respectively as follows

ρ (f) = lim sup
r→+∞

log T (r, f)
log r = lim sup

r→+∞

log logM (r, f)
log r ,
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ρ2 (f) = lim sup
r→+∞

log log T (r, f)
log r = lim sup

r→+∞

log log logM (r, f)
log r ,

where M (r, f) = max|z|=r |f (z)|.

Definition 1.2. [13,18,21] Let f be a meromorphic function. Then the
exponent of convergence of the sequence of zeros of f is defined by

λ (f) = lim sup
r→+∞

logN
(
r, 1
f

)
log r ,

where N
(
r, 1
f

)
is the integrated counting function of zeros of f in {z : |z| ≤ r}.

Similarly, the exponent of convergence of the sequence of distinct zeros of f
is defined by

λ (f) = lim sup
r→+∞

logN
(
r, 1
f

)
log r ,

where N
(
r, 1
f

)
is the integrated counting function of distinct zeros of f in

{z : |z| ≤ r}. The hyper convergence exponents of the zero-sequence and the
distinct zeros of f are defined respectively by

λ2 (f) = lim sup
r→+∞

log logN
(
r, 1
f

)
log r , λ2 (f) = lim sup

r→+∞

log logN
(
r, 1
f

)
log r .

For the second order linear differential equation
(1.1) f ′′ + e−zf ′ +B (z) f = 0,
where B (z) is an entire function, it is well-known that each solution f of
the equation (1.1) is an entire function, and that if f1, f2 are two linearly
independent solutions of (1.1), then by [9] , there is at least one of f1, f2 of
infinite order. Hence, ”most” solutions of (1.1) will have infinite order. But
the equation (1.1) with B(z) = −(1 + e−z) possesses a solution f (z) = ez of
finite order.

A natural question arises: What conditions on B(z) will guarantee that
every solution f ̸≡ 0 has infinite order? Many authors, Frei [9], Ozawa [17],
Amemiya-Ozawa [1] and Gundersen [11], Langley [16] have studied this prob-
lem. They proved that when B(z) is a non-constant polynomial or B(z) is a
transcendental entire function with order ρ(B) ̸= 1, then every solution f ̸≡ 0
of has infinite order. In [7], Chen has considered equation (1.1) and obtained
some results concerning the growth of its solutions when ρ(B) = 1.

Theorem 1.3. [7] Let a, b be complex numbers such that ab ̸= 0 and
a ̸= b, let Q (z) be non-constant polynomial or Q (z) = h (z) ebz, where h (z)
is non-zero polynomial. Then every solution f (z) ̸≡ 0 of the equation

f ′′ + eazf ′ +Q (z) f = 0
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has infinite order and ρ2 (f) = 1.

Theorem 1.4. [7] Let b ̸= −1 be any complex number, h (z) be non-zero
polynomial. Then every solution f (z) ̸≡ 0 of the equation

f ′′ + e−zf ′ + h (z) ebzf = 0

has infinite order and ρ2 (f) = 1.

In [19], Wang and Laine have investigated the growth of solutions of some
second order non-homogenous linear differential equations and have obtained
the following result.

Theorem 1.5. [19] Let Aj (z) ( ̸≡ 0) (j = 0, 1) and H (z) be entire func-
tions with max{ρ (Aj) (j = 0, 1) , ρ (H)} < 1, and let a, b be complex constants
that satisfy ab ̸= 0 and a ̸= b. Then every non-trivial solution f of the equa-
tion

(1.2) f ′′ +A1 (z) eazf ′ +A0 (z) ebzf = H

is of infinite order.

Remark 1.6. If ρ (H) = 1, then equation (1.2) can possesses a solution
of finite order. For instance the equation f ′′ + e−izf ′ + eizf = zeiz + e−iz

satisfies ρ (H) = ρ
(
zeiz + e−iz) = 1 and has a finite order solution f (z) = z.

Thus, the following question arises naturally: Whether the results similar
to Theorem 1.5 can be obtained if ρ(H) = 1? In this paper, we give answer
to the above question. In fact we will prove the following results.

Theorem 1.7. Let B (z) (̸≡ 0), F (z) (̸≡ 0) be entire functions with

max{ρ (B) , ρ (F )} < 1,

and let A, a1, a2 be complex numbers such that Aa1a2 ̸= 0, a1 ̸= a2. Then
every solution f of the differential equation

(1.3) f ′′ +Aea1zf ′ +B (z) ea2zf = F (z) ea1z

satisfies

λ (f) = λ (f) = ρ (f) = +∞, λ2 (f) = λ2 (f) = ρ2(f) ≤ 1.

Corollary 1.8. Let b ̸= −1, A ̸= 0 be any complex numbers, B (z)
(̸≡ 0), F (z) (̸≡ 0) be entire functions with max {ρ (B) , ρ (F )} < 1. Then
every solution f of the equation

f ′′ +Ae−zf ′ +B (z) ebzf = F (z) e−z

satisfies

λ (f) = λ (f) = ρ (f) = +∞, λ2 (f) = λ2 (f) = ρ2(f) ≤ 1.
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We know that a differential equation bears a relation to all derivatives of
its solutions. Hence, linear differential polynomials generated by its solutions
must have special nature because of the control of differential equations.

Several authors have investigated the growth and the oscillation of dif-
ferential polynomial generated by solutions of linear differential equations
[3, 4, 8, 14,18]. The second main purpose of this paper is to study the growth
and the oscillation of some differential polynomials generated by solutions of
second order linear differential equation (1.3). We obtain some estimates of
their hyper order and fixed points.

Theorem 1.9. Under the assumptions of Theorem 1.7, let d0 (z) , d1 (z) ,
b (z) be entire functions such that at least one of d0 (z) , d1 (z) does not vanish
identically with ρ (dj) < 1 (j = 0, 1) , ρ (b) < ∞, and let φ (z) be an entire
function with finite order. If f is a solution of the equation (1.3), then the
differential polynomial
(1.4) gf = d1f

′ + d0f + b

satisfies
λ (f) = λ (f) = λ (gf − φ) = λ (gf − φ) = ρ (f) = +∞,

λ2 (f) = λ2 (f) = λ2 (gf − φ) = λ2 (gf − φ) = ρ2 (f) ≤ 1.
In particular, if f is a solution of equation (1.3), then the differential poly-
nomial gf = d1f

′ + d0f + b has infinitely many fixed points and satisfies

λ (gf − z) = λ (gf − z) = ρ (f) = +∞,

λ2 (gf − z) = λ2 (gf − z) = ρ2 (f) ≤ 1.

In the next, we investigate the relation between infinite order solutions
of a pair non-homogeneous linear differential equations and we obtain the
following result.

Theorem 1.10. Under the assumptions of Theorem 1.9, let F1 ̸≡ 0 and
F2 ̸≡ 0 be entire functions such that max {ρ (Fj) : j = 1, 2} < 1 and F1 −KF2
̸≡ 0 for any complex constant K, φ (z) is an entire function with finite order.
If f1 is a solution of equation
(1.5) f ′′ +Aea1zf ′ +B (z) ea2zf = F1 (z) ea1z

and f2 is a solution of equation
(1.6) f ′′ +Aea1zf ′ +B (z) ea2zf = F2 (z) ea1z,

then the differential polynomial gf1−Kf2 = d1 (f ′
1 −Kf ′

2) + d0 (f1 −Kf2) + b
satisfies

λ (f1 −Kf2) = λ (f1 −Kf2) = λ (gf1−Kf2 − φ)
= λ (gf1−Kf2 − φ) = ρ (f1 −Kf2) = ∞
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and

λ2 (f1 −Kf2) = λ2 (f1 −Kf2) = λ2 (gf1−Kf2 − φ)
= λ2 (gf1−Kf2 − φ) = ρ2 (f1 −Kf2) ≤ 1

for any complex constant K.

2. Some Useful Lemmas

Lemma 2.1. [10] Let P1, P2, ..., Pn (n ≥ 1) be non-constant polynomials
with degree d1, d2, ..., dn, respectively, such that deg (Pi − Pj) = max {di, dj}

for i ̸= j. Let A (z) =
n∑
j=1

Bj (z) ePj(z), where Bj (z) (̸≡ 0) are entire functions

with ρ (Bj) < dj. Then ρ (A) = max
1≤j≤n

{dj}.

Lemma 2.2. [7] Suppose that P (z) = (α+ iβ) zn + · · · ( α, β are real
numbers, |α| + |β| ≠ 0) is a polynomial with degree n ≥ 1, that A (z) (̸≡ 0) is
an entire function with ρ (A) < n. Set g (z) = A (z) eP (z), z = reiθ, δ (P, θ) =
α cosnθ − β sinnθ. Then for any given ε > 0, there is a set E1 ⊂ [0, 2π) that
has linear measure zero, such that for any θ ∈ [0, 2π) \ (E1 ∪ E2), there is
R > 0, such that for |z| = r > R, we have
(i) If δ (P, θ) > 0, then

exp {(1 − ε) δ (P, θ) rn} ≤
∣∣g (reiθ)∣∣ ≤ exp {(1 + ε) δ (P, θ) rn} .

(ii) If δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣∣g (reiθ)∣∣ ≤ exp {(1 − ε) δ (P, θ) rn} ,

where E2 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.

Lemma 2.3. [12] Let f be a transcendental meromorphic function of finite
order ρ. Let ε > 0 be a constant, k and j be integers satisfying k > j ≥ 0.
Then the following two statements hold:
(i) There exists a set E3 ⊂ (1,+∞) which has finite logarithmic measure, such
that for all z satisfying |z| /∈ E3 ∪ [0, 1], we have

(2.1)
∣∣∣∣f (k) (z)
f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε)
.

(ii) There exists a set E4 ⊂ [0, 2π) which has linear measure zero, such that if
θ ∈ [0, 2π) \E4, then there is a constant R = R (θ) > 0 such that (2.1) holds
for all z satisfying arg z = θ and |z| ≥ R.

Lemma 2.4. [20] Let f be an entire function and suppose that

G (z) :=
log+ ∣∣f (k) (z)

∣∣
|z|ρ
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is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists
an infinite sequence of points zn = rne

iθ (n = 1, 2, ...), where rn → +∞, such
that G (zn) → ∞ and∣∣∣∣ f (j) (zn)

f (k) (zn)

∣∣∣∣ ≤ 1
(k − j)! (1 + o (1)) rk−j

n , j = 0, 1, ..., k − 1

as n → +∞.

Lemma 2.5. [20] Let f be an entire function with ρ (f) = ρ < +∞. Sup-
pose that there exists a set E5 ⊂ [0, 2π) which has linear measure zero, such
that log+ ∣∣f (reiθ)∣∣ ≤ Mrσ for any ray arg z = θ ∈ [0, 2π) \E5, where M is a
positive constant depending on θ, while σ is a positive constant independent
of θ. Then ρ (f) = ρ ≤ σ.

Lemma 2.6. [2,6] Let Aj(z) (j = 0, 1, ..., k − 1) , F (z) ̸≡ 0 be finite order
meromorphic functions.
(i) If f is a meromorphic solution of the differential equation
(2.2) f (k) +Ak−1 (z) f (k−1) + · · · +A0 (z) f = F,

with ρ (f) = +∞, then f satisfies
λ (f) = λ (f) = ρ (f) = +∞.

(ii) If f is a meromorphic solution of equation (2.2) with ρ (f) = +∞ and
ρ2 (f) = ρ, then f satisfies

λ (f) = λ (f) = ρ (f) = +∞, λ2 (f) = λ2 (f) = ρ2 (f) = ρ.

Lemma 2.7. [3, 5] Let B1 (z) , B2 (z) , ..., Bk−1 (z) , H (z) be entire func-
tions of finite order. If f is a solution of the equation

f (k) +Bk−1 (z) f (k−1) + · · · +B1 (z) f ′ +B0 (z) f = H (z) ,
then ρ2 (f) ≤ max {ρ (Bj) (j = 0, 1, ..., k − 1) , ρ (H)} .

3. Proof of Theorem 1.7

Set a = −a1 and b = a2 − a1. We can see that ab ̸= 0 and a ̸= b. Hence, by
(1.3) we get
(3.1) eazf ′′ +Af ′ +Bebzf = F.

First we prove that every solution f of (1.3) satisfies ρ (f) ≥ 1. We assume
that ρ (f) < 1. It is clear that f ̸≡ 0. Obviously ρ

(
f (j)) < 1 (j = 1, 2),

ρ (Bf) < 1. Rewrite (3.1) as
(3.2) f ′′eaz +Bfebz = F −Af ′.

i) If f ′′ ̸≡ 0, then by (3.2) and the Lemma 2.1, we have
1 = ρ

{
f ′′eaz +Bfebz

}
= ρ {F −Af ′} < 1.

This is a contradiction.
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ii) If f ′′ ≡ 0, then by (3.2) we have
1 = ρ

{
Bfebz

}
= ρ {F −Af ′} < 1.

This is a contradiction. Hence, ρ (f) ≥ 1. Therefore f is a transcendental
solution of equation (1.3).
Now, we prove that ρ (f) = +∞. Suppose that ρ (f) = ρ < +∞. Since
ρ (F ) < 1, then for any given ε (0 < 2ε < 1 − ρ (F )) and sufficiently large r,
we have
(3.3) |F (z)| ≤ exp

{
rρ(F )+ε

}
.

By Lemma 2.2, there exists a set E ⊂ [0, 2π) of linear measure zero, such
that whenever θ ∈ [0, 2π) \ E, then δ (az, θ) ̸= 0, δ (bz, θ) ̸= 0 and δ (az, θ) ̸=
δ (bz, θ). By Lemma 2.3, there exists a set E4 ⊂ [0, 2π) which has linear
measure zero, such that if θ ∈ [0, 2π) \ E4, then there is a constant R =
R (θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R, we have

(3.4)
∣∣∣∣f (j) (z)
f (i) (z)

∣∣∣∣ ≤ |z|2ρ , 0 ≤ i < j ≤ 2.

For any fixed θ ∈ [0, 2π) \ (E ∪ E4), set
δ1 = max {δ (az, θ) , δ (bz, θ)}

and
δ2 = min {δ (az, θ) , δ (bz, θ)} ,

then δ2 < δ1 and δ1 ̸= 0, δ2 ̸= 0. We now discuss three cases separately.
Case 1: Suppose that δ1 = δ (az, θ) > 0, then δ2 = δ (bz, θ). By Lemma 2.2,
for any given ε with 0 < 2ε < min

{
δ1−δ2
δ1

, 1 − ρ (F )
}

, we obtain

(3.5) |eaz| ≥ exp {(1 − ε) δ1r} ,

for sufficiently large r. We now prove that log+ |f ′′ (z)| / |z|ρ(F )+ε is bounded
on the ray arg z = θ. We assume that log+ |f ′′ (z)| / |z|ρ(F )+ε is unbounded
on the ray arg z = θ. Then by Lemma 2.4, there is a sequence of points
zm = rme

iθ, such that rm → +∞, and that

(3.6) log+ |f ′′ (zm)|
r
ρ(F )+ε
m

→ +∞,

(3.7)
∣∣∣∣f (j) (zm)
f ′′ (zm)

∣∣∣∣ ≤ 1
(2 − j)! (1 + o (1)) r2−j

m ≤ 2r2−j
m , (j = 0, 1)

for m is large enough. From (3.6) for any sufficiently large number C > 1 we
have

(3.8) log+ |f ′′ (zm)|
r
ρ(F )+ε
m

> C, then |f ′′ (zm)| > exp
{
Crρ(F )+ε

m

}
as m → +∞.
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From (3.3) and (3.8), we get

(3.9)
∣∣∣∣ F (zm)
f ′′ (zm)

∣∣∣∣ ≤
exp

{
r
ρ(F )+ε
m

}
exp

{
Cr

ρ(F )+ε
m

} = 1
exp

{
(C − 1) rρ(F )+ε

m

} → 0

as m → +∞. From (3.1), we obtain

(3.10) |eaz| ≤ |A|
∣∣∣∣ f ′

f ′′

∣∣∣∣+
∣∣Bebz∣∣ ∣∣∣∣ ff ′′

∣∣∣∣+
∣∣∣∣ Ff ′′

∣∣∣∣ .
(i) If δ2 > 0, then by Lemma 2.2, for ε as above, we obtain

(3.11)
∣∣B (z) ebz

∣∣ ≤ exp {(1 + ε) δ2r} ,

for sufficiently large r. Substituting (3.5), (3.7), (3.9) and (3.11) into (3.10),
we have

exp {(1 − ε) δ1rm} ≤ |eazm |

≤ |A|
∣∣∣∣ f ′ (zm)
f ′′ (zm)

∣∣∣∣+
∣∣B (zm) ebzm

∣∣ ∣∣∣∣ f (zm)
f ′′ (zm)

∣∣∣∣+
∣∣∣∣ F (zm)
f ′′ (zm)

∣∣∣∣
≤ 2 |A| rm + 2r2

m exp {(1 + ε) δ2rm} + o (1)

(3.12) ≤ C1r
2
m exp {(1 + ε) δ2rm} ,

where C1 > 0 is some constant. By 0 < ε < δ1−δ2
2δ1

and (3.12), we can get

exp
{

(δ1 − δ2)2

2δ1
rm

}
≤ C1r

2
m,

which is a contradiction.

(ii) If δ2 < 0, then by Lemma 2.2, for ε as above, we obtain

(3.13)
∣∣B (z) ebz

∣∣ ≤ exp {(1 − ε) δ2r} < 1
for sufficiently large r. Substituting (3.5), (3.7), (3.9) and (3.13) into (3.10),
we have

exp {(1 − ε) δ1rm} ≤ |eazm |

≤ |A|
∣∣∣∣ f ′ (zm)
f ′′ (zm)

∣∣∣∣+
∣∣B (zm) ebzm

∣∣ ∣∣∣∣ f (zm)
f ′′ (zm)

∣∣∣∣+
∣∣∣∣ F (zm)
f ′′ (zm)

∣∣∣∣
≤ 2 |A| rm + 2r2

m + o (1) ≤ C2r
2
m,

where C2 > 0 is some constant, which is a contradiction. Therefore,

log+ |f ′′ (z)| / |z|ρ(F )+ε

is bounded and we have

|f ′′ (z)| ≤ exp
{
Mrρ(F )+ε

}
(M > 0)
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on the ray arg z = θ. Hence, using the same reasoning as in the proof of
Lemma 3.1 in [15], by two-fold iterated integration, along the line segment
[0, z] , we conclude that

f (z) = f (0) + f ′ (0) z1! +
z∫

0

t∫
0

f ′′ (u) dudt.

So, we get for a sufficiently large r

|f (z)| ≤ |f (0)| + |f ′ (0)| |z|
1! +

∣∣∣∣∣∣
z∫

0

t∫
0

f ′′ (u) du dt

∣∣∣∣∣∣
≤ |f (0)| + |f ′ (0)| |z|

1! + |f ′′ (z)| |z|2

2! = 1
2 (1 + o (1)) r2 |f ′′ (z)|

≤ 1
2 (1 + o (1)) r2 exp

{
Mrρ(F )+ε

}
≤ exp

{
Mrρ(F )+2ε

}
on the ray arg z = θ.

Case 2: Suppose that δ1 = δ (bz, θ) > 0, then δ2 = δ (az, θ). By Lemma 2.2,
for any given ε with 0 < 2ε < min

{
δ1−δ2
δ1

, 1 − ρ (F )
}

, we obtain

(3.14)
∣∣B (z) ebz

∣∣ ≥ exp {(1 − ε) δ1r}

for sufficiently large r. We now prove that log+ |f (z)| / |z|ρ(F )+ε is bounded
on the ray arg z = θ. We assume that log+ |f (z)| / |z|ρ(F )+ε is unbounded
on the ray arg z = θ. Then by Lemma 2.4, there is a sequence of points
zm = rme

iθ, such that rm → +∞, and that

(3.15) log+ |f (zm)|
r
ρ(F )+ε
m

→ +∞

for m is large enough. From (3.3) and (3.15), we get as in (3.9)

(3.16)
∣∣∣∣F (zm)
f (zm)

∣∣∣∣ → 0

for m is large enough. From (3.1), we obtain

(3.17)
∣∣Bebz∣∣ ≤ |eaz|

∣∣∣∣f ′′

f

∣∣∣∣+ |A|
∣∣∣∣f ′

f

∣∣∣∣+
∣∣∣∣Ff
∣∣∣∣ .

(i) If δ2 > 0, then by Lemma 2.2, for ε as above, we obtain
(3.18) |eaz| ≤ exp {(1 + ε) δ2r}
for sufficiently large r. Substituting (3.4), (3.14), (3.16) and (3.18) into (3.17),
we have

exp {(1 − ε) δ1rm} ≤
∣∣B (zm) ebzm

∣∣
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≤ |eazm |
∣∣∣∣f ′′ (zm)
f (zm)

∣∣∣∣+ |A|
∣∣∣∣f ′ (zm)
f (zm)

∣∣∣∣+
∣∣∣∣F (zm)
f (zm)

∣∣∣∣
≤ r2ρ

m exp {(1 + ε) δ2rm} + |A| r2ρ
m + o (1)

(3.19) ≤ C3r
2ρ
m exp {(1 + ε) δ2rm} ,

where C3 > 0 is some constant. By 0 < ε < δ1−δ2
2δ1

and (3.19), we can get

exp
{

(δ1 − δ2)2

2δ1
rm

}
≤ C3r

2ρ
m ,

which is a contradiction.
(ii) If δ2 < 0, then by Lemma 2.2, for ε as above, we obtain
(3.20) |eaz| ≤ exp {(1 − ε) δ2r} < 1
for sufficiently large r. Substituting (3.4), (3.14), (3.16) and (3.20) into (3.17),
we have

exp {(1 − ε) δ1rm} ≤
∣∣B (zm) ebzm

∣∣
≤ |eazm |

∣∣∣∣f ′′ (zm)
f (zm)

∣∣∣∣+ |A|
∣∣∣∣f ′ (zm)
f (zm)

∣∣∣∣+
∣∣∣∣F (zm)
f (zm)

∣∣∣∣
≤ r2ρ

m + |A| r2ρ
m + o (1) ≤ C4r

2ρ
m ,

where C4 > 0 is some constant, which is a contradiction. Therefore,

log+ |f (z)| / |z|ρ(F )+ε

is bounded and we have
|f (z)| ≤ exp

{
Mrρ(F )+ε

}
(M > 0)

on the ray arg z = θ.

Case 3: Suppose now that δ1 < 0. From (3.1) we get

(3.21) −1 = eaz
f ′′

Af ′ +Bebz
f

Af ′ − F

Af ′ .

By Lemma 2.2, for any given ε with 0 < 2ε < 1 − ρ (F ), we obtain
(3.22) |eaz| ≤ exp {(1 − ε) δ (az, θ) r} ≤ exp {(1 − ε) δ1r} ,

(3.23)
∣∣B (z) ebz

∣∣ ≤ exp {(1 − ε) δ (bz, θ) r} ≤ exp {(1 − ε) δ1r}

for sufficiently large r. We now prove that log+ |f ′ (z)| / |z|ρ(F )+ε is bounded
on the ray arg z = θ. We assume that log+ |f ′ (z)| / |z|ρ(F )+ε is unbounded
on the ray arg z = θ. Then by Lemma 2.4 there is a sequence of points
zm = rme

iθ, such that rm → +∞, and that

(3.24) log+ |f ′ (zm)|
r
ρ(F )+ε
m

→ +∞,
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(3.25)
∣∣∣∣ f (zm)
f ′ (zm)

∣∣∣∣ ≤ (1 + o (1)) rm ≤ 2rm.

From (3.3) and (3.24), we have

(3.26)
∣∣∣∣F (zm)
f ′ (zm)

∣∣∣∣ → 0

for m is large enough. Substituting (3.4), (3.22), (3.23), (3.25) and (3.26) into
(3.21), we have

1 ≤ |eazm |
|A|

∣∣∣∣f ′′ (zm)
f ′ (zm)

∣∣∣∣+
∣∣B (zm) ebzm

∣∣
|A|

∣∣∣∣ f (zm)
f ′ (zm)

∣∣∣∣+ 1
|A|

∣∣∣∣F (zm)
f ′ (zm)

∣∣∣∣
(3.27) ≤ r2ρ

m

|A|
exp {(1 − ε) δ1rm} + 2 rm

|A|
exp {(1 − ε) δ1rm} + 1

|A|
o (1) .

By δ1 < 0, we have

r2ρ
m

|A|
exp {(1 − ε) δ1rm} + 2 rm

|A|
exp {(1 − ε) δ1rm} + 1

|A|
o (1) → 0

as rm → +∞. From (3.27) we obtain 1 ≤ 0 as rm → +∞, which is a
contradiction. Therefore, log+ |f ′ (z)| / |z|ρ(F )+ε is bounded and we have

|f ′ (z)| ≤ exp
{
Mrρ(F )+ε

}
(M > 0)

on the ray arg z = θ. This implies, as in Case 1, that

(3.28) |f (z)| ≤ exp
{
Mrρ(F )+2ε

}
.

Therefore, for any given θ ∈ [0, 2π) \ (E ∪ E4), we have got (3.28) on the ray
arg z = θ, provided that r is large enough. Then by Lemma 2.5, we have
ρ (f) ≤ ρ (F ) + 2ε < 1, which is a contradiction. Hence, every transcendental
solution f of (1.3) must be of infinite order.
We have

max {ρ (Aea1z) , ρ (B (z) ea2z) , ρ (F (z) ea1z)} = 1,

so by using Lemma 2.7, we obtain ρ2 (f) ≤ 1.

Since F ̸≡ 0, then by Lemma 2.6, we get

λ (f) = λ (f) = ρ (f) = +∞, λ2 (f) = λ2 (f) = ρ2(f) ≤ 1.
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4. Proof of Theorem 1.9

Suppose that f is a solution of equation (1.3). Then by Theorem 1.7, we
have ρ (f) = +∞ and ρ2 (f) ≤ 1. First, we prove ρ (gf ) = ρ (f) = ∞ and
ρ2 (gf ) = ρ2 (f) ≤ 1. Differentiating both sides of expression (1.4)
(4.1) g′

f = d1f
′′ + (d′

1 + d0) f ′ + d′
0f + b′

and replacing f ′′ with f ′′ = F (z) ea1z −Aea1zf ′ −B (z) ea2zf, we obtain

(4.2) g′
f − b′ − d1e

a1zF = (d′
1 + d0 −Ad1e

a1z) f ′ +
(
d

′

0 − d1Be
a2z
)
f.

Then by (1.4) and (4.2), we have
(4.3) d1f

′ + d0f = gf − b,

(4.4) α1f
′ + α0f = g′

f − b′ − d1e
a1zF,

where α1 = d′
1 + d0 −Ad1e

a1z and α0 = d′
0 − d1Be

a2z. Set
h = d1α0 − d0α1 = d1 (d′

0 − d1Be
a2z) − d0 (d′

1 + d0 −Ad1e
a1z)

(4.5) = d1d
′
0 − d0d

′
1 − d2

0 − d2
1Be

a2z +Ad0d1e
a1z.

We prove h ̸≡ 0. We suppose the contrary. If d1 ̸≡ 0, then by (4.5) and
Lemma 2.1, we obtain

1 = ρ
(
d2

1Be
a2z −Ad0d1e

a1z
)

= ρ
(
d1d

′
0 − d0d

′
1 − d2

0
)
< 1

which is a contradiction. Thus h ̸≡ 0.
Now, if d1 ≡ 0, d0 ̸≡ 0, then by (4.5) we obtain h = −d2

0 ̸≡ 0. Hence,
h ̸≡ 0.
By h ̸≡ 0 and (4.3) – (4.5), we have

(4.6) f =
d1

(
g′
f − b′ − d1e

a1zF
)

− α1 (gf − b)
h

.

If ρ (gf ) < ∞, then by (4.6), we get ρ (f) < ∞ and this is a contradiction.
Hence ρ (gf ) = ∞.

Now, we prove that ρ2 (gf ) = ρ2 (f) . By (4.3), we get ρ2 (gf ) ≤ ρ2 (f)
and by (4.6) we have ρ2 (f) ≤ ρ2 (gf ) . This yield ρ2 (gf ) = ρ2 (f) ≤ 1.

Set w (z) = d1f
′ + d0f + b − φ. Since ρ (φ) < ∞, then we have

ρ (w) = ρ (gf ) = ρ (f) = ∞ and ρ2 (w) = ρ2 (gf ) = ρ2 (f) . In order to
prove λ (gf − φ) = λ (gf − φ) = ∞ and λ2 (gf − φ) = λ2 (gf − φ) = ρ2 (f),
we need to prove only λ (w) = λ (w) = ∞ and λ2 (w) = λ2 (w) = ρ2 (f) . By
gf = w + φ, we get from (4.6)

(4.7) f = d1w
′ − α1w

h
+ ψ,

where
ψ = d1 (φ′ − b′ − d1e

a1zF ) − α1 (φ− b)
h

.
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If d1 ̸≡ 0, then by substituting (4.7) into equation (1.3), we obtain
(4.8)
d1

h
w′′′ + ϕ2w

′′ + ϕ1w
′ + ϕ0w = ea1zF − (ψ′′ +Aea1zψ′ +B (z) ea2zψ) = H,

where ϕj (j = 0, 1, 2) are meromorphic functions with ρ (ϕj) < ∞ (j = 0, 1, 2).
Since ψ (z) is of finite order, then it cannot be a solution of (1.3), it follows
that H ̸≡ 0. Then by Lemma 2.6, we obtain λ (w) = λ (w) = ρ (w) = ∞,
λ2 (w) = λ2 (w) = ρ2 (w) = ρ2 (f), i.e., λ (gf − φ) = λ (gf − φ) = ρ (gf ) =
ρ (f) = ∞ and λ2 (gf − φ) = λ2 (gf − φ) = ρ2 (gf ) = ρ2 (f) ≤ 1.
If d1 ≡ 0, then from (4.7) we have

(4.9) f = −α1w

h
+ ψ̃ = −d0w

h
+ ψ̃,

where
ψ̃ = −d0 (φ− b)

h
.

By substituting (4.9) into equation (1.3), we obtain

(4.10) −d0

h
w

′′
+ϕ̃1w

′
+ϕ̃0w = ea1zF−

(
ψ̃

′′
+Aea1z ψ̃

′
+B (z) ea2z ψ̃

)
= H̃,

where ϕ̃j (j = 0, 1) are meromorphic functions with ρ
(
ϕ̃j

)
< ∞ (j = 0, 1).

Since ψ̃ (z) is of finite order, then it cannot be a solution of (1.3), it follows
that H̃ ̸≡ 0. Then by Lemma 2.6, we obtain λ (w) = λ (w) = ρ (w) = ∞,
λ2 (w) = λ2 (w) = ρ2 (w) = ρ2 (f), i.e., λ (gf − φ) = λ (gf − φ) = ρ (gf ) =
ρ (f) = ∞ and λ2 (gf − φ) = λ2 (gf − φ) = ρ2 (gf ) = ρ2 (f) ≤ 1.
By f is infinite order solution of equation (1.3) and Lemma 2.6 again, we have

λ (f) = λ (f) = λ (gf − φ) = λ (gf − φ) = ρ (f) = +∞,

λ2 (f) = λ2 (f) = λ2 (gf − φ) = λ2 (gf − φ) = ρ2 (f) ≤ 1
which completes the proof. If we put φ (z) = z, then we get
λ (gf − z) = λ (gf − z) = ρ (f) = +∞, λ2 (gf − z) = λ2 (gf − z) = ρ2 (f) ≤ 1.

5. Proof of Theorem 1.10

Suppose that f1 is a solution of equation (1.5) and f2 is a solution of
equation (1.6). Set w = f1 −Kf2. Then w is a solution of equation

w′′ +Aea1zw′ +B (z) ea2zw = (F1 −KF2) ea1z.

By ρ (F1 −KF2) < 1, F1 − KF2 ̸≡ 0 and Theorem 1.7, we have ρ (w) = ∞
and ρ2 (w) ≤ 1. Thus, by using Theorem 1.9, we obtain

λ (w) = λ (w) = λ (gw − φ) = λ (gw − φ) = ρ (w) = +∞,

λ2 (w) = λ2 (w) = λ2 (gw − φ) = λ2 (gw − φ) = ρ2 (w) ≤ 1,
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that is

λ (f1 −Kf2) = λ (f1 −Kf2) = λ (gf1−Kf2 − φ)
= λ (gf1−Kf2 − φ) = ρ (f1 −Kf2) = ∞

and

λ2 (f1 −Kf2) = λ2 (f1 −Kf2) = λ2 (gf1−Kf2 − φ)
= λ2 (gf1−Kf2 − φ) = ρ2 (f1 −Kf2) ≤ 1

for any complex constant K.
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Diferencijalni polinomi generirani rješenjima nehomogene linearne
diferencijalne jednadžbe drugog reda

Benharrat Belaïdi

Sažetak. Ovaj je članak posvećen proučavanju rasta i
oscilacije rješenja nehomogene linearne diferencijalne jednadžbe
drugog reda

f ′′ + Aea1zf ′ + B (z) ea2zf = F (z) ea1z,

gdje su A, a1, a2 kompleksni brojevi, B (z) (̸≡ 0) i F (z) ( ̸≡ 0) su
cijele funkcije s redom manjim od jedan. Nadalje, istražujemo rast
i oscilacije nekih diferencijalnih polinoma generiranih rješenjima
gornje jednadžbe.
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