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Abstract. In this paper, using a deep result on the existence of primitive divisors of
Lehmer numbers due to Y. Bilu, G. Hanrot and P. M. Voutier, we first give an explicit
formula for all positive integer solutions of the Diophantine equation (x−d)2+x2+(x+d)2 =
yn (*), when n is an odd prime and d = pr, p > 3, a prime. So this improves the results
of the papers of A. Koutsianas and V. Patel [19] and A. Koutsianas [18]. Secondly, under
the assumption of our first result, we prove that (*) has at most one solution (x, y). Next,
for a general d, we prove the following two results: (i) if every odd prime divisor q of d
satisfies q ̸≡ ±1 (mod 2n), then (*) has only the solution (x, y, d, n) = (21, 11, 2, 3), and
(ii) if n > 228000 and d > 8

√
2, then all solutions (x, y) of (*) satisfy yn < 23/2d3.

AMS subject classifications: 11D41,11J86

Keywords: polynomial Diophantine equation, power sums, primitive divisors of Lehmer
sequences, Baker’s method

1. Introduction

Let Z, N and Q be the sets of all integers, positive integers and rational numbers, re-
spectively. Let k, n be fixed positive integers. The polynomial Diophantine equation
of the form

1k + 2k + · · ·+ xk = yn, x, y ∈ N, n ≥ 2 (1)

has been studied for more than a hundred years. In 1875, a classical question of E.
Lucas [23] was whether equation (1) has only the solutions x = y = 1 and x = 24,
y = 70 for (k, n) = (2, 2). In 1918, G. N. Watson [31] solved equation (1) with
(k, n) = (2, 2). In 1956, J. J. Schäffer [27] considered equation (1). He showed
for k ≥ 1 and n ≥ 2 that (1) possesses at most finitely many solutions in positive
integers x and y, unless

(k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)},

where, in each case, there are infinitely many such solutions. J. J. Schäffer con-
jectured that (1) has a unique non-trivial (i.e. (x, y) ̸= (1, 1)) solution, namely
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(k, n, x, y) = (2, 2, 24, 70). The correctness of this conjecture has been proved for
some cases (see, e.g., [6, 10, 15, 16, 17, 25, 26]). But, it has not been proved com-
pletely yet.

A more general case is to consider the Diophantine equation

(x+ 1)k + (x+ 2)k + · · ·+ (x+ r)k = yn x, y ∈ Z, k, n ≥ 2. (2)

In 2013, Z. Zhang and M. Bai [4] solved equation (2) with k = 2 and r = x. In
2014, the equation

(x− 1)k + xk + (x+ 1)k = yn x, y ∈ Z, n ≥ 2, (3)

was solved completely by Z. Zhang [32] for k = 2, 3, 4 (Actually, firstly, J. W. S.
Cassels [13] considered equation (3) in 1985, and proved that x = 0, 1, 2, 24 are the
only integer solutions to this equation for k = 3 and n = 2), and in 2016, M. A.
Bennett, V. Patel and S. Siksek [8] extended Z. Zhang’s result, completely solving
equation (3) in the cases k = 5 and k = 6. In the same year, M. A. Bennett, V.
Patel and S. Siksek [9] considered equation (2). They gave integral solutions to
equation (2) using linear forms in logarithms, sieving and Frey curves, where k = 3,
2 ≤ r ≤ 50, x ≥ 1, and n is a prime.

Let k ≥ 2 be even, and let r be a fixed non-zero integer. In 2017, V. Patel and
S. Siksek [24] showed that for almost all d ≥ 2 (in the sense of natural density), the
equation

xk + (x+ r)k + · · ·+ (x+ (d− 1)r)k = yn, x, y ∈ Z, n ≥ 2,

has no solutions. Let ℓ ≥ 2 be a fixed integer such that ℓ is even. In the same year,
the second author [28] considered the equation

(x+ 1)k + (x+ 2)k + · · ·+ (ℓx)k = yn, x, y ∈ Z n ≥ 2. (4)

He proved that equation (4) has only finitely many solutions, where x, y ≥ 1, k ̸= 1, 3.
He also showed that equation (4) has infinitely many solutions with n ≥ 2 and
k = 1, 3. In 2018, A. Bérczes, I. Pink, G. Savaş and the second author [11] considered
equation (4) with ℓ = 2. They proved that equation (4) has no solutions, where
2 ≤ x ≤ 13, k ≥ 1, ℓ = 2, y ≥ 2 and n ≥ 3. Recently, D. Bartoli and the second
author [5] proved that all solutions of equation (4) with x, y ≥ 1, n ≥ 2, k ̸= 3
and ℓ odd satisfy max{x, y, n} < C, where C is an effectively computable constant
depending only on k and ℓ. So, the remaining case for equation (4) was covered by
them.

Finding perfect powers that are sums of terms in an arithmetic progression has
received much interest; recent contributions can also be found in [1, 3, 7, 14].

Now we consider a generalization of equation (3). Let d be a fixed positive
integer. In 2017-2019, Z. Zhang [33] A. Koutsianas and V. Patel [19] studied the
integer solutions to the following equation

(x− d)k + xk + (x+ d)k = yn, x, y ∈ Z, n ≥ 2, (5)

for the cases k = 4 and k = 2, respectively. Z. Zhang gave some results on equation
(5) with k = 4 by using a modular approach. A. Koutsianas and V. Patel [19] gave
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all non-trivial primitive solutions to equation (5), where k = 2, n is a prime and
d ≤ 104. (According to the terminology of [19], an integer solution (x, y) of (5) is said
to be primitive if gcd(x, y) = 1. This is equivalent to x, y, d being pairwise coprime.
A solution where xy = 0 is called a trivial solution). They used the characterization
of primitive divisors in Lehmer sequences due to Y. F. Bilu, G. Hanrot and P. M.
Voutier [12]. Then A. A. Garcia and V. Patel [2] showed that the only solutions to
equation (5) with n ≥ 5 a prime, k = 3, gcd(x, d) = 1, and 0 < d ≤ 106 are the
trivial ones satifying xy = 0.

Recently, A. Koutsianas [18] studied equation (5) with k = 2 for an infinitely fam-
ily of d, which is an extension of [19]. In [18], all solutions (x, y) to the Diophantine
equation

(x− d)2 + x2 + (x+ d)2 = yn, x, y ∈ N, n ≥ 2, gcd(x, y) = 1, (6)

are given with the following table, where d = pr with r ≥ 0, p a prime and p ≤ 104.

p (x, y, r, n)
2 (21, 11, 1, 3)
7 (3, 5, 1, 3)
79 (63, 29, 1, 3)
223 (345, 77, 1, 3)
439 (987, 149, 1, 3)
727 (2133, 245, 1, 3)
1087 (3927, 365, 1, 3)
3109 (627, 29, 1, 5)
3967 (27657, 1325, 1, 3)
4759 (36363, 1589, 1, 3)
5623 (46725, 1877, 1, 3)
8647 (89187, 2885, 1, 3)

Table 1:

However, Table 1 at least omits the solution (x, y, d, r, n) = (13, 5, 197, 1, 7) of
(6) with p ≤ 104.

In this paper, extending the results in [18] and [19], we first consider the Dio-
phantine equation (6), where

d = pr with r ∈ N. (7)

We prove the following two results:

Theorem 1. Let n be an odd prime, and let d be satisfied as in (7). If (x, y) is a
solution to (6), then p > 3, and there exists a constant X1 ∈ N such that

d =

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i+ 1

)
(3X2

1 )
(n−1)/2−i(−2)i

∣∣∣∣∣∣ . (8)
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Moreover, if (8) holds, then the solution (x, y) can be expressed as

x = X1

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i

)
(3X2

1 )
(n−1)/2−i(−2)i

∣∣∣∣∣∣ , y = 3X2
1 + 2. (9)

Remark 1. Theorem 1 gives the missing solution (x, y, d, r, n) = (13, 5, 197, 1, 7) in
[18], where X1 = 1 and n = 7.

Theorem 2. Under the assumption of Theorem 1, (6) has at most one solution
(x, y).

Please note that in [18], while all solutions (x, y) to (6) are given, where d = pr

with r ≥ 0, p a prime and p ≤ 104, Theorem 1 gives an explicit formula to find all
solutions (x, y) to (6) for all d = pr with r ∈ N.

Next, for a general d, we prove the following two results:

Theorem 3. If n is an odd prime and every odd prime divisor q of d satisfies q ̸≡ ±1
(mod 2n), then (6) has only the solution (x, y, d, n) = (21, 11, 2, 3).

Theorem 4. If n > 228000 and d > 8
√
2, then all solutions (x, y) to (6) satisfy

yn < 23/2d3.

2. Proof of Theorem 1

Let D1, D2, k be fixed positive integers such that min{D1, D2} > 1, 2 - k and
gcd(D1, D2) = gcd(D1D2, k) = 1, and let h(−4D1D2) denote the class number of
positive binary quadratic primitive forms with discriminant −4D1D2.

Lemma 1. If the equation

D1X
2 +D2Y

2 = kZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0

has solutions (X,Y, Z), then its every solution (X,Y, Z) can be expressed as

Z = Z1t, t ∈ N, 2 - t,

X
√
D1 + Y

√
−D2 = λ1(X1

√
D1 + λ2Y1

√
−D2)

t, λ1, λ2 ∈ {1,−1},

where X1, Y1, Z1 are positive integers such that

D1X
2
1 +D2Y

2
1 = kZ1 , gcd(X1, Y1) = 1

and h(−4D1D2) ≡ 0 (mod 2Z1).

Proof. This is special case of theorems 1 and 3 of [20] for D < 0 and D1 > 1.

Lemma 2. If (6) has solutions (x, y), then 2 - n and its every solution (x, y) can
be expressed as

x
√
3 + d

√
−2 = λ1(X1

√
3 + λ2Y1

√
−2)n, λ1, λ2 ∈ {±1}, (10)

y = 3X2
1 + 2Y 2

1 , X1, Y1 ∈ N, gcd(X1, Y1) = 1. (11)
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Proof. We now assume that (x, y) is a solution to (6). Then we have

3x2 + 2d2 = yn. (12)

Since n > 2 and gcd(x, y) = 1, by (12), we get

2 - x, 2 - y, 3 - y, gcd(x, d) = 1. (13)

Hence, we see from (12) and (13) that gcd(6, y) = 1 and the equation

3X2 + 2Y 2 = yZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0, (14)

has a solution
(X,Y, Z) = (x, d, n). (15)

Applying Lemma 1 to (14) and (15), we have

n = Z1t, t ∈ N, 2 - t, (16)

x
√
3 + d

√
−2 = λ1(X1

√
3 + λ2Y1

√
−2)t, λ1, λ2 ∈ {1,−1}, (17)

where X1, Y1, Z1 are positive integers such that

3X2
1 + 2Y 2

1 = yZ1 , gcd(X1, Y1) = 1, (18)

and
h(−24) ≡ 0 (mod 2Z1). (19)

Further, since h(−24) = 2, by (19), we get Z1 = 1. Hence, by (16), we have t = n
and 2 - n. Furthermore, by (17) and (18), we obtain (10) and (11) respectively. Thus,
Lemma is proved.

Let α, β be algebraic integers. If (α+ β)2 and αβ are nonzero coprime integers
and α/β is not a root of unity, then (α, β) is called a Lehmer pair. Further, let
A = (α+ β)2 and C = αβ. Then we have

α =
1

2
(
√
A+ λ

√
B), β =

1

2
(
√
A− λ

√
B), λ ∈ {±1},

where B = A − 4C. Such (A,B) is called the parameters of Lehmer pair (α, β).
Two Lehmer pairs (α1, β1) and (α2, β2) are called equivalent if α1/α2 = β1/β2 ∈
{±1,±

√
−1}. Obviously, if (α1, β1) and (α2, β2) are equivalent Lehmer pairs with

parameters (A1, B1) and (A2, B2), respectively, then (A2, B2) = (εA1, εB1), where
ε ∈ {±1}. For a fixed Lehmer pair (α, β), one defines the corresponding sequence of
Lehmer numbers by

Lm(α, β) =


αm − βm

α− β
, if 2 - m,

αm − βm

α2 − β2
, if 2|m, m ∈ N.

(20)

Then, Lehmer numbers Lm(α, β) (m = 1, 2, . . . ) are nonzero integers. Further, for
equivalent Lehmer pairs (α1, β1) and (α2, β2), we have Lm(α1, β1) = ±Lm(α2, β2) for
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any m. A prime q is called a primitive divisor of the Lehmer number Lm(α, β) (m >
1) if q|Lm(α, β) and q - ABL1(α, β) · · ·Lm−1(α, β), where (A,B) is the parameters
of Lehmer pair (α, β). For a fixed positive integer m, a Lehmer pair (α, β) such
that Lm(α, β) has no primitive divisor will be called an m-defective Lehmer pair.
Further, a positive integer m is called totally non-defective if no Lehmer pair is
m-defective.

Lemma 3 (see [30]). Let m be such that 6 < m ≤ 30 and m ̸= 8, 10, 12. Then up
to equivalence, all parameters (A,B) (A > 0) of m-defective Lehmer pairs are given
as follows:

(i) m = 7, (A,B) = (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22).

(ii) m = 9, (A,B) = (5,−3), (7,−1), (7,−5).

(iii) m = 13, (A,B) = (1,−7).

(iv) m = 14, (A,B) = (3,−13), (5,−3), (7,−1), (7,−5), (19,−1), (22,−14).

(v) m = 15, (A,B) = (7,−1), (10,−2).

(vi) m = 18, (A,B) = (1,−7), (3,−5), (5,−7).

(vii) m = 24, (A,B) = (3,−5), (5,−3).

(viii) m = 26, (A,B) = (7,−1).

(ix) m = 30, (A,B) = (1,−7), (2,−10).

Lemma 4 (see [12]). Every positive integer m with m > 30 is totally non-defective.

Proof of Theorem 1 We now assume that (x, y) is a solution to (6). Then, x, y
and d satisfy (12). If p = 3, then from (7) and (12) we get 3 | y, which contradicts
(13). So we have p > 3.

By Lemma 2, there exist positive integers X1 and Y1 satisfying (10) and (11).
By (10), we have

x = X1

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i

)
(3X2

1 )
(n−1)/2−i(−2Y 2

1 )
i

∣∣∣∣∣∣ (21)

and

d = Y1

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i+ 1

)
(3X2

1 )
(n−1)/2−i(−2Y 2

1 )
i

∣∣∣∣∣∣ . (22)

Since d satisfies (7), by (22), we get

Y1 = ps, s ∈ Z, 0 ≤ s ≤ r (23)
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and ∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i+ 1

)
(3X2

1 )
(n−1)/2−i(−2Y 2

1 )
i

∣∣∣∣∣∣ = pr−s. (24)

Let
α = X1

√
3 + Y1

√
−2, β = X1

√
3− Y1

√
−2. (25)

By (11) and (25), we have

α+ β = 2X1

√
3, α− β = 2Y1

√
−2, αβ = y. (26)

Notice that y ≥ 5 by (11), and α/β satisfies

y

(
α

β

)2

− 2(3X2
1 − 2Y 2

1 )
α

β
+ y = 0, (27)

with gcd(y, 2(3X2
1 − 2Y 2

1 )) = 1. This implies that α/β is not a root of unity. Hence,
we see from (13), (25) and (26) that (α, β) is a Lehmer pair with the parameters

(A,B) = (12X2
1 ,−8Y 2

1 ). (28)

Further, let Lm(α, β) (m = 1, 2, . . . ) be the corresponding Lehmer numbers. By
(20) and (25), we have

(n−1)/2∑
i=0

(
n

2i+ 1

)
(3X2

1 )
(n−1)/2−i(−2Y 2

1 )
i = Ln(α, β). (29)

Therefore, by (24) and (29), we get

|Ln(α, β)| = pr−s. (30)

If s > 0, by (23), (28) and (30), the Lehmer number Ln(α, β) has no primitive
divisors. Therefore, since n is an odd prime, by lemmas 12 and 13, we find from
(28) that n ∈ {3, 5}.

When n = 3, by (23) and (24), we have

9X2
1 − 2p2s = ±pr−s. (31)

Notice that p > 3, s > 0 and gcd(X1, Y1) = gcd(X1, p
s) = 1. We see from (31) that

r − s = 0 and
9X2

1 − 2p2s = ±1. (32)

Further, since 2 - X1 and 9X2
1 − 2p2s ≡ 1− 2 ≡ −1 (mod 8), by (32), we get

9X2
1 − 2p2s = −1. (33)

But, since (2/3) = −1, where (∗/∗) is the Legendre symbol, (33) is false. So, we
have no solutions for n = 3.
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When n = 5, by (23) and (24), we have

45X4
1 − 60X2

1p
2s + 4p4s = ±pr−s. (34)

If r − s > 0, since p > 3, then from (34) we get p = 5 and

9X4
1 − 12 · 52sX2

1 + 4 · 54s−1 = ±5r−s−1,

whence we obtain r − s = 1 and

9X4
1 − 12 · 52sX2

1 + 4 · 54s−1 = ±1. (35)

Further, since 9X4
1 ≡ 1 (mod 4), the right-hand side of (35) is equal to 1. However,

since 5 - X1 and 9X4
1 ≡ 9 ≡ −1 (mod 5), the right-hand side of (35) should be equal

to -1, a contradiction. So we have r − s = 0 and

45X4
1 − 60X2

1p
2s + 4p4s = ±1. (36)

Similarly, since 45X4
1 ≡ 1 (mod 4) and 4p4s ≡ −1 (mod 5), (36) is false. This

implies that we have no solutions for n = 5.
By the above analysis, we get s = 0. Then, by (23), we have Y1 = 1. Therefore,

by (11), (21) and (22), we obtain (8) and (9). Thus, the theorem is proved.

3. Proof of Theorem 2

For fixed d with (7) and n an odd prime, we now assume that (6) has two distinct
solutions (x, y) = (x1, y1) and (x2, y2). Then, by Theorem 1, we have

d =

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i+ 1

)
(3a2)(n−1)/2−i(−2)i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i+ 1

)
(3b2)(n−1)/2−i(−2)i

∣∣∣∣∣∣ ,
(37)

y1 = 3a2 + 2, y2 = 3b2 + 2, a, b ∈ N, 2 - ab. (38)

Since (x1, y1) ̸= (x2, y2), we have y1 ̸= y2. Therefore, without loss of generality, we
may assume that y1 < y2. Then, by (38), we get a < b.

Since n is an odd prime, we have n |
(

n
2i+1

)
for i = 0, · · · , (n−3)/2. Hence, since

n - 2(n−1)/2, we see from (37) that

(n−1)/2∑
i=0

(
n

2i+ 1

)
(3a2)(n−1)/2−i(−2)i =

(n−1)/2∑
i=0

(
n

2i+ 1

)
(3b2)(n−1)/2−i(−2)i,

whence we get

(n−3)/2∑
i=0

(
n

2i+ 1

)(
(3b2)(n−1)/2−i − (3a2)(n−1)/2−i

3b2 − 3a2

)
(−2)i = 0. (39)
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Let X = 3b2 and Y = 3a2. Then (39) can be rewritten as

(n−3)/2∑
i=0

(
n

2i+ 1

)(
X(n−1)/2−i − Y (n−1)/2−i

X − Y

)
(−2)i = 0. (40)

By (40), we have n > 3 and

2

∣∣∣∣ X(n−1)/2 − Y (n−1)/2

X − Y
. (41)

Since 2 - XY by (38), we see from (41) that 2 | (n − 1)/2. Further, let 2y || n − 1.
Then we have y ≥ 2 and

2y−1

∣∣∣∣∣∣∣∣ ((n− 1)/2

1

)
Y (n−3)/2. (42)

Let 2rj || j for j > 1. Since j ≥ 2rj , we have rj ≤ (log j)/(log 2) ≤ j − 1. Since
X − Y ≡ 3a2 − 3b2 ≡ 0 (mod 23), we get(

(n− 1)/2

j

)
(X − Y )j−1Y (n−1)/2−j

≡
(
n− 1

2

)
Y (n−1)/2−j

(
(n− 3)/2

j − 1

)
(X − Y )j−1

j

≡ 0 (mod 2y), j > 1.

(43)

Hence, since

X(n−1)/2 − Y (n−1)/2

X − Y
=

(n−1)/2∑
j=1

(
(n− 1)/2

j

)
(X − Y )j−1Y (n−1)/2−j ,

from (42) and (43) we obtain that

2y−1

∣∣∣∣∣∣∣∣X(n−1)/2 − Y (n−1)/2

X − Y
=

(3b2)(n−1)/2 − (3a2)(n−1)/2

3b2 − 3a2
. (44)

On the other hand, let 2δi || 2i for i ≥ 1. Then we have

δi ≤
log(2i)

log 2
≤ i, i ≥ 1. (45)

By (45), we get(
n

2i+ 1

)
(−2)i ≡ n(n− 1)

(
n− 2

2i− 1

)
(−2)i

2i(2i+ 1)
≡ 0 (mod 2y), i ≥ 1. (46)

Therefore, since 2 - n, we find from (44) and (46) that (39) is false. It implies
that, under the assumption of Theorem 1, (6) has at most one solution (x, y). The
theorem is proved.
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4. Proof of Theorem 3

Lemma 5 (see [22]). If n is an odd prime and r is a prime divisor of the Lehmer
number Ln(α, β), then r ≡ ±1 (mod 2n).

Proof of Theorem 3 By Lemma 2, if (x, y) is a solution to (6), then x, y and
d satisfy (10) and (11). Let α, β be defined as in (25). Then (α, β) is a Lehmer pair
with the parameters (28). Further, let Lm(α, β) (m = 1, 2, · · · ) be the corresponding
Lehmer numbers. By (22) and (29), we have

d = Y1|Ln(α, β)|. (47)

Since n is an odd prime and every odd prime divisor q of d satisfies q ̸≡ ±1
(mod n), by Lemma 5, from (47) we get

|Ln(α, β)| = 1, (48)

and

Y1 = d. (49)

We see from (48) that the Lehmer number Ln(α, β) has no primitive divisors. There-
fore, using the same method as in the proof of Theorem 1, by lemmas 3 and 4, we
can deduce from (48) that n ∈ {3, 5}.

When n = 3, by (29), (48) and (49), we have

9X2
1 − 2d2 = ±1. (50)

Since n = 3 and every odd prime divisor q of d satisfies q ̸≡ ±1 (mod 3), q can only
be equal to 3. However, by (50), it is impossible. Hence, d must be a power of 2.
Then (50) reduces to the equation

X2 + 1 = 22k+1, X = 3X1, k ≥ 0, (51)

or

X2 − 1 = 22k+1, X = 3X1, k ≥ 0. (52)

By [21], we see that (51) has no solution. Since gcd(X + 1, X − 1) = 2, from (52)
we get X − 1 = 2 and k = 1. It follows that the equation has only the solution
(X, k) = (3, 1). Therefore, it is easy to get X1 = 1 and d = 2. Thus, (6) has only
the solution (x, y, d, n) = (21, 11, 2, 3) in this case.

When n = 5, by (29), (48) and (49), we have

45X4
1 − 60X2

1d
2 + 4d4 = ±1. (53)

But, since 2 - X1, 45X
4
1 ≡ 1 (mod 4), 5 - d and 4d4 ≡ −1 (mod 5), (53) is false.

The theorem is proved.
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5. Proof of Theorem 4

For any algebraic number θ of degree ℓ over Q, let h(θ) be the absolute logarithmic
height of θ by the formula

h(θ) =
1

ℓ

log |a|+
ℓ∑

j=1

logmax
{
1, |θ(j)|

} ,

where a is the leading coefficient of the minimal polynomial of θ over Z and θ(j)

(j = 1, · · · , ℓ) are all the conjugates of θ. Further, let log θ be any determination of
the logarithm of θ.

Lemma 6 (Appendix to [12]). Let θ be a complex algebraic number with |θ| = 1, and
θ is not a root of unity. Let b1, b2 be positive integers, and let Λ = b1 log θ−b2π

√
−1.

Then we have

log |Λ| > −(9.03H2 + 0.23)(Dh(θ) + 25.84)− 2H − 2 logH − 0.7D + 2.07,

where D = [Q(θ) : Q]/2, H = D(logB − 0.96) + 4.49, B = max{13, b1, b2}.

Proof of Theorem 4 By Lemma 2, if (x, y) is a solution to (6), then

d =
1

2
√
2
|αn − βn|, (54)

where α, β are defined as in (25). By (11) and (25), we have

|α| = |β| = √
y. (55)

Let θ = α/β. By (55) and (27), it is a complex algebraic number with |θ| = 1, θ is
not a root of unity and

h(θ) =
1

2
log y. (56)

By (54) and (55), we have

d =
1

2
√
2
|βn|

∣∣∣∣(α

β

)n

− 1

∣∣∣∣ = 1

2
√
2
yn/2|θn − 1|. (57)

It is well known that for any complex number z, we have either |ez − 1| ≥ 1

2
or

|ez−1| ≥ 2

π
|z− tπ

√
−1| for some integers t (see [29]). Put z = n log θ. We get either

|θn − 1| ≥ 1

2
, (58)

or

|θn − 1| ≥ 2

π
|n log θ − tπ

√
−1|, t ∈ N, t ≤ n. (59)
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If (58) holds, since d > 8
√
2, then from (57) we obtain yn ≤ 32d2 < 23/2d3 and the

theorem is true. So we just have to worry about the case (59).
Let

Λ = n log θ − tπ
√
−1. (60)

By (57), (59) and (60), we have

d ≥ yn/2

π
√
2
|Λ|. (61)

If yn ≥ 23/2d3, then from (61) we get

π ≥ yn/6|Λ|,

whence we obtain
log π ≥ n

6
log y + log |Λ|. (62)

Notice that [Q(θ) : Q] = 2, n ≥ t and n > 228000. Applying Lemma 6 to (60),
by (56), we have

log |Λ| > −(9.03H2 + 0.23)(
1

2
log y + 25.84)− 2H − 2 logH + 1.37, (63)

where
H = log n+ 3.53. (64)

A combination of (62) and (63) yields

(9.03H2 + 0.23)

(
0.5 +

25.84

log y

)
+

2H + 2 logH

log y
>

n

6
. (65)

Further, by (11), we have y ≥ 5. Hence, by (64) and (65), we get

99.36(9.03(log n+ 3.53)2 + 0.23) + 7.50(log n+ 3.53

+ log(log n+ 3.53)) = 99.36(9.03H2 + 0.23)

+ 7.50(H + logH) > n.

(66)

However, by (66), we calculate that n < 228000, a contradiction. Thus, if n > 228000
and d > 8

√
2, then yn < 23/2d3. The theorem is proved.
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