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1. Introduction and outline

Binomial identities appear often in mathematics, physics and computer sciences.
Evaluating binomial sums sometimes becomes an entertaining and challenging ac-
tivity (cf. [7, Chapter 5]). Gould [6] made a comprehensive coverage of 500 classified
binomial identities. Riordan [10] and Graham–Knuth–Patashnik [7] recorded sev-
eral classical methods to treat binomial sums. A modern technological approach was
presented by Petkovšek–Wilf–Zeilberger [9] through computer algebra.

In this paper, we shall examine the following alternating sums of binomial quo-
tients:

Ωλ,δ(m) :=

m∑
k=0

(−1)k
(
m+λ
2k+δ

)(
m
k

) , (1)

where λ,m ∈ N0 and δ ∈ {0, 1}. They are not on the list collected by Gould [6].
In the next section, we shall prove a general summation theorem for λ ≥ 2

that expresses Ωλ,δ(m) as a finite sum of λ − 1 terms and contains several elegant
closed formulae as consequences. Then in Section 3, the exceptional cases for λ ∈
{0, 1} will be investigated. Even though in these cases Ωλ,δ(m) do not admit closed
formulae, they can be expressed as reciprocal sums of binomial coefficients. Finally,
the asymptotic values of Ωλ,δ(m) will be determined as m → ∞. The main results
can be summarized as follows: For λ ≥ 0, the limit of Ωλ,δ(m) as m → ∞ results in
0 and 2, for δ = 0 and δ = 1, respectively.

Throughout the paper, we shall make use of the following notations for shifted
factorials. For an indeterminate x and a nonnegative integer n, they are defined by
(x)0 = ⟨x⟩0 = 1 and
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(x)n = x(x+ 1) · · · (x+ n− 1)

⟨x⟩n = x(x− 1) · · · (x− n+ 1)

}
n = 1, 2, · · · .

2. Summation formulae by the linearization method

For λ ≥ 2, we shall evaluate Ωλ,δ(m) in closed forms by means of the linearization
method [1–3]. Let us start with an easier case.

Proposition 1.

Ω2,1(m) =

m∑
k=0

(−1)k
(
m+2
2k+1

)(
m
k

) = 2.

Proof. Writing the summand as(
m+2
2k+1

)(
m
k

) = Uk +Uk+1, where Uk = 2

(
m+1
2k

)(
m+1
k

) .
Then by telescoping, we can evaluate

m∑
k=0

(−1)k
(
m+2
2k+1

)(
m
k

) = U0 + (−1)mUm+1.

The formula in Proposition 1 follows from the facts that U0 = 2 and Um+1 = 0.

Proposition 2.

Ω2,0(m) =

m∑
k=0

(−1)k
(
m+2
2k

)(
m
k

) = − 2

m
.

Proof. Writing the summand as(
m+2
2k

)(
m
k

) = Vk +Vk+1, where Vk = 2
(2k − 1)

(
m+2
2k

)
m
(
m+1
k

) .

Then by telescoping, we can evaluate

m∑
k=0

(−1)k
(
m+2
2k

)(
m
k

) = V0 + (−1)mVm+1.

The formula in Proposition 2 follows since V0 = − 2
m and Vm+1 = 0.

Observing that (
m+ 3

2k + 1

)
=

(
m+ 2

2k + 1

)
+

(
m+ 2

2k

)
and then adding the two equations in propositions 1 and 2 together, we deduce the
next identity.
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Corollary 1.

Ω3,1(m) =

m∑
k=0

(−1)k
(
m+3
2k+1

)(
m
k

) = 2− 2

m
.

In order to treat the λ > 2 case, we have to invoke the following linear represen-
tation lemma whose equivalent form was found by the first author [1, Eq. (8)].

Lemma 1. Let a and b be two indeterminates. There exist {Xi
ρ}

ρ
i=0 such that

1 =

ρ∑
i=0

⟨a− k⟩i ⟨b− k⟩ρ−i X
i
ρ,

where the coefficient Xi
ρ is independent of the variable k and given explicitly by

Xi
ρ = (−1)i+ρ

(
ρ

i

)
a− b+ ρ− 2i

(a− b− i)ρ+1
.

Observe that

⟨m+ λ⟩2k+δ = 4k ⟨m+ λ⟩δ

⟨
m+ λ− δ

2

⟩
k

⟨
m+ λ− δ − 1

2

⟩
k

.

By specifying in Lemma 1

ρ → λ− 2, a → m+ λ− δ

2
and b → m+ λ− δ − 1

2
,

we have a linear equation

1 =

λ−2∑
i=0

Yi
λ

⟨
m+ λ− δ

2
− k

⟩
i

⟨
m+ λ− δ − 1

2
− k

⟩
λ−2−i

,

where

Yi
λ = (−1)λ−i

(
λ− 2

i

)
λ− 3

2 − 2i

( 12 − i)λ−1

. (2)

Therefore, we can rewrite

⟨m+ λ⟩2k+δ = ⟨m+ λ⟩2k+δ

λ−2∑
i=0

Yi
λ

⟨
m+ λ− δ

2
− k

⟩
i

⟨
m+ λ− δ − 1

2
− k

⟩
λ−2−i

= 4k ⟨m+ λ⟩δ
λ−2∑
i=0

Yi
λ

⟨
m+ λ− δ

2

⟩
k+i

⟨
m+ λ− δ − 1

2

⟩
k+λ−2−i

.

Now we are ready to examine the sum Ωλ,δ(m) for 2 < λ ≤ 1 + δ + m, where
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δ ∈ {0, 1}. Express it first as a double sum below:

Ωλ,δ(m) =
m∑

k=0

(−1)k
k! ⟨m+ λ⟩2k+δ

(2k + δ)! ⟨m⟩k

=

(
m+ λ

δ

) λ−2∑
i=0

Yi
λ

⟨
m+ λ− δ

2

⟩
i

⟨
m+ λ− δ − 1

2

⟩
λ−2−i

×
m∑

k=0

(−1)k
⟨
m+λ−δ

2 − i
⟩
k

⟨
3+m−λ−δ

2 + i
⟩
k

( 12 + δ)k ⟨m⟩k
.

Then defining the sequence

Tk =

⟨
m+λ−δ

2 − i
⟩
k

⟨
3+m−λ−δ

2 + i
⟩
k

(δ − 1
2 )k ⟨m+ 1⟩k

,

we can compute

Tk + Tk+1 = ∆i
m

⟨
m+λ−δ

2 − i
⟩
k

⟨
3+m−λ−δ

2 + i
⟩
k

( 12 + δ)k ⟨m⟩k
,

where ∆i
m is a constant independent of k

∆i
m =

(δ + 2 +m− λ+ 2i)(δ − 1 +m+ λ− 2i)

2(2δ − 1)(m+ 1)
. (3)

By telescoping, we can evaluate the sum

m∑
k=0

(−1)k
⟨
m+λ−δ

2 − i
⟩
k

⟨
3+m−λ−δ

2 + i
⟩
k

( 12 + δ)k ⟨m⟩k
=

m∑
k=0

(−1)k
Tk + Tk+1

∆i
m

=
T0

∆i
m

+ (−1)m+1Tm+1

∆i
m

=
1

∆i
m

,

where Tm+1 vanishes since among the two factors appearing in the numerator of
Tm+1, there is one falling factorial with its parameter inside ⟨· · ·⟩ being an integer
between 0 and m.

Therefore, after substitution, we find the following general summation formula.

Theorem 1 (2 < λ ≤ 1+ δ+m with δ ∈ {0, 1}). For λ ∈ N with λ > 2, let Yi
λ and

∆i
m be defined by (2) and (3), respectively. Then the following formula holds:

Ωλ,δ(m) =

(
m+ λ

δ

) λ−2∑
i=0

Yi
λ

∆i
m

⟨
m+ λ− δ

2

⟩
i

⟨
m+ λ− δ − 1

2

⟩
λ−2−i

.

When λ is a small integer, we can compute Ωλ,δ(m) by this theorem in a few
terms, for example, those displayed in propositions 1, 2 and Corollary 1. Further
summation formulae are recorded below.
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Ω3,0(m)

m∑
k=0

(−1)k
(
m+3
2k

)(
m
k

) =
2(3−m)

m(m− 1)
.

Ω4,0(m)

m∑
k=0

(−1)k
(
m+4
2k

)(
m
k

) =
2(m2 − 7m+ 16)

m(m− 1)(2−m)
.

Ω4,1(m)

m∑
k=0

(−1)k
(
m+4
2k+1

)(
m
k

) =
2(m2 − 3m+ 4)

m(m− 1)
.

Ω5,0(m)

m∑
k=0

(−1)k
(
m+5
2k

)(
m
k

) =
2(5−m)(m2 − 7m+ 24)

⟨m⟩4
.

Ω5,1(m)

m∑
k=0

(−1)k
(
m+5
2k+1

)(
m
k

) =
2(m− 3)(m2 − 3m+ 8)

⟨m⟩3
.

3. Four binomial transformation formulae

When λ ∈ {0, 1}, the corresponding binomial sums Ωλ,δ(m) have no closed formulae.
However, they can be expressed in this case as finite reciprocal sums of binomial
coefficients. For this purpose, we need the following crucial lemma.

Lemma 2. For the reciprocal sum of binomial coefficients

Sm =

m∑
k=0

(
m

k

)−1

,

we have the following identity:

Sm =
m+ 1

2m

m∑
k=0

2k

k + 1
.

Furthermore, Sm satisfies the recurrence relation

Sm = 1 +
m+ 1

2m
Sm−1.

The results in this lemma were the subject of problem 1 in the afternoon session
of the 1958 Putnam Exam and then recorded first by Comtet [4, Exercise 15, p. 294]
(see also [7, Exercise 5.100, pp. 542–543]). Different proofs for the identity in the
middle can be found in [8, 11–13]. To make the paper self–contained, we produce
their proofs below.

Proof. Writing the inverse binomial coefficient in terms of the Beta integral(
m

k

)−1

= (m+ 1)B(m− k + 1, k + 1) = (m+ 1)

∫ 1

0

xm−k(1− x)kdx,
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then interchanging the order between the sum and the integral, we can proceed with

Sm =

m∑
k=0

1(
m
k

) = (m+ 1)

∫ 1

0

m∑
k=0

xm−k(1− x)kdx

= (m+ 1)

∫ 1

0

xm+1 − (1− x)m+1

2x− 1
dx

=
m+ 1

2

∫ 1

0

xm+1 − 2−m−1

x− 1/2
dx+

m+ 1

2

∫ 1

0

2−m−1 − (1− x)m+1

x− 1/2
dx

=
m+ 1

2

m∑
k=0

∫ 1

0

xk

2m−k
dx+

m+ 1

2

m∑
k=0

∫ 1

0

(1− x)k

2m−k
dx

= (m+ 1)

m∑
k=0

∫ 1

0

xk

2m−k
dx =

m+ 1

2m

m∑
k=0

2k

k + 1
.

This proves the identity in the lemma. The recurrence relation follows easily by
putting aside the end term from the above expression:

Sm =
m+ 1

2m

m∑
k=0

2k

k + 1
= 1 +

m+ 1

2m

m−1∑
k=0

2k

k + 1

= 1 +
m+ 1

2m

{
Sm−1 ×

2m−1

m

}
= 1 +

m+ 1

2m
Sm−1.

Alternative proof. Thanks to the anonymous referee, who offers the following elegant
and independent proof for the above recurrence relation. Firstly, by taking out the
initial term with k = 0, write

Sm = 1 +

m∑
k=1

(
m

k

)−1

= 1 +

m−1∑
k=0

k + 1

m
(
m−1
k

) .
Then by putting aside the end term k = m, we can also write

Sm = 1 +

m−1∑
k=0

(
m

k

)−1

= 1 +

m−1∑
k=0

m− k

m
(
m−1
k

) .
Now adding the two equations, we confirm the recurrence relation

2Sm = 2 +

m+1∑
k=0

(
m

k

)−1

= 2 +
m+ 1

m
Sm−1.

Proposition 3.

Ω1,1(m) =

m∑
k=0

(−1)k
(
m+1
2k+1

)(
m
k

) =

m∑
k=0

1(
m
k

) .
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Proof. This can be done by showing that the sum Ω1,1(m) satisfies the same recur-
rence relation as Sm in Lemma 2. Recalling that(

m

k

)
=

(
m− 1

k

)
m

m− k
and

m− k

m
=

1

2
+

m− 2k

2m
,

we can reformulate the sum

Ω1,1(m) =

m∑
k=0

(−1)k
(
m+1
2k+1

)(
m
k

) =

m−1∑
k=0

(−1)k
(
m+1
2k+1

)(
m−1
k

) m− k

m

=
1

2

m−1∑
k=0

(−1)k
(
m+1
2k+1

)(
m−1
k

) +
m+ 1

2m

m−1∑
k=0

(−1)k
(

m
2k+1

)(
m−1
k

)
=

1

2
Ω2,1(m− 1) +

m+ 1

2m
Ω1,1(m− 1).

According to Proposition 1, we get the recurrence relation

Ω1,1(m) = 1 +
m+ 1

2m
Ω1,1(m− 1).

Keeping in mind the initial value Ω1,1(0) = 1, we conclude that Ω1,1(m) = Sm.

Proposition 4.

Ω1,0(m) =

m∑
k=0

(−1)k
(
m+1
2k

)(
m
k

) = 2−
m∑

k=0

1(
m
k

) .
Proof. According to the binomial recurrence(

m+ 2

2k + 1

)
=

(
m+ 1

2k + 1

)
+

(
m+ 1

2k

)
,

we get the following expression

Ω1,0(m) = Ω2,1(m)− Ω1,1(m).

Then the desired identity follows immediately from propositions 1 and 3.

Proposition 5.

Ω0,0(m) =

m∑
k=0

(−1)k
(
m
2k

)(
m
k

) = m+ 1− m

2

m∑
k=0

1(
m
k

) .
Proof. Similarly to the proof of Proposition 3, we can reformulate

Ω0,0(m) =

m∑
k=0

(−1)k
(
m
2k

)(
m
k

) =

m−1∑
k=0

(
m
2k

)(
m−1
k

)m− k

m

=
1

2

m−1∑
k=0

(−1)k
(
m
2k

)(
m−1
k

) +
1

2

m−1∑
k=0

(−1)k
(
m−1
2k

)(
m−1
k

)
=

1

2
Ω1,0(m− 1) +

1

2
Ω0,0(m− 1).
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Evaluating the above Ω1,0(m−1) by Proposition 4 and then multiplying the resulting
equation by 2m, we get the recurrence relation below:

2mΩ0,0(m)− 2m−1Ω0,0(m− 1) = 2m − 2m−1Sm−1.

Summing the above equation over m from 1 to m by telescoping and taking into
account that Ω0,0(0) = 1, we get the equality

2mΩ0,0(m) = 2m+1 − 1−
m∑

n=1

2n−1Sn−1. (4)

Recalling Lemma 2 and then exchanging the summation order, we can express the
last sum with respect to n as follows:

m∑
n=1

2n−1Sn−1 =

m∑
n=1

n

n∑
k=1

2k−1

k
=

m∑
k=1

2k−1

k

m∑
n=k

n

=

m∑
k=1

2k−1

k

{(
m+ 1

2

)
−
(
k

2

)}

=

(
m+ 1

2

) m∑
k=1

2k−1

k
−

m∑
k=1

(k − 1)2k−2.

Evaluating further
m∑

k=1

(k − 1)2k−2 = 1− 2m + 2m−1m,

we find the closed form expression

m∑
n=1

2n−1Sn−1 = 2m−1m(Sm − 1)−
(
1− 2m + 2m−1m

)
= 2m+1 − 1 + 2m−1mSm − 2m(m+ 1).

By making substitution in (4), we finally arrive at

2mΩ0,0(m) = 2m(m+ 1)− 2m−1mSm.

Dividing across by 2m gives rise to the identity in Proposition 5.

Proposition 6.

Ω0,1(m) =

m∑
k=0

(−1)k
(

m
2k+1

)(
m
k

) =
m+ 2

2

m∑
k=0

1(
m
k

) −m− 1.

Proof. By making use of the binomial recurrence(
m+ 1

2k + 1

)
=

(
m

2k

)
+

(
m

2k + 1

)
we get the following expression

Ω0,1(m) = Ω1,1(m)− Ω0,0(m).

Then the desired identity follows immediately from propositions 3 and 5.
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4. Asymptotic values

Farmer and Leth [5] investigated asymptotic behaviors of some binomial sums. When
m → ∞, asymptotic values of the Ωλ,δ(m) sums can be determined. We start from
the following limiting relations.

Lemma 3. There is the limiting value

lim
m→∞

S(m) = lim
m→∞

m∑
k=0

(
m

k

)−1

= 2.

More precisely, we have the asymptotic estimation with the subdominant term

S(m) = 2

{
1 +

1

m
+ O

( 1

m2

)}
.

Proof. For m ≥ 4, by pulling out the two initial and the two end terms from the
sum, write

S(m) = 2 +
2

m
+

m−2∑
k=2

(
m

k

)−1

.

Since the binomial coefficients
(
m
k

)
are unimodal with respect to k, we have the

inequalities

2 +
2

m
< S(m) = 2 +

2

m
+

m−2∑
k=2

(
m

k

)−1

≤ 2 +
2

m
+

m− 3(
m
2

) < 2 +
4

m
.

Letting m → ∞, we confirm the limiting value of S(m).
The asymptotic estimation is similarly determined by

S(m) = 2 +
2

m
+

2(
m
2

) +

m−3∑
k=3

(
m

k

)−1

≤ 2 +
2

m
+

2(
m
2

) +
m− 5(

m
3

) .

Applying this lemma to propositions 3–6, we can easily deduce the following
interesting asymptotic relations.

Proposition 7 (Limiting values).

Ω1,1 lim
m→∞

m∑
k=0

(−1)k
(
m+1
2k+1

)(
m
k

) = 2,

Ω1,0 lim
m→∞

m∑
k=0

(−1)k
(
m+1
2k

)(
m
k

) = 0,

Ω0,0 lim
m→∞

m∑
k=0

(−1)k
(
m
2k

)(
m
k

) = 0,

Ω0,1 lim
m→∞

m∑
k=0

(−1)k
(

m
2k+1

)(
m
k

) = 2.
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Instead, the explicit formulae obtained in Section 2 for Ωλ,δ(m) with λ ≥ 2 sug-
gest the following remarkable results that are not deducible directly from Theorem 1.

Theorem 2 (Limiting values: λ ≥ 0).

Ωλ,0 lim
m→∞

m∑
k=0

(−1)k
(
m+λ
2k

)(
m
k

) = 0,

Ωλ,1 lim
m→∞

m∑
k=0

(−1)k
(
m+λ
2k+1

)(
m
k

) = 2.

Proof. The two limiting values can be shown by means of the induction principle
on λ. For λ = 0, 1, the limiting values are already given in Proposition 7. When
λ = 2, both values are confirmed by the explicit formulae given in propositions 1
and 2. Suppose that they are true for all λ with 2 ≤ λ < n. Then we have to
validate them for λ = n. For δ ∈ {0, 1}, recall the binomial recurrence relation(

m+ n

2k + δ

)
=

(
m+ n− 1

2k + δ

)
+

(
m+ n− 1

2k + δ − 1

)
. (5)

When δ = 1, we can write

Ωn,1(m) = Ωn−1,1(m) + Ωn−1,0(m).

Then according to the induction hypothesis, we get

lim
m→∞

Ωn,1(m) = lim
m→∞

Ωn−1,1(m) + lim
m→∞

Ωn−1,0(m) = 2 + 0 = 2.

Instead, when δ = 0, we have from (5) that

Ωn,0(m) = Ωn−1,0(m) +

m∑
k=0

(−1)k
(
m+n−1
2k−1

)(
m
k

)
= Ωn−1,0(m)−

m−1∑
k=0

(−1)k
(
m+n−1
2k+1

)(
m

k+1

)
= Ωn−1,0(m)−

m−1∑
k=0

(−1)k
(
m+n−1
2k+1

)(
m−1
k

) × k + 1

m
,

where the summation index k has been shifted to k + 1 in the middle line. In view
of the linear equation

k + 1 =
(2k + 1)(m+ n)

2(m+ n− 1)
+

m+ n− 2− 2k

2(m+ n− 1)
,

we have the corresponding binomial relation:

k + 1

m

(
m+ n− 1

2k + 1

)
=

m+ n

2m

(
m+ n− 2

2k

)
+

1

2m

(
m+ n− 2

2k + 1

)
.
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Therefore, we can express further

Ωn,0(m) = Ωn−1,0(m)− m+ n

2m
Ωn−1,0(m− 1)− 1

2m
Ωn−1,1(m− 1).

Letting m → ∞ across the last equation and then appealing to the induction hy-
pothesis, we deduce that

Ωn,0(m) = 0− 0× 1

2
− 0× 2 = 0.

This completes the proof for the limiting values in Theorem 2.
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