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FAULT FEATURE EXTRACTION OF BEARINGS FOR THE
PETROCHEMICAL INDUSTRY AND DIAGNOSIS BASED ON
HIGH-VALUE DIMENSIONLESS FEATURES

Summary

The time and frequency domain features of a petrochemical unit have a variety of effects
on the fault type of bearings, and the signal exhibits nonlinearity, unpredictability, and
ergodicity. The detection system's important data are disrupted by noise, resulting in a huge
number of invalid and partial records. To reduce the influence of these factors on feature
extraction, this work presents a method for the fault feature extraction of bearings for the
petrochemical industry and for diagnosis based on high-value dimensionless features. Effective
data are extracted from the obtained data using a complex data preprocessing approach, and the
dimensionless index is expressed. Then, based on the distribution rule of the dimensionless
index, the high-value dimensionless features are retrieved. Finally, to ensure sample
completeness, a high-value dimensionless feature augmented model is developed. This
approach is applied to the bearing fault experiment platform of a petrochemical unit to
effectively classify the bearing fault features, which benefits theoretical guidance for the feature
extraction of bearings for a petrochemical unit.
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1. Introduction

Petrochemical unit bearings usually operate for a long period in extreme temperatures
and severe environments, at high speeds and with a large load. As a result, accurate
classification and identification of defect types is challenging. The concept of fault diagnosis is
the extraction of high-value defect features. Currently, research on signal analysis, fault feature
extraction, and enhanced features mostly focuses on the following three aspects.

(1) The Fourier series extends the time-frequency domain method. The frequency domain
signal is converted from the time domain signal. The inverse Fourier transform method is used
to convert the frequency domain feature to the time-domain feature. The time-domain property
can indicate signal properties such as the amplitude of the signal changing over time, whereas
the frequency-domain property can reflect the signal's periodicity and bandwidth variation. The
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authors of [1] intended to promote demand for high-quality products. The usage of monitoring
systems has become critical, and monitoring systems based on time-frequency signals, images,
and convolutional neural networks have been developed. The authors of [2] sought to enhance
methods for measuring, processing, and analysing infrasound noise generated by operational
wind turbines, as well as to investigate the applicability of the time-frequency ridge
transformation to the analysis of wind turbine infrasound data. Meanwhile, the authors of [3]
created a straightforward sensor-based system for detecting and identifying train issues. They
suggested a linear and quadratic time-frequency analysis of vibration for the purpose of
identifying and locating faults. Given the difficulty of extracting and recognizing internal
combustion engine time-frequency features, researchers have coupled feature optimization and
support vector machine (SVM) classification recognition to provide a new approach for
complicated structure failure signal recognition [4,5]. The authors of [6] used a time-frequency
feature and adaptive algorithms to perform failure signal recognition when maintaining and
identifying wind turbine electronic control system operating data.

(2) The dimensionless parameter describes the relation between two-dimensional
parameters. The acquired result is used to define a new parameter, which is insensitive to
amplitude and frequency in the normal state and is less affected by machine operating
conditions [7,8]. Through dimensionless indices, researchers have attempted to increase
diagnostic accuracy. A new intelligent fault diagnosis approach based on composite multi-scale
dimensionless indicators and affinity propagation clustering to identify the working conditions
of mechanical components is proposed in [9]. Considering that traditional dimensionless
indices usually suffer low diagnostic accuracy for mechanical components, a machinery fault
diagnosis scheme using redefined dimensionless indicators and minimum redundancy
maximum relevance (mRMR) feature selection is proposed in [10]. Meanwhile, the authors of
[11] suggested that data fusion in the process of the traditional fault diagnosis method is not
sufficiently accurate and they proposed a data fusion method based on mutual dimensionless
features. According to the difficulty in early feature extraction of the unit operation system,
scholars have analysed the dimensionless index feature distribution trend and fault sensitivity
to solve the difficult problem of finding dimensionless index sensitive factors [12].

(3) The representation of sample features is a challenge in the context of fault diagnostics
and artificial intelligence. The feature must be enhanced in a data-driven way to account for the
lack of representation and completeness. Sample feature augmentation is the selection of
secondary data using an SVM. The SVM affects the classification interface and reflects the
category edge information [13,14]. In [15], the authors proposed data augmentation optimized
for a generative adversarial network (GAN) that effectively leveraged the augmented data to
improve the learning of the discriminator and generator. Further, a multi-subject functional
magnetic resonance imaging (fMRI) data augmentation method to address the two above-
mentioned challenges is proposed in [16], which can improve the decoding accuracy of the
target subject. The authors of [17] investigated the small sample problem restriction in the
pattern recognition field and proposed an extracting and increasing capacity algorithm by
normal feature distribution boundary conditions. In [18], an overlapping of the bearing fault
dimensionless index ranges and poor fault diagnosis as well as a proposed fault diagnosis of the
rotating machinery based on a dimensionless index and a two-sample distribution test are
demonstrated.

A thorough research review highlighted the primary challenges associated with the fault
feature extraction of bearings for a petrochemical unit. The first major issue was the residue,
noise, and conflicting nature of the original data, which introduced uncertainty into the bearing
fault data. There was no unambiguous quantitative distinction between the characteristics.
Finally, a wide range of overlapping features contributed to the difficulties in extracting
petrochemical unit bearing fault features.

32 TRANSACTIONS OF FAMENA XLVI-4 (2022)



Fault Feature Extraction of Bearings N.Q. Su, Z.J. Zhou,
for the Petrochemical Industry and Diagnosis Q.H. Zhang, S.L. Hu, X.X. Chang
Based on High-Value Dimensionless Features

The main contributions and innovation of this work are as follows:

— According to the complex system preprocessing method, effective data were extracted
from the collected data, and a dimensionless index was expressed.

— The high-value dimensionless features were extracted based on the dimensionless
index distribution law.

— A high-value dimensionless feature augmented model was established to ensure
sample completeness.

2. The process of high-value dimensionless feature extraction

The definition of the high-value dimensionless feature is based on five dimensionless
characteristics. The many dimensionless properties exert little or no influence on one another
and can be easily differentiated. The feature extraction technique, which uses the same
dimensionless index as the abscissa and frequency as the ordinate and is based on the
dimensionless index normal distribution, results in the extraction of features that do not overlap.
This section discusses the process of extracting high-value dimensionless characteristics.

2.1  Construction of the wavelet denoising model and data augmentation

Wavelet denoising is the mathematical processing of wavelet coefficients with varying
scales. This is due to the fact that the effective and external noise signals have distinct wavelet
coefficient properties, allowing for the implementation of wavelet coefficient processing on the
noisy signal. The creation of a wavelet denoising model and data augmentation are detailed in
this section. First, we decomposed the number of wavelet decomposition layers and established
a threshold to obtain effective signals. Second, we examined the wavelet denoising impact and
signal reconstruction. Third, after denoising, the effective data were lost, and the cubic spline
data interpolation function was used for data augmentation.

(1) Wavelet transform analysis

Wavelet transform uses two or more wavelet bases to approximate the original function.
Assuming that the signal x(¢) is a square-integrable function, we have

_1
Wf(a,b)=j+°°|a| Zx(t)-w*(t_bjdt, (1)
. o P

where a denotes the scale factor, b is the translation factor, y *(¢) is the conjugate function of

the wavelet function w(¢) , and

Wf‘. is the 7 optimal scale size of the wavelet coefficient.
1

The petrochemical unit vibration signal is often disturbed by noise to form a large amount
of invalid data. In response to this problem, the wavelet transform method was used to
decompose the noisy signal, compress the energy to relatively small and large wavelet
coefficients, and select an appropriate threshold to filter the noise signal and retain the useful
sample signal. The estimated value is

S=THR(f(?), 1), (2)

where THR denotes the threshold processing function, and A represents the set threshold.
The generally set threshold parameter is A [19]

1 =1.48262logn ~MAD(\W,- ) 3)

where MAD denotes the average absolute deviation, » is the original signal x(#) which is
decomposed by n-layers of wavelet packets.
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2) Denoising model construction
A denoising model was constructed to grasp the effect of wavelet denoising and signal
reconstruction. Assuming that the original signal was sinusoidal, the noise signal was a

Gaussian white noise. The Gaussian white noise probability density function obeys the normal
distribution, and its density function is

_ 2
P(x) = J;% exp(—%} )

where a sinusoidal signal was added with a Gaussian white noise to simulate a noise
environment. z and o* are the mean and variance of the Gaussian distribution, respectively.
When x4 =0, o> =1, the distribution is referred to as a standard normal distribution. 4 simulation

was performed using a sinusoidal signal and a Gaussian white noise with a noise power of
—5 dB in the same dimension.

Figure 1 presents the signal change process. The original signal exhibited clear data and
high visibility, as the white Gaussian noise signal exhibited randomness. The signal
demonstrated randomness when the original signal was doped with noise. After using wavelet
denoising, the original signal was significantly restored, and the noise interference was reduced.
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Fig. 1 Signal changing process

A comparison of Figure 1(a) and Figure 1 (d) revealed an effective data loss phenomenon
mainly caused by the wavelet function selection, the decomposition layer number, and the
threshold setting, which led to data loss in the signal reconstruction process. Although the noisy
signal can obtain a large amount of effective data after denoising, effective data loss of the
complex systems will affect the feature representation.
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(3) Data augmentation after denoising

The signal data must be augmented to solve the problem of effective data loss and feature
representation completeness. For the main augmentation process, the cubic spline data
interpolation function was developed and its change rule was deduced from the existing data to
achieve data completeness.

2.2  Dimensionless index

The dimensional parameters often change due to the influence of load, speed, and external
noise. The dimensionless index must be introduced to reduce the different factors that influence
the dimensional parameters and fault signal excessive overlapping problem.

The dimensionless index is obtained by comparing two-dimensional parameters, which
are not sensitive to disturbance in the rotating machinery and can better express the fault
characteristics [20]. The dimensionless indices are the waveform index (i.e., the degree of
deviation and distortion of the waveform compared with the sine wave), the impulse index
(indicating the impact nature of the wave), the margin index (indicating the waveform size), the
peak index (i.e., whether or not the waveform has an impact; it is an index of the peak height),
and the kurtosis index (i.e., waveform sharpness, whether or not there is an impact), which are

defined as
) U“” [+ P(x)dX} ) ’/E(|x|’) “

¢, = 1
U: [+ p(x)dx}’" (")

where x denotes the amplitude of the vibrational random time domain signal, p(x) is the signal
x probability density function, and / and m are the numerator and denominator coefficients,
respectively. The dimensionless index obtained by Eq. (5) is presented in Table 1 [21].

The following equation verifies that the dimensionless feature in the normal state is less
affected by the working conditions and is only sensitive to changes in the probability density

function p(x)
1

oo, 1
lim D |x| p(x)dx}
j [—o0| ¥—% _ Ximax (6)
f +00 |X|
U_OO |x|p(x)dx}
Where Amax _ X inax , the maximum value is X,,,, = max{lxi|}, and when the working
|X| X Xy ot X,
N
conditions change, the collected sample data will also change, and we obtain
Xr’nax — Xmax +(iai)
|X| (Ta)+(x £ap)+---+(x, £a,)
N
— Xmax (iai) (7)
Xy +xp o+ X, (ta))+(ay)+-+(zay,)
N N

(2ay) +(Eay) +---+(%a,)
N
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Table 1 Dimensionless index formula

Dimensionless index Coefficient of numerator / and denominator m Calculation formula

=

[T peoe [y

Waveform Index =2, m=1 S = = Ko
U—x ‘x‘ p(x)dx} ‘X‘
1
lim[ Tl p(x)dx]
Pulse IndeX [ > oo, m= 1 I = il JLOO | | Xmax

! Uj:|x|p(x)dx:| ) |X
1
. o ! !

| 1 fim| [l peoae |y
Margin Index [ —o0; m =E CL, = =

oo L 2 X
[L |2 p(x)dx} '

+00
0

[ o]

Peak index = 0, m= 2 C/ = - — )(max
|:J'7x |x|2 p(x)dx:|2 rms
f x* p(x)dx
Kurtosis index N/A v 2
(.[7 x? p(x)dx)

In the formula, Xmax 1s the maximum value, X; is the root square amplitude, Xims is the
root mean square value, and |X] is the average amplitude [22].

The random signal probability density function is

P.[x <x(f) < x+ Ax]
Ax

= lim L{ lim 5}

p(x)= lim
Ax—0

)
M—>0Ax| T T

In the formula, Pr represents a continuous random variable with any real number
x<x(£)<x+Ax, Tx is the time sum of the signal amplitude falling between x and x+Ax, and 7 is
the sample length.

Although the working condition changes, the data Ax—0
( Ax = (iai )
(ta)+(xay)+--+(+a,)
N

dimensionless feature will be less affected by the working condition, and it is only sensitive to
the change in the probability density function, which is

X; X,

max _ “*max _ 9)

x(

— 0) are collected in a unit time in such a way that the

36 TRANSACTIONS OF FAMENA XLVI-4 (2022)



Fault Feature Extraction of Bearings N.Q. Su, Z.J. Zhou,
for the Petrochemical Industry and Diagnosis Q.H. Zhang, S.L. Hu, X.X. Chang
Based on High-Value Dimensionless Features

The dimensionless index is less affected by the changes in the working conditions. For
further research, the dimensionless feature of the mathematical relationship calculation is still
less affected by the changes in the working conditions. Assuming that the dimensionless

al(x) and Fz:bl(x)

features ) and F, are examples for verification, we have F, = , where
az(x) bz(x)
a,(x), a,(x), b,(x), and b, (x) are all dimension parameters [25].
Assuming F1+F>, there is
Fap, () AG)
a ()C) b2 ()C) (10)
_a(x)by (x)+ay (x) By (x) _ FhH(x)
a (x)by (x) F3(x)
Assuming F1-F2, there is
_poal®) b
1—F =
a (X) b2 (X) (11)
()b (x)-ay ()b (x) _ Fp()
ay (x)by () Fp(x)
Assuming F;-F,, thereis
pop Al B0 a(h() Fie. )
a(x) by(x) ay(x)by(x) Fp(x)
. K .
Assuming F =—, thereis
I8
Frp () (A0 _a(@h ()R w5

a(x)] by(x) ay(x)b(x) F3(x)’

The dimensionless index added, subtracted, multiplied, and divided using mathematical
operations is still dimensionless, further demonstrating that the dimensionless index is less
affected by the changes in the working conditions.

2.3 The extraction method of the high-value dimensionless feature

In this section, the method of normal distribution is used to observe dimensionless feature
distribution, and then, according to the dimensionless feature distribution, high-value
dimensionless features are extracted. Figure 2 shows the normal distribution of the waveform
index and kurtosis index. It can be seen from the figure that the waveform index and kurtosis
index of the bearing outer and inner ring faults excessively overlap, and the normal state and
ball fault show small overlapping. The interval distribution range of the non-overlapping part
of the waveform index and kurtosis index is as follows:

The distribution of the waveform index from the bearing outer ring fault interval was
(1.246 1.29). The bearing inner ring fault interval was (1.29 1.351). The normal-state interval
was (1.351 1.449). The bearing inner ring fault interval was (1.449 1.594), indicating a non-
overlapping part.

The kurtosis index distribution demonstrated many overlapping parts of different fault
features. The bearing outer ring fault interval was (3.142 3.79), the bearing inner ring fault
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interval was (3.79 4.63), and the bearing ball fault interval was (4.63 5.152). The normal-state
interval was (5.152 6.233), indicating a non-overlapping part.

The dimensionless features of the non-overlapping regions extracted are called high-value
dimensionless features.
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Fig. 2 Distribution of the waveform index and kurtosis index in different bearing faults

3. Bearing fault high-value dimensionless feature extraction

Experimental research was conducted with the help of the fault diagnosis platform, data
resources, and petrochemical monitoring equipment test conditions (Figure 3). The
petrochemical monitoring and diagnosis platform can simulate different typical fault states,
such as bearing outer and inner ring fault, bearing ball fault, and gear fault. Moreover, this
platform can achieve a composite fault design through faulty component combinations. The
experimental platform consisted of four parts, namely, an electric motor (the motor speed was
1000 min!), load controller, gearbox, and air compressor.

The fault types in this experimental study are the bearing inner and outer ring fault, and
the bearing ball fault. The rolling bearing parameters are as follows: bearing outer diameter
110 mm; bearing inner diameter 50 mm; and thickness 27 mm. The rolling diameter and rolling
number are 14 mm and 13, respectively. Figure 4 presents normal and faulty bearings.
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Load controller

Fig. 3 Petrochemical monitoring equipment fault diagnosis platform

Bearing Outer Ring Fault Bearing Inner Ring Fault Normal s;u

Fig.4 Presents normal and fault bearings

An analysis of the waveform and kurtosis indices revealed that although the distributions
of the different faults of the same dimensionless index overlapped, a sensitive interval existed
between each fault. Therefore, we performed high-value dimensionless feature extraction based
on the fault feature sensitivity interval to solve the problems of feature overlapping, coupling,
and poor sensitivity. The same dimensionless index was taken as the abscissa, and the frequency
was the ordinate. According to the dimensionless index distribution, two adjacent sample curve
intersections were chosen as the high-value dimensionless feature. Table 2 presents the high-
value dimensionless feature interval.

Table 2 Interval of high-value dimensionless feature

Status Normal Bearing Ball Bearing Outer Bearing Inner
Index Status Fault Ring Fault Ring Fault
Waveform Index (1.351 1.450) (1.450 1.595) (1.247 1.300) (1.300 1.351)
Peak Index (1.001 1.861) (0.267 0.993) (3.000 3.780) (3.780 5.000)
Margin Index (1.739 2.991) (0.532 1.735) (4.1 5.949) (5.949 8.000)
Pulse Index (1.524 2.504) (0.388 1.496) (3.84.936) (4.936 7.000)
Kurtosis Index (5.154 6.300) (4.633 5.152) (3.1423.79) (3.79 4.633)

According to the high-value dimensionless features extracted in Figure 2, Figure 5 is
augmented to ensure a balance of the extracted dimensionless features. This section establishes
random sampling generation based on the Markov chain sampling model to achieve an
augmented sample and ensure extracted high-value dimensionless feature completeness.
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Fig. 5 Distribution of different faults of bearing high-value waveform index and kurtosis index

The high-value waveform index distribution in Figure 5(a) revealed that the high-value
dimensionless features were augmented by the Markov chain random sampling model. We
observed fewer intersections and high distinguishability. Meanwhile, the high-value kurtosis
index distribution in Figure 5 (b) exhibited a significantly different fault distinction.

4. Evaluation of the petrochemical unit bearing fault high-value dimensionless feature

This section evaluates the high-value dimensionless features using the SVM + PSO
(Particle swarm optimization) intelligent pattern recognition method for evaluation. The model
output result was utilized as the evaluation index.

The data processing process: (1) Using the collector to randomly extract 1000 sets of fault
sample features on the rotating machinery fault diagnosis platform, 70% of the sample features
are used as training samples, and 30% of the sample features are used as test samples. (2) The
training sample is used as the label fault sample feature of SVM + PSO; the test sample is used
as the unknown unlabelled fault sample feature of SVM + PSO. (3) Without considering the
unknown unlabelled fault sample features, SVM + PSO finds the optimal hyperplane to separate
the two types of labelled samples.
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We selected the high-value dimensionless features as the training and test samples and
set three conditions of use: (1) the same training sample and different test samples; (2) the same
test sample and different training samples; and (3) random training and test samples. These
conditions will help reduce the fault sample evaluation process contingency and ensure accurate
evaluation. Tables 3 to 5 present the dimensionless feature evaluation results. Tables 6 to 8
show the high-value dimensionless feature evaluation results.

The evaluation results in Tables 3 to 5 indicate the normal-state dimensionless feature
evaluation results: 35%, 23.67%, 53.5%, 100%, 100%, and 100%. The bearing outer ring fault
dimensionless feature evaluation results were 100%, 0%, 0%, 0%, 89.85%, and 84.77%.
Meanwhile, the bearing inner ring fault dimensionless feature evaluation results were 100%,
100%, 100%, 100%, 69.65%, and 77.56%, and the bearing ball fault dimensionless feature
evaluation result was 100%.

Table 3 The dimensionless feature evaluation results of the same training sample and different test samples

. Training Test Correct Number of
Failure category Correct rate
samples samples number errors
200 70 130 35%
N 1
ormal Status 300 71 229 23.67%
. 200 200 0 100%
Bearing Ball Fault o0 300 300 0 100%
Bearing Outer Ring Fault 200 0 200 0%
g g 300 0 200 0%
200 200 0 1009
Bearing Inner Ring Fault 300 300 0 100 (;(:

Table 4 The dimensionless feature evaluation results of the same test sample and different training samples

. Training Test Correct Number of
Failure category Correct rate
samples samples number errors
700 107 93 53.5%
N 1 St
ormal Status 800 200 0 100%
700 200 0 100%
Bearing Ball Fault
caring Batl Fau 800 200 200 0 100%
Bearine Outer Rine Fault 700 0 200 0%
earing Outer Ring Fau 200 0 200 0%
. . 700 200 0 100%
Bearing Inner Ring Fault 200 200 0 100%(:

Table 5 The dimensionless feature evaluation results of random training and test samples

. Training Test Correct Number of
Failure category Correct rate
samples samples number errors
Normal Status 703 197 197 0 100%
792 208 208 0 100%
695 205 205 0 100%
Bearing Ball Fault
caring Bat e 810 190 190 0 100%
. . 703 197 177 20 89.85%
Bearing Outer Ring Fault 203 197 167 30 R4.77%
. . 699 201 140 61 69.65%
Bearing Inner Ring Fault 795 205 159 46 77 56%

Tables 3 to 5 present the recognition effect of the normal state and bearing outer and inner
ring fault, in which the changes in the training and test samples were more obvious. The main
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reason for this is the dimensionless sample feature data coupling and overlapping, which results
in poor robustness and evaluation results. Tables 6 to 8 present the evaluation results of the
high-value dimensionless features.

Table 6 High-value dimensionless feature evaluation results of the same training sample and different test samples

. Training Test Correct Number of
Failure category Correct rate
samples samples number errors
200 200 0 1009
Normal Status o
300 300 0 100%
200 200 0 100%
Bearing Ball Fault )
600 300 300 0 100%
. ) 200 200 0 100%
Bearing Outer Ring Fault
300 300 0 100%
. . 200 200 0 100%
Bearing Inner Ring Fault
300 300 0 100%

Table 7 High-value dimensionless feature evaluation results of the same test sample and different training samples

. Training Test Correct Number of
Failure category Correct rate
samples samples number errors
Normal Status 700 200 0 100%
. 800 200 0 100%
700 200 0 100%
Bearing Ball Fault
cating Balt rau 800 200 200 0 100%
Bearing Outer Ring Fault 700 200 0 100%
e &*au 800 200 0 100%
. . 700 200 0 100%
Bearing Inner Ring Fault 200 200 0 100%

Table 8 High-value dimensionless feature evaluation results of random training and test samples

. Training Test Correct Number of
Failure category Correct rate
samples samples number errors
Normal Status 691 209 209 0 100%
808 192 192 0 100%
689 211 211 0 100%
Bearing Ball Fault
caring Batl Fau 781 219 219 0 100%
712 188 188 0 100%
Beari ter Ring Fault
caring Quter Ring Fau 811 189 189 0 100%
708 192 192 0 100%
Bearing I Ring Faul
earing Inner Ring Fault 300 200 200 0 100%

The evaluation results in Tables 6 to 8 indicate the high-value dimensionless sample
feature evaluation result of 100%. The evaluation results reveal that the high-value
dimensionless features extracted are beneficial in eliminating overlap and coupling between
each fault and in improving the classification and recognition effect of the faults. At the same
time, the evaluation results of the high-value dimensionless features were less affected by the
training and test samples.

5. Conclusion

Verification was performed using the high-value dimensionless features of the normal
state, bearing ball fault, and bearing inner and outer ring faults of the petrochemical unit
bearing. The experimental results demonstrate that the extracted high-value dimensionless
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features assist in reducing the influence of nonlinearity, unpredictability, and ergodicity and so
improve the effectiveness of fault classification and recognition. Additionally, the results of the
evaluation of the high-value dimensionless features are less affected by the training and test
samples and demonstrate a high degree of robustness.
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