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INVERSE SYSTEMS OF COMPACT HAUSDORFF SPACES
AND (m,n)-DIMENSION

Matthew Lynam and Leonard R. Rubin

Abstract. In 2012, V. Fedorchuk, using m-pairs and n-partitions,
introduced the notion of the (m, n)-dimension of a space. It generalizes
covering dimension; Fedorchuk showed that (m, n)-dimension is preserved
in inverse limits of compact Hausdorff spaces. We separately have charac-
terized those approximate inverse systems of compact metric spaces whose
limits have a specified (m, n)-dimension. Our characterization is in terms
of internal properties of the system. Here we are going to give a paral-
lel internal characterization of those inverse systems of compact Hausdorff
spaces whose limits have a specified (m, n)-dimension. Fedorchuk’s limit
theorem will be a corollary to ours.

1. Introduction

In [3], V. Fedorchuk introduced a new generalization of covering dimension
which he called (m,n)-dimension, written (m,n)-dim, and such that for each
normal T1-space X, (2, 1)-dimX = dimX. Fedorchuk’s (m,n)-dim is defined
using m-pairs and n-partitions; in Section 2 we will provide what is needed
to define such pairs and partitions, and, with that in hand, we shall give the
definition of the (m,n)-dimension of a space. We shall also cite in that section
a few fundamental facts from this theory that will be used in the sequel.

Since the introduction of (m,n)-dimension, the theory has been developed
in parallel to that of the classical notions of dimension which one can find in
[2]. For example, a strong inductive version was presented in [5], a transfinite
type in [11], and for (m,n)-dimension, both a factorization theorem and one
about the existence of universal spaces were given in [10] and [13], respec-
tively. The main result, Theorem 5.2 of [7], gives an internal characterization
of those approximate inverse systems of compact metric spaces (see [8]) whose
limits have a specified (m,n)-dimension. In [12], Martynchuk proved that for
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every strongly hereditarily normal space X, (m,n)-dimX =
⌊dimX

n

⌋
; there-

fore Fedorchuk’s notion of dimension deviates from that of covering dimension
in infinitely many cases. One may also consult [4] and [6] for additional con-
tributions of Fedorchuk who proved:

Theorem 1.1 (Theorem 2.21 from [3]). Let X = {Xa, pab, A} be an in-
verse system of compact Hausdorff spaces Xa with (m,n)-dimXa ≤ k for all
a ∈ A, and let X = lim X. Then (m,n)-dimX ≤ k.

We improve this in our main result, Theorem 4.1, which gives a character-
ization of the (m,n)-dimension of a space X, where X is the limit of an inverse
system of compact Hausdorff spaces, strictly in terms of internal properties of
the given system. Our result incorporates Theorem 1.1 in Corollary 5.3. In
Section 3 we shall collect several facts dealing with finite covers of limits of
inverse systems of compact Hausdorff spaces. These will be used in Section 4,
which contains both the statement and the proof of our main result. Section
5 gathers some corollaries to Theorem 4.1.

2. Introduction to (m,n)-dim

Throughout this paper, map will mean continuous function. We are going
to use certain notation and concepts that were established in [3]. Thus, when
we say that (S1, . . . , Sm) is a finite family of subsets of a set X, we mean that
m ≥ 1 and for each 1 ≤ i ≤ m, Si ⊂ X. Repetitions are permitted, i.e., one
may have 1 ≤ i < j ≤ m and Si = Sj .

Definition 2.1. Let Φ = (S1, . . . , Sm) be a finite family of subsets of a
set X. We shall say that the order of Φ, denoted ord(Φ), is 0 if Si = ∅ for all
1 ≤ i ≤ m; otherwise ord(Φ) will mean the largest n ∈ N such that Φ contains
a subset Ψ with card(Ψ) = n and

⋂
Ψ ̸= ∅.

By this definition ord(Φ) = 1 if and only if Φ is pairwise disjoint and
there exists 1 ≤ i ≤ m such that Si ̸= ∅.

Lemma 2.2. Let f : X → Y be a surjective function, v = (V1, . . . , Vm) a
family of subsets of X, and t = (T1, . . . , Tm) a family of subsets of Y . Suppose
that for each 1 ≤ i ≤ m, f−1(Ti) ⊂ Vi. Then ord(t) ≤ ord(v).

Proof. In case ord(v) = 0, then for each 1 ≤ i ≤ m, Ti = ∅ since
f−1(Ti) ⊂ Vi = ∅ and f is surjective. In case Ti ̸= ∅, then the surjectivity of
f implies that f(f−1(Ti)) = Ti. Hence for 1 ≤ i < j ≤ m, Ti ̸= Tj if and only
if f−1(Ti) ̸= f−1(Tj). Now suppose that n ∈ N and there is a subset K of t
with card(K) = n and

⋂
K ̸= ∅. By what we just showed, card(f−1(K)) = n,

and the surjectivity of f yields that
⋂
f−1(K) ̸= ∅.

Definition 2.3 (Definition 2.1 from [3]). Let u = (U1, . . . , Um) be a finite
open cover of X and Φ = (F1, . . . , Fm) be a family of closed subsets of X such
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that
Fj ⊆ Uj , j = 1, . . . ,m;

ord(Φ) ≤ 1.
Then (u,Φ) is said to be an m-pair in X.

Definition 2.4 (Definition 2.5 from [3]). Let (u,Φ) be an m-pair in X
where u = (U1, . . . , Um) and Φ = (F1, . . . , Fm). A closed set P ⊆ X is
said to be an n-partition of (u,Φ) if there exists a family of open sets v =
(V1, . . . , Vm) of X such that

1. Fj ⊆ Vj ⊆ Uj, for j = 1, . . . ,m,
2. ord(v) ≤ n, and
3. X \ P =

⋃
v.

Definition 2.5 (Definition 2.7 from [3]). For each i = 1, . . . , r, let
(ui,Φi) be an m-pair in X. The sequence (ui,Φi), i = 1, . . . , r, is called
n-inessential in X if for each i, there exists an n-partition Pi of (ui,Φi)
such that P1 ∩ · · · ∩ Pr = ∅.

Definition 2.6 (Definition 2.8 from [3]). Let m,n ∈ N with n ≤ m. To
every space X one assigns the (m,n)-dimension (m,n)-dimX, which is an
element of {−1} ∪ {0} ∪ N ∪ {∞} in the following way.

(1) (m,n)-dimX = −1 if and only if X = ∅.
In case X ̸= ∅, then:
(2.1) (m,n)-dimX = ∞, if for each k ∈ {0} ∪ N, there is a sequence

(ui,Φi), i = 1, . . . , k + 1, of m-pairs in X, that is not n-inessential in X;
(2.2) (m,n)-dimX = r, where r ∈ {0} ∪ N, if (m,n)-dimX ̸= ∞ and

r is the minimum of those k ∈ {0} ∪ N such that every sequence (ui,Φi),
i = 1, . . . , k + 1, of m-pairs in X, is n-inessential in X.

Theorem 2.7 (Theorem 2.9 from [3]). Let X be a normal T1-space. Then
(2, 1)-dimX = dimX.

Definition 2.8. Let Y be a space, f : X → Y a map, and (u,Φ)
an m-pair in Y where u = (U1, . . . , Um) and Φ = (F1, . . . , Fm). Put
f−1(u) = (f−1(U1), . . . , f−1(Um)) and f−1(Φ) = (f−1(F1), . . . , f−1(Fm)).
Then by f−1(u,Φ) we mean (f−1(u), f−1(Φ)).

Lemma 2.9. The pair f−1(u,Φ) of Definition 2.8 is an m-pair in X.
Therefore if B is a subspace of Y , and we define u∩B = (U1 ∩B, . . . , Um∩B)
and Φ ∩B = (F1 ∩B, . . . , Fm ∩B), then (u ∩B,Φ ∩B), which we shall also
denote (u,Φ) ∩B, is an m-pair in B.

Proposition 2.10 (Proposition 2.19 from [3]). Let Y be a space, f :
X → Y be a map, and let a sequence (ui,Φi), i = 1, . . . , r, of m-pairs in
Y be n-inessential in Y . Then (f−1(ui,Φ)), i = 1, . . . , r, is an n-inessential
sequence of m-pairs in X.
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Proposition 2.11 (Proposition 2.20 from [3]). Let (ui,Φi) and (wi,Ψi),
i = 1, . . . , r, be sequences of m-pairs in X where ui = (U i1, . . . , U im), Φi =
(F i1, . . . , F im), wi = (W i

1, . . . ,W
i
m), and Ψi = (Gi1, . . . , Gim). Assume that

F ij ⊆ Gij ⊆ W i
j ⊆ U ij , i = 1, . . . , r, j = 1, . . . ,m.

If the sequence (wi,Ψi), i = 1, . . . , r, is n-inessential in X, then the sequence
(ui,Φi), i = 1, . . . , r, is n-inessential in X.

3. Inverse System Facts

We shall gather several facts concerning inverse systems of compact Haus-
dorff spaces. One may consult [9] or [1] for a study of such objects. In this
section, X = {Xa, paa′ , A} will denote an inverse system of compact Hausdorff
spaces and X will designate lim X. We require that A = (A,≤) is a nonempty
partially ordered directed set.

Definition 3.1. In case a ∈ A and u = (U1, . . . , Um) is a sequence of
subsets of X, then by pa(u), we mean, (pa(U1), . . . , pa(Um)).

Lemma 3.2. If U is an open cover of X and a ∈ A, then there exists
a′ ≥ a such that for all b ≥ a′, there is an open cover T of Xb such that
p−1
b (T ) refines U .

Corollary 3.3. For each finite open cover u = (U1, . . . , Um) of X and
a ∈ A, there exists a′ ≥ a such that for all b ≥ a′, there is a finite open cover
t = (T1, . . . , Tm) of Xb with p−1

b (Tj) ⊆ Uj for all j = 1, . . . ,m.

Proof. Choose a′ ≥ a as in Lemma 3.2 where U is replaced by u, and
let b ≥ a′. Select an open cover T of Xb such that p−1

b (T ) refines u. For each
j = 1, . . . ,m, set Tj =

⋃
{T ∈ T | p−1

b (T ) ⊆ Uj}. Then t = (T1, . . . , Tm) is a
finite open cover of Xb, and p−1

b (Tj) ⊆ Uj for all j = 1, . . . ,m.

Lemma 3.4. For each closed subset F of X and neighborhood U of F in
X, there exists a′ ∈ A such that for all b ≥ a′, p−1

b (pb(F )) ⊆ U .

Lemma 3.5. For each collection u = (U1, . . . , Um) of open subsets of
X, collection Φ = (F1, . . . , Fm) of closed subsets of X with Fj ⊆ Uj for all
j = 1, . . . ,m, and a ∈ A, there exists a′ ≥ a such that,

1. for all b ≥ a′ and j = 1, . . . ,m, p−1
b (pb(Fj)) ⊆ Uj, and

2. in case ord(Φ) ≤ 1, we may require in addition to (1) that for all
b ≥ a′, ord(pb(Φ)) ≤ 1.

Proof. Choose a collection t = (T1, . . . , Tm) of open subsets of X such
that for each j = 1, . . . ,m, Fj ⊆ Tj ⊆ Uj . From Lemma 3.4 and the fact that
A is directed, we find a′ ≥ a such that for all b ≥ a′, p−1

b (pb(Fj)) ⊆ Tj ⊆ Uj ,
which gives us (1).
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To prove (2), choose the collection t = (T1, . . . , Tm) of open subsets of X
so that in addition to the above:

(†) if 1 ≤ i < j ≤ m, then Ti = Tj if Fi = Fj and Ti ∩ Tj = ∅ if Fi ̸= Fj .
Let b ≥ a′. If it were the case that for some 1 ≤ i < j ≤ m, pb(Fi) ̸=

pb(Fj), then Fi ̸= Fj , so by (†), Ti ∩ Tj = ∅. If pb(Fi) ∩ pb(Fj) ̸= ∅, one can
find qi ∈ Fi, qj ∈ Fj , and x ∈ pb(Fi) ∩ pb(Fj) such that pb(qi) = x = pb(qj).
But then, ∅ ≠ {qi, qj} ⊆ p−1

b (x) = p−1
b (pb(qi)) = p−1

b (pb(qj)) ⊆ p−1
b (pb(Fi)) ∩

p−1
b (pb(Fj)) ⊆ Ti ∩ Tj = ∅, a contradiction.

Lemma 3.6. For each m-pair (u,Φ) in X, where u = (U1, . . . , Um) and
Φ = (F1, . . . , Fm), there exist a ∈ A and a finite open cover v = (V1, . . . , Vm)
of Xa such that (v, pa(Φ)) is an m-pair in Xa, that is:

1. pa(Fj) ⊆ Vj, for each j = 1, . . . ,m, and
2. ord(pa(Φ)) ≤ 1,

and moreover we have,
3. ord(pb(Φ)) ≤ 1, for all b ≥ a, and
4. p−1

a (Vj) ⊆ Uj, for each j = 1, . . . ,m.

Proof. Using Corollary 3.3 and Lemma 3.5, choose a ∈ A and a finite
open cover t = (T1, . . . , Tm) ofXa such that p−1

a (Tj) ⊆ Uj , j = 1, . . . ,m; for all
b ≥ a, ord(pb(Φ)) ≤ 1; and for all b ≥ a and j = 1, . . . ,m, p−1

b (pb(Fj)) ⊆ Uj .
Fix j. Since pa is a closed map and p−1

a (pa(Fj)) ⊆ Uj , there exists an open
neighborhood Sj of pa(Fj) in Xa such that p−1

a (Sj) ⊆ Uj . Set Vj = Tj ∪ Sj .
Then, of course, p−1

a (Vj) = p−1
a (Tj) ∪ p−1

a (Sj) ⊆ Uj and pa(Fj) ⊆ Sj ⊆ Vj as
requested for (4) and (1).

Lemma 3.7. For every sequence (ui,Φi), i = 1, . . . , k + 1, of m-pairs
in X, where ui = (U i1, . . . , U im) and Φi = (F i1, . . . , F im), and every a ∈ A,
there exists b0 ≥ a such that for all b ≥ b0, there is a corresponding sequence
(yi, pb(Φi)), i = 1, . . . , k + 1, of m-pairs in Xb, where yi = (Y i1 , . . . , Y im), so
that for all i = 1, . . . , k + 1 and j = 1, . . . ,m,

(∗) F ij ⊆ p−1
b (pb(F ij )) ⊆ p−1

b (Y ij ) ⊆ U ij .

Proof. For each i, apply Lemma 3.6 to the m-pair (ui,Φi) in X to select
ai ∈ A and a finite open cover vi = (V i1 , . . . , V im) of Xai

, such that (vi, pai
(Φi))

is an m-pair in Xai
; for all b ≥ ai, ord(pb(Φi)) ≤ 1; and for each j = 1, . . . ,m,

(†1) p−1
ai

(V ij ) ⊆ U ij , and
(†2) pai(F ij ) ⊆ V ij .
Pick b0 ∈ A so that b0 ≥ a and b0 ≥ ai for all i = 1, . . . , k+ 1. Fix b ≥ b0.

For each i and j, set Y ij = p−1
aib

(V ij ). Put yi =
(
Y i1 , . . . , Y

i
m

)
. We claim that,

(†3) for each i, (yi, pb (Φi)) is an m-pair in Xb.
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Since vi is an open cover of Xai , it follows that yi is an open cover of Xb.
So, since ord(pb(Φi)) ≤ 1, it is sufficient to show that,

(†4) for each i and j, pb(F ij ) ⊆ Y ij .
Let x ∈ pb(F ij ), and choose z ∈ F ij such that pb(z) = x. Employing

(†2), we have that pai
(z) ∈ V ij , and of course paib(x) = paibpb(z). Thus,

x = pb(z) ∈ p−1
aib

(V ij ) = Y ij as needed for (†4).
To prove (∗), fix i and j. The left inclusion is obvious, and the middle

inclusion follows from (†4). To show the right inclusion, let x ∈ p−1
b (Y ij ) =

p−1
b (p−1

aib
(V ij )). Then pai

(x) = paibpb(x) ∈ paib(Y ij ) = V ij . Finally, apply (†1)
to see that x ∈ p−1

ai
(V ij ) ⊆ U ij .

4. Characterization

Here is our main result.

Theorem 4.1. Let X = {Xa, paa′ , A} be an inverse system of compact
Hausdorff spaces, X = lim X, {m,n} ⊆ N, and k ≥ 0. The following are
equivalent.

1. (m,n)-dimX ≤ k.
2. for each a ∈ A and sequence (wi,Φi), i = 1, . . . , k + 1, of m-pairs

in Xa, there exists b0 ≥ a such that for all b ≥ b0, the sequence
(p−1
ab (wi), p−1

ab (Φi)) ∩ pb(X), i = 1, . . . , k + 1, of m-pairs in pb(X) is
n-inessential in pb(X).

Proof. (⇐) We assume that (2) is true and proceed to prove (1). Let
(ui,Ψi), i = 1, . . . , k + 1, be a sequence of m-pairs of X. We wish to show
that this sequence is n-inessential in X. For each i = 1, . . . , k + 1, let ui =
(U i1, . . . , U im) and Ψi = (F i1, . . . , F im).

Using Lemma 3.6, for each i = 1, . . . , k + 1, we can find an index ai ∈ A
and a finite open cover vi = (V i1 , . . . , V im) of Xai such that,

(†1) p−1
ai

(V ij ) ⊆ U ij ,
(†2) pai

(F ij ) ⊆ V ij , and
(†3) ord pai (Ψi) ≤ 1.
It follows from (†2) and (†3) that for each i = 1, ..., k + 1, (vi, pai

(Ψi)) is
an m-pair of Xai

. Choose a ∈ A so that a ≥ ai for all i = 1, . . . , k + 1. For
each i = 1, . . . , k + 1, set

v0
i = (p−1

aia(V i1 ), . . . , p−1
aia(V im)), and

Ψ0
i = (p−1

aia(pai(F i1)), . . . , p−1
aia(pai(F im))).

It readily follows from Lemma 2.9 that, for each i = 1, . . . , k+ 1, (v0
i ,Ψ0

i )
is an m-pair of Xa. Now apply (2) to choose b ≥ a such that the sequence(
p−1
ab

(
v0
i

)
, p−1
ab

(
Ψ0
i

))
∩ pb(X), i = 1, . . . , k + 1, of m-pairs in pb(X) is n-

inessential in pb(X). Treating pb : X → pb(X), it follows from Proposition
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2.10 that the sequence (p−1
b (p−1

ab (v0
i ) ∩ pb(X)), p−1

b (p−1
ab (Ψ0

i ) ∩ pb(X))), i =
1, . . . , k+1, of m-pairs in X, which equals

(
p−1
a

(
v0
i

)
, p−1
a

(
Ψ0
i

))
, i = 1, . . . , k+

1, is n-inessential in X.
Using (†1) and (†2) we have,

F ij ⊆ p−1
ai

(pai
(F ij )) ⊆ p−1

ai
(V ij ) ⊆ U ij .

We note that pai
= paia ◦ pa, so p−1

ai
(pai

(F ij )) = p−1
a (p−1

aia(pai
(F ij ))) and

p−1
ai

(V ij ) = p−1
a (p−1

aia(V ij )). Hence for each i = 1, . . . , k + 1 and j = 1, . . . ,m,

F ij ⊆ p−1
a (p−1

aia(pai
(F ij ))) ⊆ p−1

a (p−1
aia(V ij )) ⊆ U ij .

This shows that the sequence
(
p−1
a

(
v0
i

)
, p−1
a

(
Ψ0
i

))
, i = 1, . . . , k + 1, which

is known to be n-inessential in X, “squeezes between” the given sequence
(ui,Ψi), i = 1, . . . , k + 1, of m-pairs of X. So by Proposition 2.11, the se-
quence of m-pairs (ui,Ψi), i = 1, . . . , k + 1, is n-inessential in X, and thus
(m,n)-dimX ≤ k.

(⇒) We will now assume (1) and let a ∈ A, and (wi,Φi), i = 1, . . . , k+ 1,
be a sequence of m-pairs in Xa, where we denote wi = (W i

1, . . . ,W
i
m) and

Φi = (F i1, . . . , F im). We are required to prove (2). Recall that for each i =
1, . . . , k + 1, wi is an open cover of Xa, ord Φi ≤ 1, and for each j = 1, . . . ,m
we have F ij ⊆ W i

j .
Since (m,n)-dimX ≤ k, the sequence (p−1

a (wi), p−1
a (Φi)), i = 1, . . . , k+1,

of m-pairs in X is n-inessential in X. So, for each i = 1, . . . , k+1, there exists
an n-partition Pi of the pair

(
p−1
a (wi) , p−1

a (Φi)
)

such that
P1 ∩ · · · ∩ Pk+1 = ∅.

By the definition of n-partition, for each i = 1, . . . , k+ 1, we have a collection
of open sets in X, vi = (V i1 , . . . , V im), such that

(†4.1) p−1
a (F ij ) ⊆ V ij ⊆ p−1

a (W i
j ), j = 1, . . . ,m,

(†4.2) ord vi ≤ n, and
(†5) X \ Pi =

⋃
vi.

By (†4.1) and (†5) we have for each i = 1, . . . , k + 1 and j = 1, . . . ,m,

p−1
a

(
F ij
)

⊆ V ij ⊆
⋃
vi = X \ Pi.

Thus, for each i = 1, . . . , k + 1,⋃
p−1
a (Φi) ⊆ X \ Pi,

and so,
Pi ⊆ X \

⋃
p−1
a (Φi) .

For each i = 1, . . . , k+1, we choose an open set Qi in X with the following
properties:

(†6) Pi ⊆ Qi,
(†7) Q1 ∩ · · · ∩Qk+1 = ∅, and
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(†8) Qi ⊆ X \
⋃
p−1
a (Φi).

Consider the closed set X \ Qi. Then by (†5) and (†6), for each i =
1, . . . , k + 1, the collection(

V i1 ∩ (X \Qi), . . . , V im ∩ (X \Qi)
)

of open sets in X \ Qi, covers X \ Qi. By (†4.1) we have that p−1
a (F ij ) ⊆

V ij , and by definition, p−1
a (F ij ) ⊆

⋃
p−1
a (Φi). These and (†8) imply that

p−1
a (F ij ) ⊆

⋃
p−1
a (Φi) ⊆ X \ Qi. And so, p−1

a (F ij ) ⊆ V ij ∩ (X \ Qi). This
shows that there exist closed sets Gi1, . . . , Gim in X such that for j = 1, . . . ,m
and i = 1, . . . , k + 1, we have,

(†9) p−1
a (F ij ) ⊆ Gij ⊆ V ij ∩ (X \Qi), and

(†10) the collection (Gi1, . . . , Gim) covers X \Qi.
Apply Lemma 3.5(1) to choose b1 ≥ a so that for all b ≥ b1,
(†11) p−1

b (pb(Gij)) ⊆ V ij for all i = 1, . . . , k + 1 and j = 1, . . . ,m.
We now apply Lemma 3.7 with a = b1 and with the sequence,

(p−1
a (wi) , p−1

a (Φi)), i = 1, . . . , k + 1,
of m-pairs in X. Note that here we substitute p−1

a (W i
j ) for the U ij and p−1

a (F ij )
for the F ij of the lemma. This gives us a certain b0 ≥ b1 ≥ a, and this will
be the b0 requested in (2). Let b ≥ b0; Lemma 3.7 gives us a “corresponding
sequence”

(yi, pb
(
p−1
a (Φi)

)
, i = 1, . . . , k + 1,

of m-pairs in Xb, say yi = (Y i1 , . . . , Y im). So, for all i = 1, . . . , k + 1, we have,
pb
(
p−1
a (Φi)

)
=
(
pb
(
p−1
a

(
F i1
))
, . . . , pb

(
p−1
a

(
F im
)))

,

and, using (∗) of Lemma 3.7,
(†12) p−1

a (F ij ) ⊆ p−1
b (pb(p−1

a (F ij ))) ⊆ p−1
b (Y ij ) = p−1

b (Y ij ∩ pb(X)) ⊆
p−1
a (W i

j ).
We now use (†4.1), (†11), and the fact that pb is a closed map to choose,

for each i = 1, . . . , k+ 1 and j = 1, . . . ,m, an open neighborhood T ij in pb(X)
of pb(Gij) such that,

(†13) p−1
b (pb(Gij)) ⊆ p−1

b (T ij ) ⊆ V ij ⊆ p−1
a (W i

j ).
Let ti = (T i1, . . . , T im); thus ti is a collection of subsets of pb(X). Then

since by (†4.2), ord(vi) ≤ n, and pb : X → pb(X) is surjective, Lemma 2.2
shows that ord(ti) ≤ n.

For each i = 1, . . . , k + 1 and j = 1, . . . ,m, let Ŷ ij = (Y ij ∩ pb(X)) ∪
T ij ⊆ pb(X). For each i = 1, . . . , k + 1, put ŷi = (Ŷ i1 , . . . , Ŷ im). Since
(yi, pb(p−1

a (Φi)) ∩ pb(X), i = 1, . . . , k + 1, is a sequence of m-pairs in pb(X),
then, a fortiori, (ŷi, pb(p−1

a (Φi))), i = 1, . . . , k + 1, is a sequence of m-pairs
in pb(X), and using (†12) and (†13) we have that for all i = 1, . . . , k + 1 and
j = 1, . . . ,m,

(†14) p−1
a (F ij ) ⊆ p−1

b (pb(p−1
a (F ij ))) ⊆ p−1

b (Ŷ ij ) ⊆ p−1
a (W i

j ).
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We claim that the sequence
(
ŷi, pb

(
p−1
a (Φi)

))
∩pb(X) =

(
ŷi, pb

(
p−1
a (Φi)

))
,

i = 1, . . . , k+1, is n-inessential in pb(X). To see this, for each i = 1, . . . , k+1,
let Ri = pb(X) \

⋃m
j=1 T

i
j . Using (†9) and the fact that pb(Gij) ⊆ T ij ⊆ pb(X),

we see that pb(p−1
a (F ij )) ⊆ T ij ⊆ Ŷ ij for j = 1, . . . ,m. Since ti is a family of

open sets in pb(X) such that pb(p−1
a (F ij )) ⊆ T ij ⊆ Ŷ ij , and ord ti ≤ n, then by

Definition 2.4, Ri is an n-partition of (ŷi, pb(p−1
a (Φi))) in pb(X). We will now

show that R1 ∩ · · · ∩Rk+1 = ∅.
We first note that by (†10) and (†13) we have for each i = 1, . . . , k + 1,

X \Qi ⊆
m⋃
j=1

Gij ⊆
m⋃
j=1

p−1
b (pb(Gij)) ⊆

m⋃
j=1

p−1
b (T ij ).

It follows that

p−1
b (Ri) = p−1

b

(
pb(X) \

m⋃
j=1

T ij

)
= X \

( m⋃
j=1

p−1
b (T ij )

)
⊆ Qi.

By (†7),
Q1 ∩ · · · ∩Qk+1 = ∅,

and so we have that
p−1
b (R1) ∩ · · · ∩ p−1

b (Rk+1) = ∅.
Then, since Ri ⊆ pb(X) and hence Ri = pb(p−1

b (Ri)) for each i = 1, . . . , k+ 1,
it follows that

R1 ∩ · · · ∩Rk+1 = ∅.
Thus, the sequence

(
ŷi, pb

(
p−1
a (Φi)

))
, i = 1, . . . , k + 1, is n-inessential in

pb(X).
To conclude the proof we will show that for all i = 1, . . . , k + 1 and

j = 1, . . . ,m, we have
p−1
ab (F ij ) ∩ pb(X) ⊆ pb

(
p−1
a

(
F ij
))

⊆ Ŷ ij ⊆ p−1
ab (W i

j ) ∩ pb(X),
and apply Proposition 2.11 (This means that in terms of Proposition 2.11,
F ij corresponds to p−1

ab (F ij ) ∩ pb(X), Gij to pb(p−1
a (F ij )), W i

j to Ŷ ij , and U ij to
p−1
ab (W i

j ) ∩ pb(X)). Fix i and j.
To show the left inclusion, let x ∈ p−1

ab (F ij )∩pb(X), and choose y ∈ p−1
b (x).

Then, pab(x) = pab(pb(y)) = pa(y). Thus, pa(y) ∈ F ij , and so y ∈ p−1
a (F ij ).

Finally,
x = pb(y) ∈ pb(p−1

a (F ij )),
proving the left inclusion. The middle inclusion follows from (†14) and the
fact that Ŷ ij ⊆ pb(X).

To show the right inclusion, we first note that by (†14), Ŷ ij ⊆ pb(p−1
a (W i

j )).
Let x ∈ Ŷ ij ⊆ pb(p−1

a (W i
j )). There exists y ∈ p−1

a (W i
j ) such that x =

pb(y). Now, pab(x) = pabpb(y) = pa(y) ∈ W i
j , so x ∈ p−1

ab (W i
j ). Since
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x ∈ pb(p−1
a (W i

j )) ⊆ pb(X), then x ∈ p−1
ab (W i

j ) ∩ pb(X), proving the right
inclusion.

5. Corollaries

Theorem 1.1 is a corollary of Theorem 4.1 and the next fact which is
Proposition 2.10 of [3]. Indeed, if (m,n)-dimXa ≤ k for all a ∈ A, then
by Proposition 5.1, (m,n)-dim pa(Xa) ≤ k. By the definition of (m,n)-
dimension, condition 2 of Theorem 4.1 is satisfied.

Proposition 5.1. Suppose that X is a space with (m,n)-dimX ≤ k.
Then for each closed subspace A of X, (m,n)-dimA ≤ k.

Using the next proposition (see Corollary 2.5.11., p. 140 of [1]), we can
strengthen Theorem 1.1.

Proposition 5.2. Let X = {Xa, pab, A} be an inverse system of compact
Hausdorff spaces Xa and X = lim X. Suppose that B ⊆ A is a cofinal subset of
A. Then Y = {Xa, pab, B} is an inverse system of compact Hausdorff spaces.
Let Y be the limit of Y. Then the restriction p = π|X of the projection
π :
∏

{Xa | a ∈ A} →
∏

{Xa | a ∈ B} is a homeomorphism p : X → Y .

Corollary 5.3. Let X = {Xa, pab, A} be an inverse system of compact
Hausdorff spaces Xa and X = lim X. If there exists a cofinal subset B ⊆ A
such that for all a ∈ B, (m,n)-dimXa ≤ k, then (m,n)-dimX ≤ k.

Corollary 5.4. Let X = {Xa, pab, A} be an inverse system of com-
pact Hausdorff spaces Xa and X = lim X. If there exists a ∈ A such that
(m,n)-dimXa′ ≤ k for all a′ ≥ a, then (m,n)-dimX ≤ k.
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Inverzni sustavi kompaktnih Hausdorffovih prostora i
(m,n)-dimenzija

Matthew Lynam i Leonard R. Rubin

Sažetak. Godine 2012. V. Fedorchuk je koristeći m-parove
i n-particije uveo pojam (m, n)-dimenzije prostora. Ona gener-
alizira dimenziju pokrivanja; Fedorchuk je pokazao da je (m, n)-
dimenzija sačuvana kod inverznih limesa kompaktnih Hausdorf-
fovih prostora. Zasebno smo karakterizirali one aproksimativne
inverzne sustave kompaktnih metričkih prostora čiji limesi imaju
specificiranu (m, n)-dimenziju. Naša je karakterizacija u termin-
ima unutrašnjih svojstava sustava. Ovdje ćemo dati paralelnu un-
utrašnju karakterizaciju onih inverznih sustava kompaktnih Haus-
dorffovih prostora čiji limesi imaju specificiranu (m, n)-dimenziju.
Fedorchukov granični teorem bit će posljedica našeg rezultata.
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