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ABSTRACT
Here, decentralized robust interval type-2 (IT2) fuzzy model predictive control (MPC) for Tak-
agi–Sugeno (T-S) large-scale systems is studied. The large-scale systemconsists ofmany IT2 fuzzy
T–S subsystems. Important necessities that limit the practical application of MPC are the online
computational cost and burden of the frameworks. ForMPC of T–S fuzzy large-scale systems, the
online computational burden is even worse, and in some cases, they cannot be solved timely.
Especially for severe, large-scale systemswith disturbances, theMPC of T–S fuzzy large-scale sys-
tems usually give a conservative solution. So, researchers have many challenges and in finding
a reasonable solution in a short time. Although more comfortable results can be achieved by
the proposed fuzzyMPC approach, which adopts T–S large-scale systemswith nonlinear subsys-
tems, many restrictions are not considered. In this paper, challenges are solved, and the MPC
is designed for a nonlinear IT2 fuzzy large-scale system with uncertainties and disturbances.
Besides, the online optimization problem is solved, and results are proposed. Consequently,
the online computational cost of the optimization problem is reduced considerably. Finally, the
effectiveness of the proposed algorithm is illustrated with two practical examples.
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1. Introduction

Several years ago, the main task in engineering
was to control processes such as mechanical engi-
neering, electrical engineering, chemical engineering
etc. Researchers have proposed many algorithms and
approaches to solve the instability of systems. Systems
had been turned very large in scope and dynamic. Con-
sequently, the control of the process has become an
essential task. Various controllers have been designed
to encounter the instability of systems in industry and
academics such as adaptive and fuzzy control [12]. To
design an effective and authentic controller, it is an
important step to identify the dynamics of the sys-
tem precisely. In large-scale systems, it is almost impos-
sible to determine the dynamics of the system precisely.
Hence, the well-known fuzzy logic method is used. A
useful controller for large-scale systems that can control
the process is model predictive control (MPC). Because
MPC uses a cost function to compute the input vector,
it has been practical and popular for many years.

Today, almost all real systems investigated in indus-
try and academic are large scale and have a distinct
appeal for decades [34]. Besides, many control sys-
tems have become prominent and complex in com-
putation [5]. These systems are constructed by sev-
eral independent subsystems that work independently
with some known and unknown interactions. Lots

of research studies conducted in large-scale systems
have received much attention [67]. Recently, fuzzy sys-
tems with IF–THEN rules have become more preva-
lent, and most of the nonlinear and complex systems
are modelled by fuzzy logic method [89]. One of the
most powerful approaches to fill the gap between lin-
ear and severe nonlinear systems is the well-known
Takagi–Sugeno fuzzy model. Many investigations have
been done based on the T–S fuzzy model [1011].
Zamani and Zarif [12] and Bahrami et al. [13] pro-
pose a fuzzy inference system popular Takagi–Sugeno
fuzzy model. In [14], Takagi–Sugeno fuzzy model rep-
resents the dynamic of the unknown nonlinear sys-
tem. But in the previous research studies, uncertainties
were not involved in membership functions for the
type-1 fuzzy set. So the control problems for nonlinear
plants subject to uncertainties are not handled suc-
cessfully. If uncertainties of nonlinear plants result in
grades of membership uncertainties functions, condi-
tions based on Takagi–Sugeno type-1might be directed
to the conservativeness. Here, the interval type-2 (IT2)
fuzzy Takagi–Sugeno is used to fix uncertainties cap-
tured by IT2 membership functions [2,15]. In fact, IT2
has many merits in handling the grades of membership
uncertainties over type-1. Applicable IT2 has been used
widely in control algorithms such as [1617], in which
a nonlinear network control system has been modelled
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by IT2 for the synthesizing approach of dynamic output
feedback MPC. In [18], the adaptive sliding mode con-
trol problem is introduced for the uncertain nonlinear
system modelled by IT2 Takagi–Sugeno fuzzy model.

Recently, MPC has become popular as a reliable
control approach. By properly using the system model
to predict the output response, MPC methods allow
us to choose the optimal control action that mini-
mizes the desired cost function. In many applications,
MPC has been a viable alternative to many other clas-
sic schemes. For such applications, the advantages of
MPC are higher dynamic performance, a multivariable
controller design, the constraints on input and output
variables, and the possibility of including nonlineari-
ties in themodel and constraints. Although the need for
an accurate model may be a drawback in some applica-
tions, it is wondered how reliable models of systems are
usually available for control design [1920]. The gist of
the MPC is an optimal control sequence that is com-
puted by minimizing a finite horizon cost function at
each sampling time. Although, lots of research studies
have been done for many years without considering the
uncertainties and disturbances [21], both uncertainties
and disturbances in real systems may lead to incon-
stancy. So, using the robust MPC and the robust H∞
strategy, we try to diminish the effect of disturbances
and uncertainties [1922]. Many works have been stud-
ied in a nonlinear robustMPC, e.g. [2324]. In [25], both
online and offline robust fuzzy MPCs with structured
uncertainties and persistent disturbances are investi-
gated for usual systems. In [19], robust fuzzyMPCwith
nonlinear local models is introduced for which sepa-
rate controllers are proposed for nonlinear and linear
states of the system. The integration of photovoltaics
into distribution power systems with grid fault ride-
through capability is investigated by proposing a robust
MPC scheme in [26]. After that,many studies have been
improved as found in [27]. An important avenue to
MPC is based on the linear matrix inequalities (LMIs)
technique is proposed in [28] for linear parameter vary-
ing (LPV) systems. In [29], a new MPC is made for
polytypic LPV systems and a paradigm is adopted in
gain scheduling.

Obviously, it seems that MPC for IT2 fuzzy large-
scale systems with persistent disturbances have not
been studied, yet several problems remained unsolved.
Designing the MPC for the fuzzy large-scale sys-
tems with nonlinear and complex dynamic, consider-
ing the uncertainties and disturbances, has become a
real challenge and almost in all systems, it is impos-
sible to obtain a non-conservative solution for solv-
ing the online optimization problem. Consequently, by
the proposed method, this challenge is solved, and the
MPC is designed for a nonlinear fuzzy large-scale sys-
tem with uncertainties and disturbances. Besides, the
online optimization problem is solved, and the results
are illustrated. So, this paper contributes the following:

(1) an optimal control law is obtained at each sampling
instant solving an online optimization problem, (2)
proposing the IT2 fuzzyMPC for the discrete nonlinear
large-scale system, (3) more relaxed and robust results
are possible by the proposed method, (4) using the IT2
fuzzy Takagi–Sugenomodel for large-scale systems, (5)
using H∞ performance to encounter the disturbance.

The rest of this paper is constructed as follows: in
Section 2 some preliminay information about robust
IT2 fuzzy MPC of Takagi–Sugeno systems is intro-
duced. In Section 3, robust positive invariance (RPI)
and the computation of terminal constraint set for
nonlinear model-based fuzzy systems are provided. In
Section 4, a numerical example is offered. Finally, the
concluding remarks are given in Section 5.

2. Preliminaries

First, the input-to-state stability (ISS) is presented. Sec-
ond, the system description, IT2 fuzzy Takagi–Sugeno
large-scale system and theMPC are proposed. Further-
more, the prediction model, cost function and RPI set
are introduced.

2.1. Useful definitions and lemmas

ISS [30] is a stability notion broadly used to assess
the stability of nonlinear control systems with external
inputs. In the following, some practical definitions and
lemmas are provided.

Definition 1: [19] R,R+,Z and Z+ illustrate sets of
real numbers, positive real numbers, integers and posi-
tive integers, respectively. Z[m,n] is the symbol of set of
integers in the interval [m, n] for convenience. x depicts
the norm of vector xi ∈ Rc. A real-valued scalar function
κ : R+ → R+ is anM-function (κ ∈ M), if it is continu-
ous, rigidly increasing and κ(0) = 0. So we can say, κ ∈
M∞ if ∂ ∈ M and lim

s→∞ κ(s) = ∞. A function β : R+ ×
R+ → R+ is anML-function (β ∈ ML), if for each fixed
s > 0,β(., s) is a M-function, and for each fixed r > 0,
β(r, .) rigidly decreases and β(r, s) → 0 as s → ∞.

Definition 2: (Input-to-state stability) A discrete-time
nonlinear system x(k + 1) = f (x(k), d(k))where d is the
symbol of the disturbance vector, is input-to-state stable
(ISS) if there are anML-function β and anM-function γ
such that for each input d, ‖x(k)‖≤β(x(0), k)+ γ (‖ d ‖),
where x(0) is the initial state vector, d is the disturbance
sequence {d(0), d(1), . . . , d(k − 1)} and k∈Z+.

Definition 3: (ISS-Lyapunov Function [25]) A con-
tinuous positive definite function V(x(k)) is called
an ISS-Lyapunov function for the system x(k + 1) =
f (x(k), d(k)), if there are M∞− function κ1, κ2, κ3, and
M-function ρ such that

κ1(‖ x(k) ‖) ≤ V(x(k)) ≤ κ2(‖ x(k) ‖)
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V(x(k + 1))− V(x(k)) ≤ −κ3(‖ x(k) ‖)+ρ(‖ d(k) ‖)

Lemma1: [30] If the system x(k + 1) = f (x(k), d(k))
is acknowledged an ISS-Lyapunov function, then it is ISS.

2.2. System description

The IT2 fuzzy large-scale system, which consists of N
subsystems, is assumed. Here, each subsystem Si can
be designated by an IT2 fuzzy Takagi–Sugeno model as
shown below:

Sli :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

IF zi1 is F̃li1 and . . . and zig is F̃lig
THEN xi(k + 1) = Al

ixi(k)+ Bliui(k)

+Elidi(k)+
N∑

j = 1
i �= j

gijxj(k)

where i = 1, 2, . . . ,N; l = 1, 2, . . . , ri, Al
i,B

l
i and E

l
i are

the system matrices and disturbances of rule-l in the
subsystem Si ; xi(k) ∈ Rc the state vector, ui(k) ∈ Rn
the input vector, di(k) ∈ Rm the addition disturbance.
ri, gij and Fliq(q = 1, 2, . . . , g) introduce a number of
the fuzzy rules in the subsystem Si , the interconnec-
tion between subsystems and the linguistic IT2 fuzzy
sets of the rule l according to the function zi(k),
respectively. zi(k) = [zi1, zi2, . . . , zig] are some measur-
able premise variables for the subsystem Si. By using
singleton fuzzifier, product fuzzy inference and centre-
average defuzzifier, the IT2 fuzzy Takagi–Sugeno large-
scale system (3) is

x+
i = Ãiμxi + B̃iμui + Eiμdi

+
N∑

j = 1
i �= j

gijxj, i = 1, 2, . . . ,N (4)

Ãiμ =
ri∑
l=1

wl
i(ziq)A

l
i ; B̃iμ =

ri∑
l=1

wl
i(ziq)B

l
i

Eiμ =
ri∑
l=1

wl
i(ziq)E

l
i ; gij =

ri∑
l=1

wl
i(ziq)gij (5)

in which wl
i(ziq(k)) =

g∏
q=1

υ F̃liθ
(ziq(k)) ≥ 0 and w̄l

i

(ziq(k)) =
g∏

q=1
ῡF̃liθ

(ziq(k)) ≥ 0 illustrate the lower and

upper grades of membership functions, respectively. It
is obvious that νF̃liθ (ziq(k)) ∈ [0, 1] and ῡF̃liθ (ziq(k)) ∈
[0, 1] are the lower and upper membership func-
tions, respectively. And here, needless to say that,
ῡF̃liθ

(ziq(k)) ≥ υ F̃liθ
(ziq(k)), therefore, w̄l

i(ziq(k)) ≥ wl
i

(ziq(k)).
Here, xi+ illustrates the ith system state in the next

instant for simplicity. The following interval sets are the

firing strengths of the rule:

Wl
i = [w̄l

i,w
l
i]

wl
i(ziq) = w̄l

i(ziq(k))ρ̄
l
i(x(k))+ wl

i(ziq(k))ρ
l
i(x(k))

(6)

The parameter uncertainties existing in the nonlinear
plant can result in uncertainties of the membership
functions and determine the lower and upper member-
ship functions.We chose the lower and upper functions
as nonlinear functions related to the state variables.

Where ρ̄ li(x(k)) ∈ [0, 1] and ρ li(x(k)) ∈ [0, 1] are
nonlinear functions and satisfy ρ̄ li(x(k))+ ρ li(x(k))=1.

Remark 1 It is evident that the parameter uncer-
tainties are in almost all nonlinear plants, and they can
result in uncertainties in themembership functions and
determine the lower and upper membership functions.
In some investigations, ρ̄ li(x(k)) and ρ

l
i(x(k)) are the

known and constant parameters, respectively [31]. But,
in this paper the lower and upper functions are cho-
sen as nonlinear functions, related to the state variables.
Thus, for the stability analysis and design of the IT2, the
lower and upper membership functions can be exerted.

The nonlinear fuzzy MPC with the schematic as
shown in Figure 1, is as follows:

Cl
i :

{
IF zil is G̃l

i1 and . . . and zig is G̃l
ig

THEN ui(k) = klixi(k)
(7)

where i = 1, 2, . . . ,N; l = 1, 2, . . . , ri. For convenience,
we use the same weight notation wl

i(ziq) as in the sub-
system Si. Analogous to (7), the final output of the
controller for the corresponding subsystem Si is

ui(k) =
ri∑
l=1

hli(ziq)k
l
ixi(k) (8)

in which hli(ziq(k)) =
g∏

q=1
σ G̃l

iθ
(ziq(k)) ≥ 0 and h̄li

(ziq(k)) =
g∏

q=1
σ̄G̃l

iθ
(ziq(k)) ≥ 0 illustrate the lower and

upper grades of membership functions, respectively. It
is obvious that σ G̃l

iθ
(ziq(k)) ∈ [0, 1] and σ̄G̃l

iθ
(ziq(k)) ∈

[0, 1] are the lower and upper membership func-
tions, respectively. And here, it is needless to say
that σ̄G̃l

iθ
(ziq(k)) ≥ σ G̃l

iθ
(ziq(k)), therefore, h̄li(ziq(k))≥

hli(ziq(k)). The following interval sets are the firing
strengths of the rule:

hli(ziq)=
μ̄l
i(ziq(k))h̄

l
i(x(k))+μl

i(ziq(k))h
l
i(x(k))∑ri

l=1 μ̄
l
i(ziq(k))h

l
i(x(k))+μl

i(ziq(k))h
l
i(x(k))

,

Hl
i = [h̄li, h

l
i] (9)

where μ̄l
i(x(k)) ∈ [0, 1] and μl

i(x(k)) ∈ [0, 1] are non-
linear functions and satisfy μ̄l

i(x(k))+ μl
i(x(k)) = 1.
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Figure 1. Schematic diagram of the control.

Remark 2 To diminish the conservativeness in
designing the controller, it is better to choose the
rational values of the weighting coefficients [32]. So,
μ̄l
i(x(k)) andμ

l
i(x(k)) are chosen as the nonlinear func-

tions related to the state variables rather than the con-
stant ones to diminish the conservativeness.

Here, combining (4) and (8), the closed-loop IT2
fuzzy subsystem will be

xi(k + 1) =
ri∑
l=1

ri∑
m=1

wl
i(ziq)h

m
i (ziq)([Ã

l
i + B̃lik

m
i ]xi(k)

+ Elidi(k))+
ri∑
l=1

N∑
j = 1
i �= j

wl
i(ziq)gijxj(k)

(10)

2.3. Model predictive control

In this section, the prediction model of the system and
a specified finite horizon cost function are introduced.

xi(k + m + 1|k)
= Ãiμxi(k + m|k)+ B̃iμui(k + m|k)

+ Eiμdi(k + m|k)+
N∑

j = 1
i �= j

gijxj(k + m|k)

(11)

and finite horizon cost function that must be mini-
mized is

J(k) =
N∑
i=1

ji(k) =
N∑
i=1

(ψi(K)

+
T−1∑
m=0

ψi(k + m|k)+ Vin(xi(k + m|k))
)

(12)

where ψi(k + m|k) is the stage cost at the predicted
time. Vin(xi(k + T|k)) is called the terminal cost, with

Vin(·) being a positive definite function [33], and the
stage cost is selected as

ψ(k) =
N∑
i=1

ψi(k) ==
N∑
i=1
(xTi (k + m|k)Qxi(k + m|k)

+ uTi (k + m|k)Rui(k + m|k)
− τidTi (k + m|k)di(k + m|k)) (13)

where R and Q are fixed real matrices. By choosing
rational values of the weighs, we can reduce the con-
servativeness. So, different values of weights are applied
iteratively to get the best result, and τi is a positive scalar.
As it is evident, the cost function entails the distur-
bance, and obviously, the cost function is impressed by
the well-known H∞ control [34]. Thus, it is not suit-
able to optimize the cost function directly, while the
disturbance is involved. So, in that case, a min–max
approach is chosen that minimizes the worst-case cost
function [35]. At the end of the prediction, the states
enter a terminal constraint set to be asymptotic sta-
bility. xi(k + T|k) ∈ iw is the terminal constraint set.
The online optimization problem can be illustrated as
follows:

min
ui(k+m|k)

max
di(k+m|k)

Ji(k), (14)

s.t. ui(k + m|k) ∈ Ui

di(k + m|k) ∈ Di

xi(k + m|k) ∈ iw

and di ∈ Di := {di|dTi di ≤ ηi
2}, ui ∈ Ui := {ui||uis|

≤ uis.max} should be satisfied. Where ηi2 is a positive
scalar, uis is the sth element of the inputs , s ∈ Z[1,m].

3. Main results

3.1. Robust positively invariant set for the interval
type-2 fuzzy T–S large-scale systems

In this section, the robust positively invariant and con-
straint sets are defined. The trajectories of the system
are bounded robustly and this feature is guaranteed
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by the controller, as mentioned previously. The RPI
set is shown by iw, and ui(k) is the correspond-
ing control law. The RPI set property is provided as
∀xi ∈ iw, x+

i ∈ iw for all permissible uncertainties
and disturbances. iw is defined for the IT2 fuzzy T–S
large-scale system (3) as follows.

iw :=
{
xi

∣∣∣∣∣
ri∑
l=1

wl
i(ziq)x

T
i Piμxi ≤ ξi

}
(15)

where Piμ =∑ri
l=1 w

l
i(ziq)Pi, and ξi are positive scalars

and Pi is a positive constant matrix. The controller for
IT2 fuzzy Takagi–Sugeno large-scale system is ui(k) =∑ri

l=1 h
l
i(ziq)h

l
ixi(k).

Lemma 2: [25] The set iw is an RPI set if there is a
positive scalar λi, (0 < λi < 1), such that

N∑
i=1

{(
1
ξi
x+T

i P+
iμx

+
i − 1

ξi
xTi Piμxi

)

− λi

(
1
ηi2

dTi di −
1
ξi
xTi Piμxi

)}
≤ 0 (16)

with P+
iμ =∑ri

l=1 w
l
i(x

+
i )Pi, for all x

+
i ∈ Ãiμxi+B̃iμui+

Eiμdi +
∑N

j = 1
i �= j

gijxj, ui ∈ Ui, and di ∈ Di.

Based on Lemma 2 and the concept of iw, Theorem
1 is introduced to assure the trajectories of the system in
theiw set.

Remark 3 Here, by proposing Theorem 1, if two
LMIs are solved, two results are achieved. (1) It is
proved that the considered large-scale fuzzy system is
stable in terms of Lyapunov. (2) Controller gains are
computed optimally in the restricted bound.

Theorem 1: Consider the fuzzy system (3), if there
are positive definite matrices Xi Xj and Xiμ, and λi such
that the following matrix inequalities are feasible

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ETiμXiEiμ − ξiλiNi �

�̃T
i XiEiμ N

√
a

N∑
j = 1
i �= j

gTij Xjgij

−(−λi + 1)Xiμ
gTij XiEiμ

(
1 − √

α
)
gTij Xi�̃i

...
...

gTiNXiEiμ
(
1 − √

α
)
gTiNXi�̃i

0 Xi�̃i

� · · ·
� · · ·

−(α − 1)gTij Xigij · · ·
...

. . .
−(α − 1)gTiNXigij · · ·

0 · · ·
� �

� �

� �
...

...
−(α − 1)gTiNXigiN �

0 −N−1XT
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0 (17)

[
Zi kTiμ
kiμ 1

]
≥ 0 Ziss ≤ u2is,max, s ∈ Z[1,m] (18)

then the set iw = {xi|xTi Piμxi ≤ ξi} is an RPI set for
the IT2 fuzzy system (3) corresponding to the feed-
back control law ui(k) =∑ri

l=1 h
l
i(ziq)k

l
ixi(k). Piμ =∑ri

l=1 w
l
i(ziq)Pi.

Ziss is the sth diagonal element of matrix Zi, N rep-
resents the number of subsystems, Ni = ξi

ηi2
, α ≥ 2 and

i, j, l, N,α ∈ R+, and �̃i = Aiμ + Biμkiμ.

Proof: See Appendix A. �

3.2. The terminal constraint set

In this section, it will be proved by an LMI that the ter-
minal constraint set iw be the RPI set. The sub-cost
function is

ψi(.)=
K−1∑
k=0

{xTi (k)Qxi(k)+ uTi (k)Rui(k)−τidTi (k)d(k)}

(19)

a positive definite function (terminal cost function) Vi
(x) is such that ∀xi ∈ iw

γ3(‖ xi ‖) ≤ V(xi) ≤ γ4(‖ xi ‖) (20)
N∑
i=1

V(x+
i )− V(xi) < −

N∑
i=1

ψi(·) (21)

where ς3 and ς4 are H∞ functions, V(x) is given as
follows:

V(x) =
N∑
i=1

Vi(x) =
N∑
i=1

ri∑
l=1

wl
i(ziq)x

T
i Pixi (22)

Themain and core of every proposed control algorithm
is the definition of a positive function to prove the sta-
bility and effectiveness of the proposed algorithm. In
the following, an LMI proves that theiw is a terminal
constraint set corresponding to the terminal cost.
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Remark 4 In this section, by proposing Theorem 2,
the concept of the robust positively invariant and con-
straint set is achieved by solving an LMI, and it will be
ensured that trajectories of the large-scale systems are
stable robustly.

Theorem 2: Consider the IT2 fuzzy Takagi–Sugeno sys-
tem (3), if (17), (18) and the following matrix inequality
are feasible

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ETiμXiEiμ − ξiτi � �

�̃T
i XiEiμ ζi �

gTij XiEiμ
(
1 − √

α
)
gTij Xi�̃i −(a − 1)gTij Xigij

...
...

...

gTiNXiEiμ
(
1 − √

α
)
gTiNXi�̃i −(a − 1)gTiNXigij

0 Mikiμ 0

0 X�̃i 0

· · · � � �

· · · � � �

· · · � � �

. . .
...

...
...

· · · −(a − 1)gTiNXigiN � �

· · · 0 −Mi �

· · · 0 0 −N−1XT
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (23)

then iw is a terminal constraint set corresponding to
the terminal cost function Vi(x). Where N represents
the number of subsystems, ζi = N

√
a
∑N

j = 1
i �= j

gTij Xjgij −

Xiμ + ξiQ, �̃i = Aiμ + Biμkiμ, Mi = ξiR, α ≥ 2, Xi =
ξiPi,Xiμ = ξiPiμ, Xj = ξiPj and i, j, l,N,α ∈ R+.

Proof: See Appendix B. �

3.3. Control algorithm

According to the aforementioned results and to accom-
plish the control design, the online control algorithm
is studied in this section. So, the terminal constraint set
V(x(k)), see (21), should satisfy the following condition

V(x(k)) =
N∑
i=1

Vi(x(k)) =
N∑
i=1

ri∑
l=1

wl
i(ziq)x

T
i Pixi ≤ ξi

(24)

the following optimization problem, thus, is discussed
to minimize ξi :

min ξi subject toVi(x(k)) ≤ ξi (25)

in addition, a sufficient condition for Vi(x(k)) ≤ ξi is
xTi (k)Pixi(k) ≤ ξi, which is ξi − xTi (k)Pixi(k) ≥ 0 and
equal to ξi − xTi (k)

ξiPi
ξi
xi(k) ≥ 0.

By defining symmetricalmatrixXi = ξiPi, is guaran-
teed by the following LMIs

[
ξi xTi (k)

xi(k)X−1
i ξi

]
≥ 0 (26)

Note: Xi is a fixed value and can appear in a negative
form in the LMI.

Remark 5 The principal part of the MPC is opti-
mizing a cost function. In this paper, the considered
system is the type of large-scale one, and the system is
stabilized based on theminimized values of ξi. In previ-
ous theorems, the bilinear matrix inequalities have been
proposed. Because the significant part of this paper is
minimized. To reduce the computational burden, first
try different values of λi, Xiμ,Xi and Xiμ, and then try
to obtain the minimum amount of ξi.

Algorithm 1: Step 1: Set different values of Mi, Ni,Xi,
λi. And obtain the system state xi(k).

Step 2: Solve the following optimization problem

min
kiμ,εi,νi,Zi

ξi, (27)

subject to (17), (18), (23), (26), and for each subsys-
tem, find the values of kiμ and Xiμ. Move the time
instant from k to k + 1 and go to Step 1.

One of the principal elements of the MPC is the
recursive feasibility. Since the MPC is supposed for
discrete-time systems, it is essential to confirm its feasi-
bility for all times. In the following theorem, this initial
task is examined.

Theorem 3: In system (4), if the solution of the opti-
mization problem can be achieved at time 0, the solution
will be obtainable at any time. So, the recursive feasibility
was performed.

Proof: If (27) is feasible at time k, then by the xi(k) ∈
iw, and according to Theorem 1, which has been
implied that xi(k + 1) ∈ iw, then it can be concluded
that (27) can be solvable at time k + 1. Besides, the solu-
tion that is achieved at the time k, is feasible at time
k + 1 the optimization problem is feasible always. �

Theorem 4: Consider that the optimization problem
is feasible at the initial time 0, system (4) is ISS due to the
disturbance d.

Proof: Assume the Lyapunov function V(xi(k)) = xTi
(k)Piμxi(k), in which Piμ =∑ri

l=1 w
l
i(ziq)Pi, here, Pi is

defined based on the (22), then it can be achieved

� ∗
min‖xi(k)‖2 ≤ V(k, xi) ≤ � ∗

max‖xi(k)‖2 (28)
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Figure 2. The membership function of the IT2 fuzzy model. (a) The membership function of rule 2 and (b) rule 1.

Figure 3. The membership function of the IT2 fuzzy controller. (a) The membership function of rule 1 and (b) rule 2.

in which

� ∗
max = max{�max(Pi(k))|i ∈ Z[1,L], k ∈ R}

� ∗
min = min{�min(Pi(k))|i ∈ Z[1,L], k ∈ R}

where�max(·) and�min(·) are the maximal and mini-
mal eigenvalues, respectively.

In addition, (22) implies that

Vk(xi(k + 1))− V(xi(k)) < −(xTi (k)Qxi(k)
+ uTi (k)Rui(k)− τidTi (k)d(k)) (29)

where Vk(xi(k + 1)) = xTi (k + 1)Piμxi(k + 1). And if

Vk(xi(k + 1))− V(k, xi)

< −xTi (k)Qxi(k)+ τidTi (k)d(k) (30)

due to (38) at time (k + 1):

Vk+1(xi(k + 1)) ≤ Vk(xi(k + 1)) (31)

ultimately, it achieves that

Vk+1(xi(k + 1))− V(k, xi)

< −xTi (k)Qxi(k)+ τidTi (k)d(k) (32)

resorting to definition (3), (27) and (32) are conducive
to the result that V(xi(k)) is an ISS-Lyapunov function.
On the other hand, the closed-loop system is ISS due to
disturbances. So the proof is completed.

Remark 6 In [1925], robust fuzzy MPC for a class
of fuzzy systems has been studied. The type of sys-
tems studied beforehand was discrete-time systems.
But in this paper, the decentralized MPC for a class
of IT2 discrete-time large-scale systems is considered.
The mentioned controller is applied with the so-called
H∞ performance to reduce the unknown disturbances
and the adopted modelling used is IT2 to diminish the
uncertainties. �
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4. Numerical example

Example 1 In this section, a numerical example shows
the application of the proposed algorithm for IT2
fuzzy T–S large-scale system. The considered fuzzy
IT2 large-scale system consists of three subsystems,
Si, i = 1, 2, 3(N = 3), and each subsystem involves
two rules, l = 1, 2. In this example, Ni = 0.5, Q =
diag{1, 1},Mi = 1, τ1 = 1, τ2 = 1.5, τ3 = 2. The
membership functions are shown in Figures 2 and 3.
Here, the sampling time is set as Ts = 0.2 min and the
frequency of calculations is 0.8Hz. The fuzzy model of
the plan is

Sli :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

IF zi1 is F̃li1and . . . and zig is F̃lig
THEN xi(k + 1) = Al

ixi(k)+ Bliui(k)+ Elidi(k)

+
N∑

j = 1
i �= j

gijxj(k)

So by applying the controller and themembership func-
tion, we have

xi(k + 1) =
ri∑
l=1

ri∑
m=1

wl
i(ziq)h

m
i (ziq)([Ã

l
i + B̃lik

m
i ]xi(k)

+ Elidi(k))+
ri∑
l=1

N∑
j = 1
i �= j

wl
i(ziq)gijxj(k)

Subsystem S1

A11 =
[
0.55 0.05
0 0.42

]
, B11 =

[
1
0

]
,

E11 =
[
0.1
0

]
, g12 =

[
0.08 0.05
0.05 0.05

]
,

g13 =
[
0.09 0.06
0.06 0.09

]
, λ1 = 0.5,

X1 =
[
0.015 0
0 0.015

]

A12=
[
0.4 0
0 0.08

]
, B12 =

[
0
1

]
,E12 =

[
0
0.1

]
.

Subsystem S2

A21 =
[
0.325 0
0.4 0

]
, B21 =

[
1

−1

]
,

E21 =
[−0.1

0

]
, g21 =

[
0.1 0.1
0 0

]
,

g23 =
[
0 0
0.1 0.1

]
, λ2 = 0.488,

X2 =
[
0.018 0
0 0.018

]

A22 =
[
0.6 0.2
0.1 0

]
, B22 =

[−1
1

]
,

E22 =
[

0
−0.2

]
.

Subsystem S3

A31 =
[
0.2 0.4
0.2 0

]
, B31 =

[
1
1

]
,

E31 =
[−0.3

0

]
, g31 =

[
0.03 0
0 0.02

]
,

g32 =
[
0.1 0
0.1 0

]
, λ3 = 0.487,

X3 =
[
0.027 0
0 0.027

]

A32 =
[
0.3 0
0 0.4

]
, B32 =

[−2
1

]
,

E32 =
[

0
−0.4

]
,

By considering δ(xi) = sin(xi) ∈ [−1, 1], the mem-
bership functions and parameter uncertainties are⎧⎨

⎩w
1
i (ziq) = 1 − 1

1 + exi+4+δ(xi)
w2
i (ziq) = 1 − w1

i (ziq)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1i (ziq) = 1 − 1

1 + e
−xi − 1.5

2

h̄1i (ziq) = 1 − 1

1 + e
−xi + 1.5

2
h2i (ziq) = 1 − h̄1i (ziq)

h̄2i (ziq) = 1 − h1i (ziq)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1
i (ziq) = 1 − 1

1 + exi+4−1

w̄1
i (ziq) = 1 − 1

1 + exi+4+ 1

w2
i (ziq) = 1

1 + exi+4+ 1

w̄2
i (ziq) = 1

1 + exi+4−1

The mentioned parameter uncertainty is assumed as
δ(xi) = sin(xi) ∈ [−1, 1]:

Subsequently, we can obtain the feedback gains
k11= [−0.549 −0.222] k12= [−0.0569 −0.799]
k21= [4.794e−05 −4.739e−09] k22= [1.755e−05

1.138e−05]
k31= [−0.199 −0.111] k32= [0.073 −0.201]
Remark 7 By exemplifying an instance, it has been

shown that the proposed algorithm is entirely practi-
cal. Here, in this example, as evident in Figures 4–6, the
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Figure 4. Trajectories of subsystem 1.

Figure 5. Trajectories of subsystem 2.

Figure 6. Trajectories of subsystem 3.

Figure 7. Trajectories of controller 1.

trajectories of the three subsystems are leading to zero.
This means that the overall closed-loop system is stable
during that time.

Remark 8 In Figures 7–9, an important issue is
specified. After a while, the states of the system have
been obtained in a boundary. After that, there is no
need of the input vector ui(k), it means a decrease
in costs. Since the first example is the mathematical
one, no unit is defined for the x-axis. This shows the
effectiveness of the proposed approach.

Example 2 To show the effectiveness of the pro-
posed method, a double inverted pendulum is consid-
ered due to [36]. For convenience, all configurations

Figure 8. Trajectories of controller 2.

Figure 9. Trajectories of controller 3.

and parameters are chosen the same as [36] and the
previous example. In this example, y1(k) and y2(k) are
assumed as angular position and velocity, respectively.
Here, the sampling time is set as Ts = 0.2 min and the
frequency of calculation is 0.8Hz.

Subsystem S1

A11 = A13 =
[

1 0.005
0.0262 1

]
,

A13 =
[

1 0.005
0.0441 1

]
,

B11 = B12 = B13 =
[
1
0

]
,

E11 = E12 = E13 =
[
0.1
0

]
,

g12 =
[
0.08 0.05
0.05 0.05

]
, λ1 = 0.5,

X1 =
[
0.015 0
0 0.015

]
, H1 = [1 0].

Subsystem S2

A21 = A23 =
[

1 0.005
0.0272 1

]
,

A23 =
[

1 0.005
0.0451 1

]
,

B21 = B22 = B23 =
[
1
1

]
,

E11 = E22 = E23 =
[
0.1
0

]
,
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Figure 10. Output responses of the closed-loop system with disturbances.

g21 =
[
0.08 0.05
0.05 0.05

]
, λ2 = 0.448,

X2 =
[
0.018 0
0 0.018

]
,H2 = [1 0].

xi(k + 1) =
ri∑
l=1

ri∑
m=1

wl
i(ziq)h

m
i (ziq)([Ã

l
i + B̃lik

m
i ]xi(k)

+ Elidi(k))+
ri∑
l=1

N∑
j = 1
i �= j

wl
i(ziq)gijxj(k)

yi(k) = Hixi(k)

Subsequently, we can obtain the feedback gains:
k11= [−0.071 −0.024] k12= [−0.0153 −0.219]

k13= [−12.15 −9.585]
k21= [21.794 −41.739] k22= [−10.75 −21.138]

k23= [−18.255 −32.252]
Remark 9 Figure 10 shows the output responses

of the closed-loop discrete-time nonlinear large-scale
system with the disturbances. The piecewise controller
proposed in this paper based on the fuzzy dynamic
model not only stabilizes the original nonlinear large-
scale system but also attenuates the disturbances effec-
tively as expected.

Remark 10 To evaluate the effectiveness of the pro-
posed controller, a comparison is made with [37]. In
[37], the PI controller is applied to a decentralized large-
scale system. In the first set of the experiments, a control
scheme using PI controllers currently used in industry
is used. Although this scheme is very simple to imple-
ment, its performance is often limited. Tuning the P
and I gains is a tedious process. In the results of this
paper, the proposed controller is used. Experimental
results with these control schemes show that the pro-
posed control scheme offers a marked improvement in
results.

Remark 11 As it is clear due to gain results, to sta-
bilize the mentioned systems in this paper, computed
gains have little value. Specifically, in the first exam-
ple, it is noticed that by gain values that are <1, states
of the system are stabilized. This means that the pro-
posed method can control the system optimally. In the

second example, compared with other methods, it is
evident that the double inverted pendulumcan be stabi-
lized with a lower cost and this is the efficient proposed
approach.

5. Conclusion

In this paper, a decentralized robust IT2 fuzzy MPC
for Takagi–Sugeno large-scale systems has been given.
Since almost all real systems have complex and severe
nonlinearity, they will be hard and impossible to find
the dynamic of systemsmost of the time. Therefore, the
IT2 fuzzy model of the large-scale system for deduc-
ing uncertainties is considered in this paper. The sup-
posed controller for this system is MPC, and the type
of the controller is decentralized. To reduce the effects
of disturbance and uncertainties, the H∞ performance
is used. Finally, the control gains and other values are
calculated by solving LMIs.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

ORCID

Iman Zamani http://orcid.org/0000-0002-6795-4461
Mohammad Manthouri http://orcid.org/0000-0003-3461-
9250

References

[1] Sarbaz M, Manthouri M, Zamani I. Rough neural net-
work and adaptive feedback linearization control based
on Lyapunov function. 2021 7th International Con-
ference on Control, Instrumentation and Automation
(ICCIA), 2021. IEEE, p. 1–5.

[2] Sarbaz M, Zamani I, Fuzzy MM. Model predictive con-
trol contrived for type-2 large-scale process based on
hierarchical scheme. 2020 28th Iranian Conference on
Electrical Engineering (ICEE), 2020. IEEE, p. 1–6.

[3] Du P, LiangH, Zhao S, et al. Neural-based decentralized
adaptive finite-time control for nonlinear large-scale
systems with time-varying output constraints. IEEE
Trans Syst Man Cybernet Syst. 2019;51(5):3136–3147.

[4] Cao L, Li H, Wang N, et al. Observer-based event-
triggered adaptive decentralized fuzzy control for non-
linear large-scale systems. IEEE Trans Fuzzy Syst.
2018;27(6):1201–1214.

http://orcid.org/0000-0002-6795-4461
http://orcid.org/0000-0003-3461-9250
http://orcid.org/0000-0003-3461-9250


AUTOMATIKA 59

[5] Mair J, Huang Z, Eyers D.Manila: using a densely popu-
lated pmc-space for power modelling within large-scale
systems. Parallel Comput. 2019;82:37–56.

[6] Wei C, Luo J, Yin Z, et al. Robust estimation-free decen-
tralized prescribed performance control of nonaffine
nonlinear large-scale systems. Int J Robust Nonlinear
Control. 2018;28(1):174–196.

[7] Zhai D, An L, Dong J, et al. Decentralized adaptive
fuzzy control for nonlinear large-scale systemswith ran-
dom packet dropouts, sensor delays and nonlinearities.
Fuzzy Sets Syst. 2018;344:90–107.

[8] Hušek P. Monotonic smooth Takagi–Sugeno fuzzy sys-
tems with fuzzy sets with compact support. IEEE Trans
Fuzzy Syst. 2019;27(3):605–611.

[9] Pan Y, Du P, Xue H, et al. Singularity-free fixed-time
fuzzy control for robotic systems with user-defined
performance. IEEE Trans Fuzzy Syst. 2020;29(8):2388–
2398.

[10] Lian Z,HeY, ZhangC-K, et al. Stability and stabilization
of TS fuzzy systems with time-varying delays via delay-
product-type functional method. IEEE Trans Cybern.
2019;50(6):2580–2589.

[11] Li M, Shu F, Liu D, et al. Robust H∞ control of
TS fuzzy systems with input time-varying delays:
a delay partitioning method. Appl Math Comput.
2018;321:209–222.

[12] Zamani I, Zarif MH. On the continuous-time Tak-
agi–Sugeno fuzzy systems stability analysis. Appl Soft
Comput. 2011;11(2):2102–2116.

[13] Bahrami V, Mansouri M, Teshnehlab M. Designing
robust model reference hybrid fuzzy controller based
on LYAPUNOV for a class of nonlinear systems. J Intell
Fuzzy Syst. 2016;31(3):1545–1564.

[14] Wang G, Jia R, Song H, et al. Stabilization of unknown
nonlinear systems with TS fuzzy model and dynamic
delay partition. J Intell Fuzzy Syst (Preprint). 2018:
1–12.

[15] Moreno JE, SanchezMA,MendozaO, et al. Design of an
interval type-2 fuzzy model with justifiable uncertainty.
Inf Sci (Ny). 2019;513:206–221.

[16] TangX,Deng L, Yang S. Dynamic output feedbackMPC
for interval type-2 TS fuzzy networked control systems
with packet loss. 2018 37th Chinese control Conference
(CCC), 2018. IEEE, p. 6253–6258

[17] Dong Y, Song Y, Wei G. Efficient model predictive con-
trol for nonlinear systems in interval type-2 TS fuzzy
form under round-robin protocol. IEEE Trans Fuzzy
Syst. 2020.

[18] Li H, Wang J, Lam H-K, et al. Adaptive sliding mode
control for interval type-2 fuzzy systems. IEEE Trans
Syst Man Cybernet Syst. 2016;46(12):1654–1663.

[19] Teng L, Wang Y, Cai W, et al. Robust fuzzy model pre-
dictive control of discrete-time Takagi–Sugeno systems
with nonlinear local models. IEEE Trans Fuzzy Syst.
2018;26(5):2915–2925.

[20] Moaveni B, Fathabadi FR, Molavi A. Supervisory pre-
dictive control for wheel slip prevention and tracking
of desired speed profile in electric trains. ISA Trans.
2020;101:102–115.

[21] Wada N, Saito K, Saeki M. Model predictive control
for linear parameter varying systems using parameter
dependent Lyapunov function. The 2004 47th mid-
west symposium on circuits and systems, 2004. MWS-
CAS’04., 2004. IEEE, p. iii–133.

[22] Wan Z, Kothare MV. Robust output feedback model
predictive control using off-line linear matrix inequal-
ities. J Process Control. 2002;12(7):763–774.

[23] YangW, XuD, Zhang C, et al. A novel robust model pre-
dictive control approach with pseudo terminal designs.
Inf Sci (Ny). 2019;481:128–140.

[24] Srivastava A, Bajpai R.Model predictive control of grid-
connected wind energy conversion system. IETE J Res.
2020;66: 1–13.

[25] YangW, FengG, Zhang T. Robustmodel predictive con-
trol for discrete-timeTakagi–Sugeno fuzzy systemswith
structured uncertainties and persistent disturbances.
IEEE Trans Fuzzy Syst. 2013;22(5):1213–1228.

[26] Merabet A, Labib L, Ghias AM. Robust model predic-
tive control for photovoltaic inverter system with grid
fault ride-through capability. IEEE Trans Smart Grid.
2017;9(6):5699–5709.

[27] Teng L, Wang Y, Cai W, et al. Robust model predictive
control of discrete nonlinear systems with time delays
and disturbances via T–S fuzzy approach. J Process
Control. 2017;53:70–79.

[28] Kothare MV, Balakrishnan V, Morari M. Robust
constrained model predictive control using linear
matrix inequalities. Automatica (Oxf). 1996;32(10):
1361–1379.

[29] Lu Y, Arkun Y. Quasi-min-max MPC algorithms for
LPV systems. Automatica (Oxf). 2000;36(4):527–540.

[30] Li H, Liu A, Zhang L. Input-to-state stability of time-
varying nonlinear discrete-time systems via indefinite
difference Lyapunov functions. ISA Trans. 2018;77:
71–76.

[31] Liang Q, Mendel JM. Equalization of nonlinear time-
varying channels using type-2 fuzzy adaptive filters.
IEEE Trans Fuzzy Syst. 2000;8(5):551–563.

[32] Lu Q, Shi P, Lam H-K, et al. Interval type-2 fuzzy
model predictive control of nonlinear networked con-
trol systems. IEEE Trans Fuzzy Syst. 2015;23(6):
2317–2328.

[33] Zamani I, Zarif MH. An approach for stability analy-
sis of TS fuzzy systems via piecewise quadratic stabil-
ity. International Journal of innovative computing. Inf
Control. 2010;6(9):4041–4054.

[34] Magni L, Scattolini R. Robustness and robust design of
MPC for nonlinear discrete-time systems. In: Assess-
ment and future directions of nonlinear model predic-
tive control. Springer:R., Allgöwer F., Biegler L.T. (eds);
2007;358: p. 239–254.

[35] Limon D, Alamo T, Raimondo D, et al. Input-to-state
stability: a unifying framework for robust model pre-
dictive control. In: NonlinearModel Predictive Control.
Springer:Raimondo D.M., Allgöwer F. (eds). 2009;384.
p. 1–26.

[36] Zhang H, Feng G. Stability analysis and $ H_ ∞ $
controller design of discrete-time fuzzy large-scale sys-
tems based on piecewise Lyapunov functions. IEEE
Trans SystManCybernet Part B (Cybernet). 2008;38(5):
1390–1401.

[37] Pagilla PR, Dwivedula RV, Siraskar NB. A decentralized
model reference adaptive controller for large-scale sys-
tems. IEEE/ASMETransMechatron. 2007;12(2):154–163.

[38] Yougang Z, Bugong X. Decentralized robust stabiliza-
tion of discrete-time fuzzy large-scale systems with
parametric uncertainties: a LMI method. J Syst Eng
Electron. 2006;17(4):836–845.



60 M. SARBAZ ET AL.

Appendices

Appendix A

Proof: Using the Schur complement, the inequality (17) is
equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ETiμXiEiμ − ξiλiNi �

�̃T
i XiEiμ N

√
a

N∑
j = 1
i �= j

gTij Xjgij − (−λi + 1)Xiμ

gTij XiEiμ
(
1 − √

α
)
gTij Xi�̃i

...
...

gTiNXiEiμ
(
1 − √

α
)
gTiNXi�̃i

� · · · �

� · · · �

−(α − 1)gTij Xigij · · · �

...
. . .

...
−(α − 1)gTiNXigij · · · −(α − 1)gTiNXigiN

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
�̃T

i X
T
i

0
...
0

⎤
⎥⎥⎥⎥⎥⎦NX−T

i
[
0 Xi�̃i · · · 0 0

] ≤ 0 (A.1)

where �̃i = Ãiμ + B̃iμkiμ and if consider Xi = ξiPi, Xiμ =
ξiPiμ, and Xj = ξiPj, according to the Schur complement, we
will have

⎡
⎢⎢⎢⎢⎢⎢⎣

1
ξi
ETiμPiEiμ − λi

ηi2
�

1
ξi
�̃T

i PiEiμ �i
1
ξi
gTij PiEiμ

1
ξi

(
1 − √

α
)
gTij Pi�̃i

...
...

1
ξi
gTiNPiEiμ

1
ξi

(
1 − √

α
)
gTiNPi�̃i

� · · · �

� · · · �

− 1
ξi
(α − 1)gTij Pigij · · · �

...
. . .

...
− 1
ξi
(α − 1)gTiNPigij · · · − 1

ξi
(α − 1)gTiNPigiN

⎤
⎥⎥⎥⎥⎥⎦ ≤ 0

(A.2)

where �i = 1
ξi
N�̃T

i Pi�̃i + 1
ξi
N

√
a

N∑
j=1
i�=j

gTij Pjgij − 1
ξi
(−λi

+ 1)Piμ. By multiplying
[
dTi xTi xTj ··· xTN

]
and its transpose

from both sides of the matrix in the inequality (A.2), respec-
tively:

N∑
i=1

xTi
1
ξi

{
N(Ãiμ + B̃iμkiμ)

TPi(Ãiμ + B̃iμkiμ)

+N
√
a

N∑
j = 1
i �= j

gTij Pjgij − Piμ} xi

+
N∑
i=1

{xTi
1
ξi
(Ãiμ + B̃iμkiμ)TPiEiμdi

+ dTi
1
ξi
ETiμPiEiμdi +

1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xjTgTij

⎞
⎟⎟⎟⎟⎟⎠ PiEiμdi

+ dTi
1
ξi
ETiμPi(Ãiμ + B̃iμkiμ)xi

+ dTi
1
ξi
ETiμPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠− λi

ηi2
dTi di +

λi

ξi
xTi Piμxi

− 1
ξi
(α − 1)

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠ Pi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+ xTi
(
1 − √

α
) 1
ξi
(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+ (1 − √
α
) 1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠Pi(Ãiμ + B̃iμkiμ)xi}

≤ 0 (A.3)

by resorting to [38], the inequality (A.3) is

N∑
i=1

1
ξi

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi +

√
α

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

T

Pi

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi +

√
α

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦− xTi Piμxi

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+
N∑
i=1

{
xTi

1
ξi
(Ãiμ + B̃iμkiμ)

TPiEiμdi

+dTi
1
ξi
ETiμPilEiμdi +

1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠PiEiμdi

+dTi
1
ξi
ETiμPi(Ãiμ + B̃iμkiμ)xi + dTi

1
ξi
ETiμPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

fijxj

⎞
⎟⎟⎟⎟⎟⎠
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− λi

ηi2
dTi di +

λi

ξi
xTi Piμxi

− 1
ξi
(α − 1)

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠Pi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+ (1 − √
α
) 1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠Pi(Ãiμ + B̃iμkiμ)xi

+xTi
(
1 − √

α
) 1
ξi
(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤ 0

(A.4)

and the inequality (A.4) is equivalent to

N∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
ξi

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)+

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

Pi

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

+xTi
1
ξi
(Ãiμ + B̃iμkiμ)TPiEiμdi

+dTi
1
ξi
ETiμPiEiμdi +

1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠ PiEiμdi

+dTi
1
ξi
ETiμPi(Ãiμ + B̃iμkiμ)xi + dTi

1
ξi
ETiμPidi

+dTi
1
ξi
ETiμPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠− λi

ηi2
dTi di

+ 1
ξi
(−1 + λi)xTi Piμxi

+ 1
ξi
(α − 1)

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠ Pi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

–
1
ξi
(α − 1)

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠ Pi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+xTi
√
α
1
ξi
(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

−xTi
√
α
1
ξi
(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+√
α
1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠Pi(Ãiμ + B̃iμkiμ)xi

−√
α
1
ξi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠Pi(Ãiμ + B̃iμkiμ)xi

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤ 0 (A.5)

the inequality (A.5) can be written as

N∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
ξi

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi + Eiμdi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

T

P+
iμ

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi + Eiμdi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

− 1
ξi
(1 − λi)xTi Piμxi − λi

1
ηi2

dTi di
}

≤ 0 (A.6)

we had before x+
i = (Ãiμ + B̃iμkiμ)xi + Eiμdi

+
N∑

j = 1
i �= j

fijxj. So, we have

N∑
i=1

{
1
ξi
x+T

i P+
iμx

+
i − (1 − λi)

1
ξi
xTi Piμxi − λi

1
ηi2

dTi di
}

≤ 0

(A.7)

thus, the RPI property of the set can be obtained if (A.7)
holds. Furthermore, the input constraint can be admitted by
(18), and the proof is clarified below: multiplying diag{xi, I}
and its transpose from both sides of (18), respectively[

xTi Zixi xTi k
T
iμ

kiμxi 1

]
≥ 0 (A.8)
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by the Schur complement to (A.8), then

xTi Zixi − (kiμxi)T(kiμxi) ≥ 0 (A.9)

As ui = kiμxi, we have

(ui)T(ui) ≤ xTi Zixi = Hi = positive value (A.10)

thus uTi ui ≤ Hi. The proof is, thereby, completed. �

Appendix B

Proof: Resorting to the Schur complement, and based on
the previous proof, the inequality (23) can be written as
follows:⎡

⎢⎢⎢⎢⎢⎢⎣

ETiμXiEiμ − ξiτi �

�̃T
i XiEiμ φi

gTij XiEiμ
(
1 − √

α
)
gTij Xi�̃i

...
...

gTiNXiEiμ
(
1 − √

α
)
gTiNXi�̃i

� · · · �

� · · · �

−(a − 1)gTij Xigij · · · �

...
. . .

...
−(a − 1)gTiNXigij · · · −(a − 1)gTiNXigiN

⎤
⎥⎥⎥⎥⎥⎦ < 0

(B.1)

Consider Xi = ξiPi, Xiμ = ξiPiμ, Xj = ξiPj and φi

= N�̃T
i Xi�̃i + N

√
a

N∑
j = 1
i �= j

gTij Xjgij − Xiμ + ξiQ + kTiμ

Mikiμ. The inequality (B.1) is⎡
⎢⎢⎢⎢⎢⎢⎣

ETiμPiEiμ − τi �

�̃T
i PiEiμ ψi

gTiNPiEiμ
(
1 − √

α
)
gTij Pi�̃i

...
...

gTij PiEiμ
(
1 − √

α
)
gTiNPi�̃i

� · · · �

� · · · �

−(a − 1)gTij Pigij · · · �

...
. . .

...
−(a − 1)gTiNPigij · · · −(a − 1)gTiNPigiN

⎤
⎥⎥⎥⎥⎥⎦ < 0 (B.2)

where ψi = N�̃T
i Pi�̃i + N

√
a

N∑
j=1
i�=j

gTij Pjgij − Piμ + Q

+ kTiμRkiμ. Multiplying
[
dTi xTi xTj · · · xTN

]
and trans

posing from both sides of (B.2), we will have

N∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
xTi

⎛
⎜⎜⎜⎜⎜⎝N(Ãiμ + B̃iμkiμ)

TPi(Ãiμ + B̃iμkiμ)

+N
√
a

N∑
j = 1
i �= j

gTij Pjgij − Piμ + Q

⎞
⎟⎟⎟⎟⎟⎠ xi

+xTi (Ãiμ + B̃iμkiμ)
TPiEiμdi

+dTi E
T
iμPiEiμdi +

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xjTgTij

⎞
⎟⎟⎟⎟⎟⎠PiEiμdi

+dTi E
T
iμPi(Ãiμ + B̃iμkiμ)xi + dTi E

T
iμPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+xTi k
T
iμRkiμxi − τidTi di − (a − 1)

N∑
j = 1
i �= j

xTj g
T
ij Pigijxj

+xTi
(
1 − √

α
)
(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+ (1 − √
α
)
⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠Pi(Ãiμ + B̃iμkiμ)xi

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
< 0

(B.3)

resorting to [38], the inequality (B.3) is

N∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi + Eiμdi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

T

P+
iμ

⎡
⎢⎢⎢⎢⎢⎣(Ãiμ + B̃iμkiμ)xi + Eiμdi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

−xTi Piμxi + xTi Qxi

+xTi k
T
iμRkiμxi − τidTi − (a − 1)

N∑
j = 1
i �= j

xTj g
T
ij Pigijxj

+(a − 1)
N∑

j = 1
i �= j

xTj g
T
ij Pigijxj

+xTi
√
α(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠
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−xTi
√
α(Ãiμ + B̃iμkiμ)TPi

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

gijxj

⎞
⎟⎟⎟⎟⎟⎠

+√
α

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠ Pi(Ãiμ + B̃iμkiμ)xi

−√
α

⎛
⎜⎜⎜⎜⎜⎝

N∑
j = 1
i �= j

xTj g
T
ij

⎞
⎟⎟⎟⎟⎟⎠ Pi(Ãiμ + B̃iμkiμ)xi

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
< 0 (B.4)

now, the inequality (B.4) is

N∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣�̃ixi + Eiμdi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

T

P+
iμ

⎡
⎢⎢⎢⎢⎢⎣�̃ixi + Eiμdi +

N∑
j = 1
i �= j

gijxj

⎤
⎥⎥⎥⎥⎥⎦

−xTi Piμxi + xTi Qxi + uTi Rui − τidTi di

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
< 0 (B.5)

where
N∑
i=1

V(x+
i )− V(xi) < −

N∑
i=1
ψi(·). Thereby, the

proof is completed. �

For convenience, a table of notations and symbols is pro-
vided (Table A1):

Table A1. Abbreviations and notations used in theorems and
appendices.

Notation Definition Notation Definition

ξi Positive scalar variable Pi Positive matrix
τi Positive scalar Ni Ni = ξi

ηi
2

α Positive scalar ηi
2 Positive scalar

Mi ξiR R Positive weight
N Number of subsystems Q Positive weight
λi Positive scalar Xj Xj = ξiPj
Xi Xi = ξiPi Ts Sampling time
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