Characterization of Pulp and Paper Properties Produced from Okra (Abelmoschus esculentus) Stalks

ABSTRACT • In this study, the usability of okra (Abelmoschus esculentus) stalks in pulp and paper production was investigated. Firstly, chemical components and fiber morphological properties were determined to investigate the suitability of okra stalks for pulp and paper production. Holocellulose, cellulose and lignin contents were found as 76.1%, 46.4% and 16.0%, respectively and the fiber length, fiber width and cell wall thickness were measured as 0.64 mm, 16.97 µm and 3.66 µm, respectively. According to these data, it has been determined that okra stalks are suitable for pulp and paper production. Four different cooking experiments were carried out by adding sodium borohydride (NaBH₄) in different proportions (0%, 0.3%, 0.5%, 0.7%) to okra stalks by the alkali sulfite method. The yield, chemical, physical and optical properties of the pulps were determined and optimum properties were obtained from the cooking experiment by adding up to 0.7% NaBH₄ into cooking liquor. With the addition of 0.7% NaBH₄, pulp yield, breaking length, and burst index increased about 7.73%, 3.84%, and 11%, respectively. Consequently, it has been concluded that pulp produced from okra stalks can be used in the paper industry by blending with long or recycled fibers in certain proportions.

KEYWORDS: okra stalk; pulp; paper; NaBH₄

SAŽETAK • U ovom je radu istraživana upotrebljivost stabljika bamije (Abelmoschus esculentus) za proizvodnju celuloze i papira. Radi ispitivanja prikladnosti stabljika bamije za proizvodnju celuloze i papira, najprije su određeni udjeli kemijskih komponenta i morfološka svojstva vlakana. Utvrđeni su udjeli holoceluloze, celuloze i lignina iznosili 76.1%, 46.4% i 16.0%. Duljina vlakana, širina vlakana i debljina stanične stijene bili su 0.64 mm, 16.97 µm i 3.66 µm. Prema tim podacima utvrđeno je da su stabljika bamije pogodna za proizvodnju celuloze i papira. Četiri različita pokusa kuhanja alkalno sulfitnim postupkom, uz dodatak natrijeva borhidrida (NaBH₄) u određenim količinama (0%, 0.3%, 0.5%, 0.7%) utvrđeni su optimalni svojstva pulpe. Na osnovu istraživanja utvrđeno je da se pulpa proizvedena od stabljika bamije može upotrebljavati u industriji papira u određenim omjerima s dugim ili recikliranim vlaknima.

KLJUČNE RIJEČI: stabljika bamije; pulpa; papir; NaBH₄

1 Authors are researchers at KSU Faculty of Forestry, Department of Forest Product Engineering, Kahramanmaraş, Turkey.
1 INTRODUCTION
1. UVOD

The decline in forest areas led the forest products industry to find new raw materials in the second half of the 20th century, particularly with the increase in global population and the increase in demand for forest products due to rapid technological developments (Oner and Aslan, 2002; Tutuş et al., 2011; Birinci et al., 2020). There are various cellulosic raw materials in the pulp and paper production. The most important of these is the wood. If the insufficiency in raw materials is considered to be a major problem of the present and the future, the focus should be placed on annual plants for the production of pulp and paper (Kaldor, 1992; Comlekcioglu et al., 2016; Tutuş et al., 2016a).

Flax, cotton, bamboo and cereal stalks have been widely used in the pulp and paper production as non-wood plants and agricultural residues. Okra (Abelmoschus esculentus) stalks might be one of the promising plants for the production of non-woody paper (Jimenez et al., 2008; Rodriguez et al., 2010). The okra (Abelmoschus esculentus) and cotton (Gossypium hirsutum) families are Malvaceae. Okra is one of the earliest cultivated crops, recorded by the Egyptians in 1216 AD, but strong evidence has been obtained that okra was grown earlier in Ethiopia and some other reports considered India to be the center of its origin (Lamont, 1999; Singha et al., 2014; Tong, 2016). According to the Food and Agriculture Organization of the United Nations (FAO), approximately 9.95 million tons of okra were produced in the world in 2019 (Faostat, 2021). As a result of negotiations with okra farmers, 2 kg of okra stalk is obtained in the production of 1 kg of okra and this amount will have an important place in the wood products industries, especially in the pulp and paper industry where an alternative to wood is sought. Atik has utilized okra stalks to produce pulp and paper using the soda-AQ (anthraquinone) method and reported that good pulp could be produced from okra stalks as an alternative raw material to wood and other non-wood lignocellulosic materials in pulp and paper production.

2 MATERIALS AND METHODS
2. MATERIJALI I METODE

2.1 Material
2.1. Materijali

The okra stalks used in the study were obtained from Kahramanmaraş-Turkey after harvest. The stalks were removed from their shells and impurities and chipped at a size of about 4-6 cm, suitable for pulp production.

2.2 Chemical components and fiber morphology determination
2.2. Određivanje udjela kemijskih komponenata i morfologije vlakana

A sufficient amount of air-dried samples to be used in the chemical analysis was ground in a laboratory type Wiley mill according to the TAPPI T257 standard method and sieved in 40 mesh (425 μm) and 60 mesh (250 μm) vibrating sieves. The part that passed through a 40 mesh sieve and remained on the 60 mesh sieve was taken and put into glass jars with lids and prepared to be used in chemical analysis. Then, the samples were subjected to the following chemical analysis: holocellulose (Wise and Karl, 1962), cellulose (Kürschner and Hoffer, 1969), alpha cellulose (TAPPI T203), lignin (TAPPI T222), ethanol-toluene solubility (ASTM D1107), ash content (TAPPI T211),

These studies were generally done to stop or reduce the peeling reaction that occurs during cooking. Anthraquinone and boron compounds are commonly used for this purpose. Many studies have been conducted investigating the effect of sodium borohydride (NaBH₄) additive, one of the boron compounds, on the pulp and it has been reported that it has a positive effect on the pulp (Pettersson and Rydholm, 1961; Meller, 1963; Khaustova et al., 1971; Akgül and Temiz, 2006; Istek and Özkan, 2008; Tutuş et al., 2012). Since NaBH₄ is a strong reducer, it prevents yield losses in the cooking environment. During the cooking process, NaBH₄ reduces the carbonyl group at the reducing ends of the cellulose chain to a hydroxyl group and prevents the peeling reaction that may occur. This reaction occurs not only in cellulose, but also in hemicelluloses. Therefore, the yield loss caused by the peeling reaction is prevented and the yield of the pulp obtained is increased (Akgül and Temiz, 2006; Istek and Özkan, 2008).

Due to the shortage of raw materials in the paper industry, it has been important in recent years to achieve maximum efficiency and quality with new raw materials in pulp production. This study focused on investigating the usability of okra stalks as an alternative raw material to wood and other non-wood lignocellulosic materials in pulp and paper production.
water (TAPPI T207) and 1 % NaOH (TAPPI T212) solubilities. For each experiment, three repetitions were performed, and mean data were used.

The length, lumen diameter, and width of the fibers included in the structure of the morphological parts of the okra stalks are important in terms of paper production. In the preparation of the slides, the chloride maceration method was used to individualize the fibers. Permanent slides were then prepared from the macerated fibers using a glycerin-gelatin solution. In the measurements of fiber morphology; fiber length, lumen diameter and fiber widths were determined by using Nikon FS1 photo microscope (Kılıç Ak et al., 2021). At least 100 measurements were made for each fiber dimension. Thereupon, the fiber parameters were calculated using a previously described procedure (Comlekcioglu et al., 2016) by Eqs. 1-4 given below.

\[
\text{Felting ratio} = \frac{\text{Fiber length}}{\text{Fiber diameter}} \quad (1)
\]

\[
\text{Elasticity coefficient (\%)} = \frac{\text{Lumen diameter}}{\text{Fiber diameter}} \times 100 \quad (2)
\]

\[
\text{Rigidity coefficient (\%)} = \frac{\text{Cell wall thickness}}{\text{Fiber diameter}} \times 100 \quad (3)
\]

\[
\text{Runkel ratio} = \frac{\text{Cell wall thickness}^2}{\text{Lumen diameter}} \quad (4)
\]

2.3 Pulp production from okra stalks

2.3. Proizvodnja pulpe od stabljika bamije

Cooking processes were carried out in a laboratory type rotary cylindrical digester with a capacity of 15 liters, electrically heated, resistant to a pressure of 25 bar, capable of 4 revolutions per minute, whose temperature can be controlled by thermostat with an automatic control table. The filling of the raw material and unloading of the pulps were done by hand, and 500 grams oven-dried dry okra stalks chips were used in each cooking. Four cooking experiments were carried out under the cooking conditions listed in Table 1.

The pulps obtained at the end of each cooking were washed on a 200 mesh screen with plenty of tap water until the black liquor was removed. After the chemical substances were removed by washing, it was disintegrated in a laboratory type pulp disintegrator for 10 minutes at a certain concentration, and the uncooked parts were separated by a vibrating screen with a slit opening of 0.15 mm. The kappa numbers and viscosity values of the screened pulps were determined according to TAPPI T236 and TAPPI T230, respectively.

2.4 Paper production and tests

2.4. Izrada papira i ispitivanje njegovih svojstava

The pulp obtained from okra stalks was beaten gradually in a Hollander device up to (35±5) SR° degree. The moisture content of the beaten pulps was determined and the pulp was converted into paper weighting approximately (70±2) g/m² in a semi-automatic Regmed RK-21 device. The test papers were conditioned in a conditioning room at (23±1) °C and a relative humidity of (50±2) % for 24 h according to TAPPI T402, after which they were physically and optically tested. The brightness was measured according to ISO 2470-1 as the optical property of the papers. The breaking length and burst index were determined in accordance with the standards TAPPI T494 and TAPPI T403, respectively, as the physical properties. Variance and Duncan tests have also been used to show the influence of NaBH₄ on the physical and optical characteristics of the paper.

3 RESULTS AND DISCUSSION

3. REZULTATI I RASPRAVA

3.1 Chemical components and fiber morphology properties of okra stalks

3.1. Udjeli kemijskih komponenata i morfološka svojstva vlakana od stabljika bamije

The chemical components of okra stalks and some annual plants and types of wood are given for comparison in Table 2 below. The holocellulose and cellulose contents of okra stalks were determined as 76.1 % and 46.4 %, respectively. These analyzed components have a similar val-
Table 2. Main chemical components of okra stalks, annual plants and types of wood

<table>
<thead>
<tr>
<th>Annual plants and wood species</th>
<th>Holocellulose</th>
<th>Cellulose</th>
<th>Alpha cellulose</th>
<th>Lignin</th>
<th>Ash</th>
<th>Ethanol-toluene solubility</th>
<th>Hot water solubility</th>
<th>Cold water solubility</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okra stalks (Std. Deviation)</td>
<td>76.1 (0.37)</td>
<td>46.4 (0.16)</td>
<td>37.8 (0.12)</td>
<td>16.0 (0.27)</td>
<td>4.90 (0.12)</td>
<td>6.40 (0.02)</td>
<td>37.1 (0.40)</td>
<td>17.5 (0.03)</td>
<td>Current study</td>
</tr>
<tr>
<td>Stabljike bamije (stand. devijacija)</td>
<td>46.4 (0.16)</td>
<td>37.8 (0.12)</td>
<td>16.0 (0.27)</td>
<td>4.90 (0.12)</td>
<td>6.40 (0.02)</td>
<td>37.1 (0.40)</td>
<td>17.5 (0.03)</td>
<td>17.9 (0.39)</td>
<td>Ovo istraživanje</td>
</tr>
<tr>
<td>Poppy stalks stabljike maka</td>
<td>79.8</td>
<td>40.9</td>
<td>51.7</td>
<td>19.2</td>
<td>4.70</td>
<td>-</td>
<td>30.4</td>
<td>10.4</td>
<td>Tutuş et al., 2011</td>
</tr>
<tr>
<td>Cotton stalks stabljike pamuka</td>
<td>75.6</td>
<td>45.5</td>
<td>39.8</td>
<td>18.2</td>
<td>2.50</td>
<td>6.10</td>
<td>30.9</td>
<td>14.3</td>
<td>Tutuş et al., 2010</td>
</tr>
<tr>
<td>Wheat stalks slama žitarica</td>
<td>77.6</td>
<td>52.5</td>
<td>40.2</td>
<td>17.3</td>
<td>7.10</td>
<td>5.50</td>
<td>42.1</td>
<td>13.0</td>
<td>Tutuş and Çiçekler, 2016</td>
</tr>
<tr>
<td>Softwood meko drvo</td>
<td>63-74</td>
<td>55-61</td>
<td>-</td>
<td>25-32</td>
<td>0.2-0.5</td>
<td>1-5.8</td>
<td>8-10</td>
<td>1-5</td>
<td>Kirci, 2006</td>
</tr>
<tr>
<td>Hardwood tvrdo drvo</td>
<td>72-82</td>
<td>38-55</td>
<td>-</td>
<td>18-26</td>
<td>0.2-0.7</td>
<td>1-6.2</td>
<td>12-25</td>
<td>1-8</td>
<td>Kirci, 2006</td>
</tr>
</tbody>
</table>

ue to hardwood and annual plants. Alpha cellulose content of okra stalks was slightly lower than that of other species. Lignin, which is one of the important components in terms of ease and economy of pulp production, was found to be lower than that of other lignocellulosic species. The ash content (4.9 %) was determined at similar rates with annual plants listed in Table 2. Although the high NaOH solubility rate is due to low molecular weight carbohydrates and other soluble alkaline substances, the high rate of fungal rot in okra stalks also affects it (Tutuş et al., 2016b). When the chemical components of okra stalks are examined, it is understood that they are generally in harmony with the literature as seen in Table 2. The components that are important in pulp and paper production are holocellulose and cellulose (Smook, 1992; Tutuş and Çiçekler, 2016; Tutuş et al., 2016b) in terms of yield, and these values are at the desired level. In addition, lower lignin contents make the fiber stronger and harder to break (Tran, 2006; Daud et al., 2014; Tutuş et al., 2015).

The fiber length, fiber width, lumen diameter, and cell wall thickness of okra stalks were measured as 0.64 mm, 16.97 µm, 9.64 µm, and 3.66 µm, respectively. The fiber parameters of okra stalks are presented in Table 3.

Felting ratio is calculated as the ratio of fiber length to fiber width. If this ratio is higher than 70, the tear, tensile, and double-folding strengths of the paper

Table 3. Fiber parameters of okra stalks in comparison with wood and other non-wood lignocellulosic materials

<table>
<thead>
<tr>
<th>Fiber dimensions</th>
<th>Okra stalks</th>
<th>Wheat stalks slama žitarica</th>
<th>Cotton stalks</th>
<th>Rice stalks</th>
<th>Hardwoods</th>
<th>Softwoods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felting ratio /viktost</td>
<td>37.7</td>
<td>62</td>
<td>33</td>
<td>58</td>
<td>45-65</td>
<td>60-80</td>
</tr>
<tr>
<td>Elasticity /elastičnost</td>
<td>56.8</td>
<td>27</td>
<td>63</td>
<td>71</td>
<td>35-65</td>
<td>70-80</td>
</tr>
<tr>
<td>Rigidity /tkratio</td>
<td>21.6</td>
<td>36</td>
<td>18</td>
<td>15</td>
<td>15-35</td>
<td>15-20</td>
</tr>
<tr>
<td>Runkel ratio / Runkelov omjer</td>
<td>0.76</td>
<td>2.7</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5-2</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td>Literature / Literatura</td>
<td>Current study</td>
<td>Ovo istraživanje</td>
<td>Tutuş and Çiçekler, 2016</td>
<td>Tutuş et al., 2010</td>
<td>Tutuş et al., 2004</td>
<td>Kirci, 2006</td>
</tr>
</tbody>
</table>
will be high (Bektas et al., 1999; Kirici, 2006; Istek et al., 2009). The felting ratio of okra stalk fibers was calculated as 37.7 on average. This ratio shows that okra stalk fibers are more similar to hardwood fibers than softwood. Fibers with a coefficient of elasticity ratio between 50 and 75 are partly thick-walled. It is stated that these values are obtained from lignocellulosic materials with a density of 0.5–0.7 g/cm³ (Bektas et al., 1999). Since these fibers are partially crushed during papermaking, quality papers can be produced (Bektas et al., 1999; Ozdemir et al., 2015). The rigidity coefficient is between 15-35 for softwoods and hardwoods. When this value is high, the strength properties of the paper such as tensile, burst, and tear strengths are adversely affected (Bektas et al., 1999). In this study, the rigidity coefficient of okra stalk fibers was calculated as 21.6, which is within the acceptable limit for paper production. The Runkel ratio of okra stalk fibers is 0.76, and fibers with a Runkel index less than 1 are thin-walled and very suitable for paper production. The Runkel ratio of okra stalk fibers was calculated as 21.6, which is within the acceptable limit for paper production. The Runkel ratio of okra stalk fibers is 0.76, and fibers with a Runkel index less than 1 are thin-walled and very suitable for paper production (Bektas et al., 1999; Ozdemir et al., 2015). Based on the results of the analyzed chemical components and fiber morphological properties of okra stalks, it was concluded that okra stalk is suitable for pulp and paper production.

3.2 Chemical, physical and optical properties of okra stalk pulps

3.2. Kemijska, fizička i optička svojstva pulpe od stabljika bamije

The pulp yields and some chemical properties of the okra stalk pulps obtained by different cooking experiments are given in Table 4. The total yield of pulp produced from okra stalks was around 32-35 %. It was found to be lower than that of wheat stalk (50-55 %), cotton stalk (37-44 %) and rice stalk (41-56 %) pulps, which we have published in our previous works (Tušu and Çiçekler, 2016; Tušu et al., 2004; Tušu et al., 2010). It is thought that the reason why the yields of pulp produced from okra stalks are lower than those of other stalks is due to the excess of substances dissolved in cold water and hot water, the lower cellulose content than other stalks, and the higher amount of material soluble in 1 % NaOH.

Kappa numbers of the okra stalk pulps show similar characteristics as stated in previous studies (Jahan et al., 2012), and similar to other species such as wheat, cotton, and rice stalks (Tušu and Çiçekler, 2016; Tušu et al., 2004; Tušu et al., 2010). A low kappa number indicates that the lignin content of the pulp is low and is easier to bleach (Correia et al., 2018; Przybysz Buzala et al., 2019; Birinci et al., 2020). Since okra stalk pulps have low kappa numbers (ranging from 25 to 33), they are easy to bleach, but considering the viscosity and DP values presented in Table 4, the strength properties of the papers produced after pulp bleaching will be low, since the chemicals used during bleaching will also damage carbohydrates.

It was observed that there was a certain increase in both pulp yield and viscosity values as a result of the addition of NaBH₄ to the cooking liquor. NaBH₄ has an effect on the yield as it has the capability of stopping the peeling reactions occurring in the cellulose chains. Although NaBH₄ decreased the kappa numbers at certain rates, it also increased the viscosity values. In recent studies, it has been observed that the kappa numbers of the pulps obtained by adding the NaBH₄ chemical to the cooking liquor in certain proportions decrease (Copur and Tozluoglu, 2008; Gülsoy and Eroglu, 2011; Isten and Gonteki, 2009).

Some physical and optical properties of the papers produced from okra pulps are given in Table 5.

The tensile index, burst index and brightness of the okra pulps were found as 60.7 (N·m/g), 3.00 kPa·m²/g and 27.5 ISO%. The physical and optical properties were determined similarly as in previous studies dealing with okra stalk pulp, as indicated in Ta-

Table 4 Pulp yields and some chemical properties of okra stalk pulps

<table>
<thead>
<tr>
<th>Cooking No Kahanje</th>
<th>NaBH₄ charge Udio NaBH₄ₛ</th>
<th>Screened yield Prinos, nakon prosijavanja, %</th>
<th>Screen reject Odbačeno na situ, %</th>
<th>Total yield Ukupan prinos, %</th>
<th>Kappa No Kappa broj</th>
<th>Viscosity Viskozitet, cm²/g</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>31.81a</td>
<td>0.56a</td>
<td>32.37a</td>
<td>33a</td>
<td>611a</td>
<td>871a</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>32.22a</td>
<td>0.59a</td>
<td>32.81a</td>
<td>32a</td>
<td>690a</td>
<td>997a</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>34.24ab</td>
<td>0.54ab</td>
<td>34.78a</td>
<td>29a</td>
<td>681ab</td>
<td>983a</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>34.43c</td>
<td>0.46c</td>
<td>34.89a</td>
<td>25c</td>
<td>673c</td>
<td>970c</td>
</tr>
<tr>
<td>Sig.</td>
<td>-</td>
<td>.002</td>
<td>.003</td>
<td>.015</td>
<td>.010</td>
<td>.012</td>
<td>.002</td>
</tr>
<tr>
<td>Jahan et al., 2012</td>
<td>Soda-AQ</td>
<td>30.4-32.2</td>
<td>5.5-7.1</td>
<td>37.5-37.7</td>
<td>28-30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jahan et al., 2012</td>
<td>Kraft</td>
<td>37.6-39.0</td>
<td>0.8-6.4</td>
<td>38.4-45.4</td>
<td>22-41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atik, 2002</td>
<td>Soda-AQ</td>
<td>-</td>
<td>-</td>
<td>45.0-47.3</td>
<td>82-86</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*DP refers to degree of polymerization. Mean values with the same lower-case letters are not significantly different at 95 % confidence level according to Duncan’s mean separation test.

*DP se odnosi na stupanj polimerizacije. Srednje vrijednosti s jednakim slovom prema Duncanovu se testu značajno ne razlikuju za razinu pouzdanosti od 95 %.

It was reported that respective values for wheat stalks were determined as 60.6 (N·m/g), 3.10 kPa·m²/g and 34.8 ISO% (Tutuş and Çiçekler, 2016). In another study, where pulp was produced from cotton stalks, the breaking length and burst index were found to be 4.30 km and 2.60 kPa·m²/g, respectively (Jahan et al., 2004). The physical properties of pulp produced from okra stalks are generally similar to other annual plant stalks. Although the brightness value of okra stalks is low, the pulps can be increased to higher brightness values because they are easy to bleach.

It was observed that the physical and optical properties of the papers produced from okra pulp improved with the increase in the NaBH₄ charge. Namely, with the addition of 0.7 % NaBH₄ to the cooking solution, the brightness increased by about 7 %. In their study Gülsoy et al. (2016) conducted kraft pulping from maritime pine wood with the addition of KBH₄ which is a powerful reducing agent similarly as NaBH₄. They stated that the optical properties of the obtained papers increased in parallel with the increase in the KBH₄ charge.

In many studies, it has been reported that boron compounds prevent the peeling reaction during cooking and cause less damage to carbohydrates, and therefore, the physical and optical properties of the produced papers improve (Akgül and Temiz, 2006; Istek and Özkan, 2008; Istek and Gonteki, 2009; Gumuskaya et al., 2011; Erisir et al., 2015; Gülsoy et al., 2016).

4 CONCLUSIONS

In this study, pulp and paper production from okra stalks and the characterization of pulp properties were made. According to the obtained results, the kappa numbers of the pulp produced from okra stalks were low and the viscosity values were high. It was noticed that the pulp yield was slightly lower than found in literature for other non-wood stalks. However, chemical properties show that okra stalk can be used as an alternative raw material for the pulp and paper industry. The physical properties of paper produced from okra stalk pulp are similar to those produced from wheat stalk and cotton stalk. The brightness values of the pulp of okra stalk were lower than literature values of the other non-wood stalks. However, due to the low kappa numbers, it is easily possible to obtain high-brightness pulps by bleaching. By adding 0.7 % NaBH₄ to the cooking liquor, the chemical, physical and optical properties of okra stalk pulps were improved. Based on the results of the analyzed properties, okra stalk pulps may be used to make a variety of papers by blending them with long fibers in certain proportions. Furthermore, by adding okra stalk fibers, the losses in the strength characteristics of the paper manufactured in waste paper recycling may be minimized. Similarly, the potential for using okra stalk fibers in the production of other papers is quite high.

Acknowledgements

This study has been prepared within the scope of “YÖK 100/2000 PhD Scholarship” and “TÜBİTAK 2244-Industrial PhD Program”. The authors thank YÖK and TÜBİTAK for their supports.

5 REFERENCES

Table 5 Physical and optical properties of papers produced from okra pulp

<table>
<thead>
<tr>
<th>Cooking No</th>
<th>NaBH₄ charge</th>
<th>Tensile index</th>
<th>Burst index</th>
<th>Brightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuhanje</td>
<td>Udio NaBH₄, %</td>
<td>Vlačni indeks, N·m/g</td>
<td>Indeks probijanja, kPa·m²/g</td>
<td>Svjetlina ISO, %</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>60.7ₐ</td>
<td>3.00ₐ</td>
<td>27.5ₐ</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>61.7ₐ</td>
<td>3.11ₐ</td>
<td>28.3ₐ</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>62.6ₐ</td>
<td>3.26ₐ</td>
<td>28.9ₐ</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>62.8ₐ</td>
<td>3.33ₐ</td>
<td>29.4ₐ</td>
</tr>
<tr>
<td>Sig.</td>
<td>-</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Jahan et al., 2012</td>
<td>Soda-AQ</td>
<td>39.6-71.4</td>
<td>2.3-4.3</td>
<td>-</td>
</tr>
<tr>
<td>Jahan et al., 2012</td>
<td>Kraft</td>
<td>51.3-80.7</td>
<td>3.5-5.3</td>
<td>-</td>
</tr>
<tr>
<td>Atik, 2012</td>
<td>Soda-AQ</td>
<td>70-72</td>
<td>1.76-2.85</td>
<td>11.22-12.84</td>
</tr>
</tbody>
</table>

Mean values with the same lower-case letters are not significantly different at 95 % confidence level according to Duncan’s mean separation test. Srednje vrijednosti s jednakim slovom prema Duncanovu se testu značajno ne razlikuju za razinu pouzdanosti od 95 %.
and paper manufacture. Turkish Journal of Agriculture and Forestry, 23 (3): 589-597.

36. Tran, A. V., 2006: Chemical analysis and pulping study of pineapple crown leaves. Industrial Crops and Prod...
Çiçekler, Özdemir, Tutuş: Characterization of Pulp and Paper Properties Produced from Okra (Abelmoschus esculentus)...

Corresponding address:

MUSTAFA ÇİÇEKLER
KSU Faculty of Forestry, Department of Forest Product Engineering, 46050 Kahramanmaraş, TURKEY,
e-mail: mcicekler87@gmail.com