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FRA winding type field 
cases and automatic 
classification using AI
Using machine learning to validate and 
identify SFRA characteristics

ABSTRACT 

Artificial intelligence is a very power-
ful tool to bundle expert knowledge 
into algorithms. This helps in provid-
ing expert knowledge on demand. In 
the further course, the authors want 

to give some examples of how pow-
erful AI in the analysis of SFRA curves 
and checking the quality and validity 
already is. Furthermore, a proposal 
for the sub-band separation is dis-
cussed, and some field cases are pre-
sented.
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Power transformers are critical to all High Voltage networks and are 
quite reliable over the long term, with a typical failure rate of around 
1 % or less
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1. Introduction
Power transformers are critical to all High 
Voltage (HV) networks and are quite re-
liable over the long term, with a typical 
failure rate of around 1 % or less [1]. The 
CIGRE Working Group (WG) A2.49 has 
elaborated that offline as well as online 
monitoring and operational data are cru-
cial factors for condition-based transform-
er assessment [2]. The quality of the data 
plays a viable role so that the right conclu-
sions can be drawn from it. This includes 
both the acquisition and the processing of 
data. The SFRA method is one of several 
offline methods which is commonly used 
and has shown to be the most sensitive 
and non-invasive method to detect me-
chanical, especially electrical, faults. More 
specifically, the mechanical integrity of the 
core, windings, and clamping structure as 
well as the electrical integrity, such as short-
ed windings and turns. [3] To improve its 
diagnosis, artificial intelligence tools are 
tried to be used, like interesting proposals 
of [4] §6.4, to automate at best diagnosis 
firstly and somehow better understand 
winding designs, mostly unknown to the 
final clients, and then its faults in future 
works. This paper tries to assess winding 
design through FRA field cases by know-
ing some of it from manufacturers and to 
give new ways of automatically assessing 
FRA curves from the field as often difficult, 
especially for non-experts.

2. Winding designs

Power transformers’ active part is made 
of windings, manually manufactured for 
all ratings above a few MVA. The design 
challenges on windings are to carry the 
current and to withstand the high voltage 
and its transients. Two main winding de-
signs are now used in the world, core type 
and shell “pancake” type designs (under 
Westinghouse license, historically), with 
significantly different geometry. Both 
types are working well, even if the core 
type is more widely manufactured in the 
world than the shell type, and both are 
subject to the same challenges.

To carry significant current and minimize 
additional load losses, by stray losses effect 

in the winding itself for the most part, it is 
necessary to split the copper cross-section 
into smaller parallel sections. If the area 
of each copper conductor in front of the 
leakage flux is minimized, then the stray 
losses could be somehow optimized. With 
some limitations linked to the mechanical 
withstand of short-circuit forces. On the 
other hand, to limit circulations currents, 
associated losses, and the local abnormal 
temperature rises, over any wide windings, 
some permutations of elementary conduc-
tors could be performed so that any single 
conductor of any winding would let pass 
more or less the same leakage flux.

Finally, one of the highest stresses to with-
stand then is the lightning impulse, a fast 
transient of very high voltage. In such 
cases, most of those transient “passes” 
through the windings by capacitance ef-
fects and not by inductance effect. Then 
to improve those capacitive voltage trans-
fers, different winding designs have been 
developed by different factories in the 
world to improve the “serial” (Cs) and 
“grounding” capacitances that are signif-
icant in this matter. Grounding capaci-
tance is greater near the locations where 
the winding is near the ground (i.e. the 
core, the tank, earth shield, if any), where-
as serial capacitance is majorly influenced 
by the winding design.

Today three main windings’ designs could 
be listed: continuous, or “plain” (disc, as in 
Fig. 1 [5], layer or helical for core types), 
interleaved with cross-links between indi-
vidual conductors (for core types), or with 
Continuously Transposed Conductors 
(CTCs), see [6] §4.5.3.

Figure 1. A continuous disc winding [5]

In 1947, a particularly interleaved conduc-
tor design on core type discs was patented 
in England in “The English Electric Com-
pany” by George Fletcher Stearn, “a British 
subject, of Siemens Works, Stafford” (today 
GE) [7] and then widely used by many 
manufacturers. A typical scheme from the 
original patent is shown in Fig. 2, with the 
numbers listed to follow the electric cir-
cuit. A point to note is that some brazing is 
needed at every two discs, at least.

Figure 2. Original patent scheme of an 
interleaved design [7]

There are also shielded discs [5] with 
“floating screens” between some turns for 
further improvement of serial capacitance 
to better withstand lightning impulses.

CTCs are of different sizes of elementary 
conductors, quite efficient but expansive, 
and they could be thick and tough to 
wind.

A combination of different winding de-
signs is possible on one winding. General-
ly, “advanced” designs, like interleaved, on 
the line part, which is the most stressed by 
voltage transient, then “classical” designs, 
like continuous for the rest of the wind-
ing, and an often different one for the tap 
winding, like helical [5].

Grounding capacitance is greater near the locations where the winding 
is near to the ground (i.e. the core, the tank, earth shield, if any), where-
as serial capacitance is majorly influenced by the winding design

Consequently, most 
power transformer 
winding designs in use 
today are not known 
by the final user, and 
this is almost impos-
sible to guess without 
forensic investigation
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Most of the time, CTC windings are only 
with CTC. As usual in transformers, ex-
ceptions may always exist.

Winding design is the manufacturer’s 
choice, based on each industrial expe-
rience, and could be somehow different 
over a long time and manufacturer. And 
the winding design is seldom given or ex-
plained to the final customer, especially if 
the transformer passes its final tests and 
meets its original specifications.

Consequently, most power transform-
er winding designs in use today are not 
known by the final user, and this is almost 
impossible to guess without forensic in-
vestigation.

FRA tests are somehow sensitive to wind-
ing designs, and this paper tries to under-
stand and show, partly from experience, 
how winding design could influence 
those measurements.

3. SFRA sub-bands dominated 
by the winding–field cases
One unique example is given in Fig.  3 
from [4], where different winding designs 
have been identified on FRA in literature, 
which could be seen between 10  kHz 
and 1 MHz. The interleaved disc is rather 
smooth compared to plain disc winding, 
with many resonances in the medium fre-
quency range more sensitive to windings.

Based on the EDF FRA database, mostly 
on Factory Acceptance Tests (FAT) and 
some onsite investigations tests, some 
winding design types can be determined 
and reported to the final utility.

Following are some examples based on 
21 analyzed cases on Generator Step-Up 
(GSU) transformers ranging from 72 to 
420 kV classes and from 20 to 600 MVA, 
which can be better understood with the 
visual aid if some trends between wind-
ing designs and FRA curves are possible. 
The interesting part here happens above 
10 kHz, typically where the wind has the 
highest influence on FRA curves.

Figure 4. FRA on HV continuous and shielded discs designs

Figure 3. An example of FRA difference between two winding designs: plain and 
interleaved discs [4]

Based on the EDF FRA database, mostly on Factory Acceptance Tests 
and some onsite investigations tests, some winding design types can 
be determined

Figure 5. FRA on HV partially interleaved or shielded online then continuous designs
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HV and LV curves have been separated, 
and just a few significant curves have been 
chosen for visual clarity.

In Fig. 4, we confirm the CIGRE example, 
with a smooth curve, we have an “upper 
trend” with shielded discs designed on 
HV, compared to continuous / plain discs 
with more resonances and being “flatter”.

In Fig. 5, three HV designs are partly wound 
with interleaved, or shielded, designs on the 
line, still to improve lighting impulses, then 
continuous “classic” design. What could be, 
somehow, seen is an “upper trend”, which 
could be due to the interleaved /  shielded 
designs, with more resonances than the 
previous full shielded discs example, which 
could be due to the continuous design.

In Fig. 6, on LV sides, continuous and he-
lical designs [5] are shown, still with many 
resonances. The helical design could be 
seen as a specific continuous design with-
out any special capacitance effect to with-
stand lightning impulses.

In Fig. 7 and Fig. 8, CTC wound HV and 
LV show that we could get different kinds 
of curves with many resonances – or less 
(in Fig.  7). Then, it is rather hard to link 
CTC winding type to FRA curves.

It is particularly hard to link the winding 
design not knowing the FRA curves.

Anyhow, serial capacitance effects like in-
terleaved and shielded windings seem to 
smooth and give an “upper trend” on HV. 
When continuous “classic” designs show 
more resonance and a somewhat “flatter” 
trend, such as helical winding, it could be 
somehow close in terms of capacitance. 
Finally, CTCs designs give no clear trends 
on FRA curves at the first analysis.

Maybe in future, some machine learning 
of digital analysis could deepen this wind-
ing design effect into consideration for 
further assessment analysis.

4. Automatic validation of 
SFRA measurement results
Data quality and validity will be one of many 
crucial factors in this century when deriving 

Artificial Intelligence (AI) in any application is not present only in the model 
itself but also in using even a larger amount of data for the prediction task

TECHNOLOGY

Figure 7. FRA on HV with CTC design

Figure 8. FRA on LV with CTC design

Figure 6. FRA on LV with continuous and helical designs
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After DC test After demagnetization test

On the one hand, there is noise occurring 
around the rated frequency / harmonic fre-
quencies, and on the other hand, there is 
noise caused by the dynamic range of the 
measuring device

information from raw data for further dig-
ital assessment. Furthermore, the highest 
potential for optimizing prediction results 
when using Artificial Intelligence (AI) in 
any application is not present only in the 
model itself but also in using even a larg-
er amount of data for the prediction task. 
Fig. 9 indicates the steps that are necessary 
for deriving a piece of information about 
the assessment of a power transformer 
test from raw data. This can be done ei-
ther automatically or manually by experts.

Figure 9. Data levels

The CIGRE WG A2.26 [8], followed later 
by the WG A2.53 [4], discussed seven in-
fluencing factors regarding the influence 
of the test setup: the test voltage, the direc-
tion of end-to-end measurements, earth-
ing neutral bushing in the not-under-test  
winding, a connection between the shield 
of the test lead, poor connections of 
short-circuit cables, external busbar on 
bushings and poor grounding.

The automatic validation includes a pre-
diction for the respective SFRA pattern 
and the automatic detection, respectively, 
classification of:

• Noise (nominal  /  harmonic noise, 
Fig.  10, and noise caused by the mea-
suring device, Fig. 11).

• The state of the transformer in terms of 
residual frequency magnetism, Table 1.

Figure 10. Effect of external interferences

Figure 11. Effect of a bad dynamic range

Table 1. The effect of residual magnetism
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The supervised machine learning multi-
class classification approach was used for 
the predictions. Machine learning can be 
categorized in the artificial intelligence 
category as seen in Fig. 12. Furthermore, 
a grid search cross-validation for each 
model (k-nearest neighbours, decision 
tree, random forest, gradient boosting 
machine and support vector machine) 
was used to find the best parameter set 
for each machine learning model as 
well as the best model [9]. In the further 
course, the test and training data split for 
the investigations was set to 30 %. For the 
classification of influencing factors such 
as (Noise 50 Hz, Noise Floor, and Rema-
nence) mentioned above, a scheme for 
each of them was developed, which has 
three categories:

• OK (good data quality)
• Investigate (data quality is good 

enough to do an assessment, but could 
be better)

• Error (data is not usable for further as-
sessment)

For the performance determination of the 
individual algorithms, the F1 score was 
used, which is very meaningful for data 
sets that are not one hundred per cent bal-

anced in their classes. It should be added 
that the true positives, as well as the true 
negatives, represent the count of correct 
predictions, whereas the false negatives 
indicate the number of wrong predic-
tions. The definition of the F1 score can be 
found in the following: 

4.1. Noise prediction

On the one hand, there is noise occurring 
around the rated frequency  /  harmonic 
frequencies, and on the other hand, there 
is noise caused by the dynamic range of 
the measuring device. For noise detection, 
significant parameters are extracted from 
the SFRA curves to reduce the number of 
used features. In addition to the number 
of peaks, the height of the peaks is also ex-
tracted from the curve areas that are inter-
esting about the respective category. This 
means that a total of two parameters per 
noise category, such as the average height 
and the number of peaks, are needed for 
the prediction task. Of the total 19,787 
SFRA training curves, 1,872 were used for 

supervised learning  /  grid search valida-
tion of the power frequency noise detec-
tion so that the classes are better balanced 
between each other. Each trace has been 
assessed by an expert. The distribution of 
the classes was as follows:

• OK - 870
• Investigate - 870
• Error – 132

Of the total 19787 SFRA training curves, 
447 were used for supervised learn-
ing  /  grid search validation of the noise 
floor detection so that the classes are bet-
ter balanced between each other. The dis-
tribution of the classes was as follows:

• OK - 179
• Investigate - 179
• Error - 89

The gradient boosting algorithm [9] 
showed the best performance for both 
noise identification algorithms, with a 
mean F1 score for the power frequency 
noise validation of 98.932 % and the noise 
floor validation of 99.259  %. The follow-
ing parameters were optimized during the 
grid search cross-validation: min_sam-
ples_split, max_depth min_samples_leaf, 
max_leaf_nodes, n_estimators, learning_
rate. Furthermore, the cv value was set to 
five so that five folds for each combination 
of parameters were performed.

4.2. Remanence prediction

The prediction of the transformer state, 
more precisely the remanence level, is 
limited to three-phase transformers  

The prediction of the transformer state, 
more precisely the remanence level, is lim-
ited to three-phase transformers because 
the most significant deviation of all three 
phases has been used as a feature

Figure 12. Artificial intelligence categories [9]
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Table 2. Comparison of SFRA measurement types (20–30 kHz)

Measurement type Nichols plot (scaled) Nichols plot histogram (scaled)

End-to-End  
Open Circuit

End-to-End  
Short Circuit

Capacitive Interwinding

Inductive Interwinding

Figure 13. End-To-End Open Circuit

Figure 15. End-To-End Short Circuit

Figure 17. Capacitive Interwinding

Figure 19. Inductive Interwinding

Figure 14. End-To-End Open Circuit

Figure 16. Nichols Histogram End-To-End Short Circuit

Figure 18. Capacitive Interwinding

Figure 20. Inductive Interwinding
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because the most significant deviation of 
all three phases has been used as a feature. 
Furthermore, all three phases of the HV 
End-To-End Open Circuit SFRA mea-
surement are necessary. There is a clear 
difference visible in the lower frequency 
range up to about 10  kHz between the 
three curves if there is remanence in the 
power transformer, as in Table 1. For this 
prediction, several significant parame-
ters were extracted, such as the area un-
der the curves, the maximum deviation 
in percentage number at the beginning 
and the resonance point. The maximum 
cumulated area difference, the initial per-
centage deviation between the curves, and 
the maximum percentage deviation at the 
resonance between all curves are three ex-
amples. Of the total 2001 individual pow-
er transformers, SFRA measurements on 
495  power transformers were used for 
supervised learning  /  grid search valida-
tion so that the classes are better balanced 
between each other. Each individual trace 
has been assessed by an expert. The distri-
bution of the classes was as follows:

• OK - 203
• Investigate - 194
• Error - 98

The gradient boosting algorithm [9] for 
remanence prediction showed the best 

performance with an F1 score of 78.667  %. 
The procedure for this gradient boosting 
algorithm was the same as in section 4.1.

4.3. Pattern prediction of FRA 
measurement type

The individual SFRA measurement 
types are (see Fig. 13 [8] for connections 
schemes): Unknown, Calibration, End-
To-End Open Circuit, End-To-End Short 
Circuit, Capacitive Interwinding and 
Inductive Interwinding. The curves are 
very much differentiating in both mag-
nitude and phase, especially in the lower 
frequency band (below 30 kHz). The goal 
here is to try to assess this measurement 
type automatically by analyzing various 
parameters such as the coefficients of 
linear regression, a polynomial function, 
and histograms of a certain frequency 
and magnitude ranges, as well as the 3D 
SFRA [10] extracted. The 3D SFRA is an 
interplay between magnitude, phase and 
frequency where in this extraction, the 
frequency is neglected. A binning is per-
formed based on the resulting nichols 
plot, from which a histogram is derived 
[10]. Each individual trace has been as-
sessed by an expert.

The 3D SFRA method has been devel-
oped in this course to predict the pattern 

of SFRA traces. Table 2 shows the different 
standardized nichols plots per measure-
ment type (min/max scaled) in the fre-
quency range of 20 Hz to approx. 30 kHz 
due to an empirical analysis of more than 
20.000 traces, which are distinguished 
by their measurement method as well 
as their pattern. Fig. 13 and Fig. 14 show 
examples of 2D histograms with binning, 
which are then processed by an algorithm 
(end-to-end open circuit measurements).

The gradient boosting [9] algorithm on 
nichols histograms included showed the 
best performance with an F1 score of 
89.053 % to identify the type of FRA mea-
surement.

5. Dynamic sub-band 
classification

Cigre Working Group A2.26 [8] intro-
duced in 2008 ranges on the power trans-
formers’ MVA rating where the SFRA 
measurement should be evaluated. The 
Chinese standard NCEPRI [11] defines 
three frequency bands to evaluate ac-
cording to the correlation coefficient. The 
lowest sub-band, where the core is dom-
inating the characteristic of the curve is 
neglected by this evaluation algorithm. 
Juan Velasquez proposes in [12] to divide 
the SFRA trace into five parts (two lower 
frequency parts, one medium frequen-
cy and two higher frequency parts) as in 
the figure below. This proposed sub-band 
differentiation has the advantage that the 
magnetization inductance (Lm) and the 
parallel resonance with the parallel ca-
pacitance could be differentiated in the 
lower frequency range. Furthermore, the 
influence of the winding structure and the 
leads can be split.

Velasquez introduced an algorithm to find 
the different anchor points to differentiate 
the sub-bands [12]. The sub-bands of the 
lower frequency range could be split with 
a very good performance with the pro-
posed algorithm. The differentiation be-
tween the MF and HF 1 sub-band still has 
a very high uncertainty with the proposed 
method, as the border was found by an 
empirical study.

The automatic sub-band identification 
of the MF as well as the HF1 sub-band, 
is very much dependent on the shape 
of the curve. It follows that the vector 
group, along with the MVA rating and 
the winding type, significantly impact the  

Cigre Working Group A2.26 introduced in 
2008 ranges on the power transformers’ 
MVA rating where the SFRA measurement 
should be evaluated

Figure 21. Proposed sub-bands [12]
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Winding type Nichols plot (scaled) Nichols plot histogram (scaled)

Continuous (HV)

CTC (HV)

Shielded (HV)

Table 3 Comparison of high and low voltage winding types (30–600 kHz)

Figure 22. Continuous Disk Winding (HV)

Figure 24. CTC Winding (HV)

Figure 26. Shielded Continuous Disk Winding (HV)

Figure 23. Continuous Disk Winding (HV)

Figure 25. CTC Winding (HV)

Figure 27. Shielded Continuous Disk Winding (HV) 

The automatic sub-band identification of the MF as well as the HF1 
sub-band, is very much dependent on the shape of the curve
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boundaries of those bands. The vector 
group, including the MVA rating, is a kind 
of metadata which is provided by the re-
spective SFRA software. The winding type 
is usually missing as this data is treated 
as important and confidential by the re-
spective power transformer manufactur-
er. The first study on 17 different power 
transformers with different winding types 
showed that the winding type could be 
predicted with the use of the scaled nich-
ols histograms (Table 3) and the gradient 
boosting algorithm.

The gradient boosting [9] algorithm with 
the nichols histograms showed the best 
performance with an F1 score of 85.137 % 
to identify the winding type. The proce-
dure for this gradient boosting algorithm 
was the same as in section 4.1.

6. Conclusion

FRA assessments on transformers still 
require expert work most of the time. 
More field cases are needed to understand 
better the possible correlations between 
transformer design, winding designs and 
SFRA patterns, as demonstrated here, and 
it is always interesting to deepen those 
analyses.

On the other hand, machine learning al-
gorithms, especially the gradient boosting 
algorithm, are more and more efficient 
and widely used to automatically assess 
significant parameters. Even if some ex-
pert work is needed to classify the validat-
ed FRAs on which those tools shall learn 
first, then the good results provided by 
those algorithms shall drive the develop-
ment of even more FRA automatic assess-
ments and improve their reliability.
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