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ABSTRACT
Aprominent and realistic problem inmagnetics is theoptimal designof abrushless direct current
(BLDC)motor. A key challenge is designing a BLDCmotor to function efficiently with aminimum
cost of materials to achieve maximum efficiency. Recently, a new metaheuristic optimization
algorithm called the Coronavirus Herd Immunity Optimizer (CHIO) is reported for solving global
optimization problems. The inspiration for this technique derives from the idea of herd immunity
as awayof combating the coronavirus pandemic. A variant of CHIO calledMulti-ObjectiveCoron-
avirus Herd Immunity Optimizer (MOCHIO) is proposed in this paper, and it is applied to optimize
the BLDCmotor design optimization problem. A static penalty constraint handling is introduced
to handle the constraints, and a fuzzy-based membership function has been introduced to find
the best compromise results. The BLDCmotor design problemhas twomain objectives:minimiz-
ing the motor mass andmaximizing the efficiency with five constraints and five decision/design
variables. First, MOCHIO is testedwith benchmark functions and then applied to the BLDCmotor
design problem. The experimental results are compared with other competitors are presented
to confirm the viability and dominance of the MOCHIO. Further, six performance metrics are
calculated for all algorithms to assess the performances.
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1. Introduction

Electric vehicles (EVs) are seen as an exciting choice
on the low-emission vehicle pathway that can allow the
transportation sector to reduce greenhouse gas emis-
sions dramatically [1,2]. As a result, the conventional
direct-current (DC) motors can still deliver constant
power during high-speed operation and high perfor-
mance during the wide operating speed range, restrict-
ing EV applications [3]. The most preferred choice for
EVs is currently the BLDC motor. In addition, the
BLDC motors are now commonly used in modern
industries due to their advantages, such as high per-
formance, light-weight, and simple structure [4]. The
BLDC motors are operated by an integrated switch-
ing power supply unit/inverter by a DC source, which
converts an alternating-current (AC) signal to drive
the motor. Furthermore, because of the potential in
the speed and torque domain, the BLDC motors are
more flexible [5]. Therefore, in current decades, a great
deal of ongoing research has been dedicated to design-
ing a BLDC motor. The involvement in BLDC motor
design has recently gone up from both theoretical
and experimental perspectives [6,7]. A BLDC motor
that drives a vehicle with solar photovoltaic source

during a competition is discussed in this study. The
material and production expenses are not necessary,
while the main focus is on axial bulk and motor effi-
ciency [8]. An analytical model of the BLDC motor
is used in this present study as a benchmark prob-
lem composed of 78 non-linear expressions with five
inequality constraints and five design variables. Alter-
natively, five design variables are optimized tominimize
the motor mass and maximize motor efficiency and
meet five constraints of inequality at once. A multi-
objective optimization approach is essential to accom-
plish these artifacts [9,10]. Few researchers have opti-
mized the BLDC motor design optimization problem
using various single-objective algorithms. The authors
of [10] have discussed four differentmetaheuristic algo-
rithms for the BLDC motor design problem. However,
the authors have considered a multi-objective prob-
lem as a single-objective problem. The authors of [11]
have applied the PSO algorithm for optimizing the
torque density in the BLDC motor. The authors of
[12] have compared the performance of three opti-
mization algorithms, such as gradient-based, direct-
search, and genetic algorithms for BLDCmotor design.
The authors have concluded that the genetic algorithm
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is suitable for the BLDC motor design problem. The
authors of [13] have applied DE algorithm combined
with MotorCAD and SPEED tools to design BLDC
motors for ultralight aircraft propulsion systems. The
authors of [14] have used an improved bees algorithm
for the BLDCmotor design problem. However, the per-
formance of the improved bees algorithm is not com-
pared with other algorithms. The authors of [15] have
applied a genetic algorithm for the BLDCmotor design
optimization. The authors of [16] have applied a genetic
algorithm and grey wolf algorithm for BLDC motor
design with an efficient ratio of slots per pole.

Evolutionary algorithms (EA) have indeed been
commonly used in several optimization problems in
recent years. The techniques, such as differential evo-
lution [17], genetic algorithm [18], and particle swarm
optimization (PSO) [19], are few examples of EA uti-
lized in electromagnetic field applications. In themean-
time, Swarm Intelligence (SI) is involved with an attrac-
tive figure in the area of applied electromagnetics.
Numerous bio-inspired SI algorithms, such as Multi-
Objective Particle Swarm Optimization (MOPSO) [8],
non-dominated sorting genetic algorithm Version-II
[20], bat algorithm [21] and its variant Multi-Objective
Bat Algorithm (MOBA) [17], krill herd optimizer [22]
and it’s variant Multi-objective Krill Herd Optimizer
(MOKHO) [22], Multi-Objective Grey Wolf Opti-
mizer (MOGWO) [23], Multi-Objective Whale Opti-
mization Algorithm (MOWOA) [24], Multi-Objective
Moth Flame Optimizer (MOMFO) [25,26], predator-
prey biogeography-based optimization [27], imperial-
ist competitive optimizer [28] and its variant called
multi-objective modified imperialist competitive opti-
mizer [28], pigeon-inspired optimizer [20], and it’s
variant multi-objective pigeon-inspired optimizer [29],
and sequential quadratic programming [30] have been
directly applied to the design problem of BLDC motor.
The optimal solutions are a group of non-dominated
Pareto with the best trade-off between two or more
cost functions placed on the Pareto front in multi-
objective optimization problems (MOOPs). Several real
optimization engineering issues with science and tech-
nology advancement contribute to bio-inspired algo-
rithms’ boom. Five control variables must be optimized
for the BLDC motor design problem to attain an sat-
isfactory trade-off among the total mass and efficiency
[31]. In addition,many variants ofmulti-objective algo-
rithms are reported by various researchers for global
multi-objective problems and real-world engineering
optimization problems. For instance, multi-objective
arithmetic optimizer [32], multi-objective slime mould
algorithm [33], direction-based multi-objective evo-
lutionary algorithm [34], multi-objective gradient-
based optimizer [35], decomposition-based multiob-
jective evolutionary optimization [36], multi-objective
plasma generation optimizer [37], improved multiob-
jective particle swarm optimization algorithm [38],

etc., are applied for many multi-objective optimization
problems.Nevertheless, none of thosementioned above
algorithms are verified BLDC motor optimization
problems.

The coronavirus herd-immunity optimizer’s moti-
vation derives from the idea of herd immunity as a strat-
egy to fight the coronavirus pandemic [39]. The spread
of infection with Coronavirus depends on how well
the infected people directly encounter other commu-
nity members. Health professionals recommend social
distancing to shield other people in society from the
infection. Herd immunity is a condition that the soci-
ety enters while much of the community is resistant,
contributing to the prevention of transmission of dis-
eases. In terms of computation notions, these defini-
tions are modeled. Three kinds of human cases for herd
immunity are used: infected, susceptible, and immu-
nized. It is to decide how well the newly formed solu-
tion with social distancing approaches updates its chro-
mosomes. The performance of the coronavirus herd-
immunity optimizer (CHIO) algorithm is tested for
various benchmark functions and proved its superior-
ity in handling the single-objective optimization prob-
lems. The CHIO algorithm performs better than other
well-known competitors, such as grey wolf optimizer,
bat algorithm, salp swarm optimization, harris hawk
optimizer, GA, particle swarm optimizer, and artifi-
cial bee colony optimizer, as discussed in the origi-
nal CHIO paper. In specific single-objective optimiza-
tion problems, it is evident that the CHIO algorithm
has certain advantages. So far, the CHIO algorithm
is implemented for few engineering applications, such
as vehicle routing problems [40] and non-hierarchical
grouping of objects [41]. Still, the researchers are uti-
lizing the CHIO algorithm in various applications. The
CHIO algorithm still shrinks down, however, at the
prospect of multi-objective problems. So far, the multi-
objective variant of the CHIO algorithm is not devel-
oped and analyzed for real-world engineering opti-
mization problems. As per the statement of the no-
free-lunch theory, no single algorithm is suitable for all
optimization problems. This statement motivated us to
develop a new algorithm for the BLDC motor design
optimization problem [42]. Inspired by [32,37,43], a
multi-objective version called Multi-Objective Coron-
avirus Herd Immunity Optimizer (MOCHIO) is pro-
posed to extend its scope in various fields. The crowd-
ing distance assignment and non-dominated proce-
dure ensure that the selection process is elitist and
efficient. For better solution accuracy, the MOCHIO
is then implemented to optimize the BLDC motor
design parameters. From the quantitative outcomes
against MOGWO, MOBA, MOPSO, MOWOA, and
MOMFO, in the view of MOOPs, MOCHIO seems
to have superiority in homogeneity and degree of the
Pareto front. The key contributions of this study are as
follows.
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• Anewmulti-objective algorithmcalled theMOCHIO
algorithm is formulated using the crowding-distance
and non-dominated sorting mechanism concepts.

• A fuzzy-based membership function is introduced
to find the best compromise results

• A static penalty constraint handling approach is
introduced to handle the equality and inequality
constraints.

• The performance of the proposed algorithm is tested
on unconstrained and constrained multi-objective
benchmark test functions.

• Implementation of MOCHIO algorithm for the
BLDC wheel motor design optimization problem
and the performance of the proposed algorithms is
compared with other competitive algorithms.

• The six performance metrics are calculated for all
test problems and compared among selected opti-
mization algorithms.

As follows, the remainder of the paper is organized.
The principles of the CHIO algorithm and conversion
of the single-objective CHIO algorithm to the multi-
objective CHIO algorithm are discussed in Section 2.
The problem formulation of the BLDC motor design
and its constraints are discussed in section 3. The simu-
lation results ofMOCHIO for various benchmark func-
tions and BLDC motor design problems are discussed
in Section 4. In addition, the statistical analysis of all
algorithms is also presented. Section 5 discusses the
concluding remarks.

2. Single andmulti-objective Coronavirus
Herd Immunity Optimizer algorithm

2.1. Basic Coronavirus Herd Immunity Optimizer
(CHIO) algorithm

The idea of herd immunity is mathematically mod-
elled to construct the basic CHIO algorithm [39]. The
methodology builds on the assumption of protecting
society from the infection by transforming the bulk of
the non-infected susceptible population to immunity.
Consequently, even the remaining susceptible cases
would not be affected since the immune population will
no longer spread this infection. The population of indi-
viduals with herd immunity can be divided into suscep-
tible, infected, and resistant. The formulation of CHIO
is based on the herd immunity population, as depicted
in Figure 1. For more details, please refer to [39]. As
seen in the CHIO algorithm’s implementation pro-
cedure, the improvement approach is extracted from
susceptible, contaminated, and immunized individuals.

In the CHIO algorithm, social distance is defined by
separating the current individual and a specified per-
son from the community who could be susceptible,
infected, or immunized. The herd immunity approach
is modelled on the optimization technique in the CHIO

algorithm. There are six primary steps to develop the
algorithm. The implementation procedure is as follows.

Step-1: Initialize CHIO parameters and the prob-
lem formulation – The objective function of CHIO is
as follows:

min
x

f (xx)xx ∈ [lblb, ubub] (1)

where n signifies the number of genes in each individ-
ual, the objective function is formulated for all the indi-
vidual, (xi = x1, x2, . . . , xn), in which xi is the decision
variable with index “i”. The CHIO algorithm has two
control parameters, such as maximum infected cases
age (MaxAge) and basic reproduction rate (BRr), and
four algorithmic parameters, such as C0 (=1),Max_Itr
(Maximum number of iteration),HIS (Herd Immunity
Size), and n (dimension).

Step-2: ProduceHerd ImmunityPopulation (HIP) –
Originally, the algorithm produces a set of populations
as much as HIS heuristically. The individuals produced
are kept in the HIP as a two-dimensional matrix, as
follows:

HIP =

⎡
⎢⎢⎣

x11 · · · x1n
...

. . .
...

xHIS1 · · · xHISn

⎤
⎥⎥⎦ (2)

Using Eq. 1, the optimal solution for each individual is
determined. In addition, for all individuals in the HIP,
the status vector (S) is also established by either one or
zero. Notice that the number of ones in S is originated
at random as much as C0.

Step-3: Herd Immunity Evolution –This is CHIO’s
primary enhancement loop. According to the BRr, the
individual gene maintains the same or is influenced by
social distance using three following rules.

xji(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xji(t), r ≥ BRr

C(xji(t)), r <
1
3

× BRr (Infected)

N(xji(t)), r <
2
3

× BRr (Susceptible)

R(xji(t)), r < BRr (Immuned)
(3)

where r denotes random number between [0,1]. The
infected case is in the range of 0 to 1

3 × BRr. The new
gene’s value is reduced by social distancing, and it is
derived by finding the difference between the gene from
the infected case and the current gene as follows.

xji(t + 1) = C(xji(t)) (4)

C(xji(t)) = xji(t) + r × (xji(t) − xci (t)) (5)

Note that xci (t) is selected randomly from the diseased
person based on the S. The susceptible case is in the
range of 1

3 × BRr to 2
3 × BRr, the value of the new gene
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Figure 1. Herd immunity population [39]

is reduced by social distancing, and it is derived by find-
ing the difference between the gene from the infected
case and the current gene as follows.

xji(t + 1) = N(xji(t)) (6)

N(xji(t)) = xji(t) + r × (xji(t) − xmi (t)) (7)

Note that xmi (t) is selected randomly from the vulnera-
ble case based on the S.The immune case is in the range
of 2

3 × BRr to BRr, the value of the new gene is reduced
by social distancing, and it is derived by finding the dif-
ference between the gene from the infected case and the
current gene as follows.

xji(t + 1) = R(xji(t)) (8)

R(xji(t)) = xji(t) + r × (xji(t) − xvi (t)) (9)

Note that xvi (t) is feast from the best-immuned person
based on the S such that,

f (xv) = arg min
j∼{k|Sk=2}

f (xj) (10)

Step-4: Population Update – During each generated
case, the immunity rate is determined, and the current
solution is substituted by the generated person only if
f (xxj(t + 1)) < f (xxj(t)). The value of the age vector

(Aj) is raised to one if the value of the status vector Sj
is equal to one. During each iteration, the value of Sj is
updated based on the threshold of herd immune using
the following equation.

Sj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, f (xxj(t + 1)) <
f (xx)j(t + 1)

�f (xx)
∧Sj = 0 ∧ is_Corona(xxj(t + 1))

2, f (xxj(t + 1)) >
f (xx)j(t + 1)

�f (xx)
∧ Sj = 1

(11)

where is_Corona(xxj(t + 1)) is equal to one, which is a
binary value if a new case has inherited a benefit from
any cases infected.

Step-5: Casualty Cases – If for a specified iteration,
as defined by theMax_Age parameter, the immune rate
of the present affected case could not increase, then this
process is considered deceased. It is then regenerated
from scratch using xji(t + 1) = lb_i + (ub_i − lb_i) ×
U(0, 1). Besides, the value of Sj and Aj is set as zero. It
can be beneficial in expanding the present population
and thereby avoiding local optimum solutions.

Step-6: Stopping condition – The CHIO algorithm
performs steps 3–5 until the stopping criterion is met,
usually depending on the maximum number of iter-
ations (ITmax). In this situation, the population is
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dominated by the total number of immune and suscep-
tible cases. Also, the contaminated cases are removed.

2.2. Multi-Objective Coronavirus Herd Immunity
Optimizer (MOCHIO) algorithm

In order to construct the MOCHIO algorithm, an
archive was built into the algorithm, and it is used
to store the optimal solution during each run. This
process of archiving would be similar to the multi-
objective variant of PSO. The search method in
MOCHIO is very similar to the basic single-objective
version of CHIO, in which solutions are built using
the herd immunity process. The optimal solutions are
stored in an archive, and the optimal solutions are
selected from the Archive using the leader screen-
ing process. The MOCHIO algorithm can be used
to minimize (or maximize) the objective functions as
follows.

Min/Max, F(�x) = {f1(�x), f2(�x), f3(�x)}
Subject to : pj(�x) ≥ 0, j = 1, 2, . . . , g

qj(�x) = 0, j = 1, 2, . . . , h

lbj ≤ xj ≤ ubj, j = 1, 2, . . . , n

(12)

where p and q are the inequality and equality con-
straints of the given problem. Several algorithms to
comply with MOOPs, such as NSGA-II [44–48] and
MOBA [9], the Pareto sorting scheme has indeed been
involved. In NSGA-II, the initial population trans-
forms in order to achieve a genotype population and
a set of genotypes [49]. The MOCHIO algorithm
utilizes the elitist framework to determine the indi-
vidual’s efficiency because of its strong results in
balancing exploration and exploitation. The follow-
ing steps are the basis for implementing the sorting
scheme.

Step-1: Non-dominated sorting operator – If and
only if any of the following conditions aremet, the posi-
tion of the individual Xi is said to control the position
of the individual Xj[8].{

fl(Xi)�fl(Xj), for alll = 0, 1, 2, . . . , n

f�l(Xi)�f�l(Xj), for at least one�l ∈ {0, 1, 2, . . . , n}
(13)

As shown in Figure 2, the individuals would be split by
the non-dominated sorting operator, SX1 , S

X
2 and so on

into various sets. The surface generated by solutions is
known as the Pareto frontier in the best non-dominated
set SX1 .

Step-II: Crowded Comparison Operator (CCO) –
After all the individuals have been grouped intom sets,
by linking the Crowding Distance (CD) of individual
locations, the CCO remains to rank in each set. The CD
is defined as follows.

CDi
j = fl(Xi+1) − fl(Xi−1)

f max
l − f min

l
(14)

Figure 2. Different sets divided by CCO

Where, f min
l and f max

l are the minimum and maximum
values of lth fitness function. The higher CD is consid-
ered to be optimal in order to guarantee a variety of
solutions. The MOOP has access to the range of Pareto
sorting scheme solutions rather than contrasting fitness
values in single-objective optimization. The individuals
can go through two operations, as seen in Figure 3. First
of all, they split into separate sets by the non-dominated
sorting operator. In every set, the CCO proceeds to
rate the individuals. As a consequence, Pareto’s sorting
scheme generates a series of individuals in descending
order.

2.3. Implementation procedure ofMOCHIO
algorithm

The flowchart of the suggested MOCHIO algorithm is
depicted in Figure 4. The following is the implementa-
tion of the proposed MOCHIO algorithm.

(1) Initialize the CHIO algorithm parameters, such as
spreading rate BRr, HIS, maximum age Maxage,
and Sf . The maximum number of iterations is rep-
resented as ITmax.

(2) Assess the positions of the herd immune individual
X via the Pareto sortingmechanism. Find the non-
dominated solutions and store them in the Pareto
Archive, and the crowding distance is calculated
for each member of the Archive.

(3) The sorting scheme for Pareto is used to evalu-
ate the best individual (only non-dominated solu-
tions) in the Archive, and dominated solutions are
deleted from the Archive.

(4) The position of the population is updated using
Eq. 11 in the CHIO algorithm.

(5) Update the iteration loop t by t = t+1.
(6) If t is smaller than ITmax, return to step-2. Else

the current positions are evaluated and return the
optimal Pareto front S1X .
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Figure 3. Non-dominated sorting scheme for MOCHIO algorithm

Figure 4. Flowchart of the multi-objective CHIO algorithm

3. BLDCmotor design optimization problem

This segment of the paper presents the basic concepts of
the BLDC wheel motor drive, mathematical modelling
of the BLDCwheelmotor, and problem formulation for
the optimization process.

3.1. Basics of BLDCmotor

The structure and geometry of the BLDC motor,
schematically shown in Figure 5, is commonly used
when the application requires high torque-inertia and
torque-volume ratios along with a high starting torque
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Figure 5. BLDC wheel motor; (a) Structure of the motor, (b) Geometry of the motor [27,50]

and frequent running. Its high versatility to be config-
ured in many ways is another unique feature of the PM
brushless motor. This work uses a combined method
with thermal analysis to design a BLDC motor [50,51].
The design technique is assisted by a steady-state study
of a BLDC motor. As a function of the working con-
ditions and machine dimensions, it gives the equa-
tions of the magnetic, electrical, thermal, andmechani-
cal quantities. The motor design is thus accomplished
by solving a system of non-linear equations derived
from the aforementioned operating study, where, as in
[27], motor efficiency, material stress limits, and other
restrictions are applied. An optimization method to
configure the best motor configuration has been eas-
ily implemented, taking advantage of the fully analytical
design process.

This paper analyzes the optimization of a BLDC
wheel motor for a solar racecar [52]. Figure 3(b) depicts
the geometry of the BLDC motor. Three benchmarks
are suggested by the authors of [52], in which the first
benchmark has five design variables, the second bench-
mark has 10 design variables, and the third benchmark
has 11 design variables, with various constraints and a
single objective function. The pole pair is related to the
fundamental discrepancy between the second bench-
mark problem and the third benchmark problem pro-
posed in [52]. The number of poles is fixed as six in the
secondbenchmark problem, and the number of poles in
the third benchmark problem varies between [4, 6]. An
analytical model is then adopted for the benchmarks.
In the design phase, this would be very effective. So,
it neglects eddy current and saturation in the magnets
and other effects.

3.2. Mathematicalmodelling of BLDCwheelmotor

This section discusses the mathematical modelling of
the BLDC wheel motor. A wheel drive that acceler-
ates a car during racing is the motor that needs to
be designed and analyzed. The analytical modelling of
the BLDC wheel motor is carried out in this paper,

as discussed by authors of [52]. This circumstance
influences the design and implementation possibili-
ties. However, materials and production costs aren’t as
important as motor performance and axial weight. As
a result, a BLDC motor with surface Samarium Cobalt
magnets, focused radial flux, windings, and an out-
runner rotor is recommended. The inverter collects
the data from Hall sensors with hysteresis-controlled
current drives the motor. It is generally easier to eval-
uate parameters, such as temperature and efficiency,
from their geometrical parameters, called direct model,
and it necessitates reversing iterative optimization pro-
cedures, resulting in geometric parameters when the
specifications are known. The dimensions can be com-
puted non-iteratively by employing assumptions that
result in a reverse model. It is simple and applicable for
machine pre-sizing. Non-linear constitutivemathemat-
ical equations governing physical processes in different
fields, including electrical, magnetic, mechanical, and
thermal.

Eq. 15 presents the expression for electromagnetic
power (Pm) from which the torque (Tm) equation can
be derived.

Pm = Tm(t) × N(t) =
Ph∑
i=1

ei(t) × ii(t) (15)

Where ii denotes the phase current, ei denotes the
phase voltage, Ph denotes the number of phases, and
N denotes the speed. In the BLDC motor, there are
3ϕ with square-wave currents, and the value of elec-
tromotive force is equivalent to+E or – E and 0 or
intermediate during 120 electrical degrees and 60 elec-
trical degrees, respectively. Therefore, the expression
for Tm is presented in Eq. 16 by assuming constant
speed and Pm.

Tm × N = 2 × E × I (16)

When the rotor displacement equals the pole pitch, a
south magnet replaces a north (N) magnet, and the
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induction converses. By applying Lenz’s law, the expres-
sion for an electromotive force is computed, as shown
in Eq. 17.

E = z
4

× dϕ
dθ

× dθ
dt

= z
4

× 2ϕ
π/p

× N (17)

where z denotes the number of supplied wires, and the
total number of permanent-magnets is 2 × p. When an
N-magnet is placed beside the winding, the flux (ϕ) is
calculated using Eq. 18.

ϕ = Be × Ap (18)

Where Bm denotes the maximum air-gap flux den-
sity, and Ap denotes the magnetic pole surface area.
Equation (17) is based on the assumption of a linear flux
fluctuation against the position of the rotor. This results
in a constant that is proportional to the value of EMF.
From Eqs. 16-18, the torque expression is rewritten as
follows.

Tm = z × I × Be × Ae

2 × π
(19)

Total air gap area, Ae = 2 × p × Ap (20)

For a BLDC motor with radial flux, the expression for
the overall air-gap zone is presented in Eq. 21.

Ae = π × Ds × Lm (21)

where Lm denotes the length of the stack andDs denotes
the stator diameter. Now, Eq. 17 is rewritten as follows
by considering Eqs. 20-21.

E = z
4

× Be × Ds × Lm × N (22)

Figure 6 shows the magnetic portions in the area of the
air gap in a simplified manner. The air-gap magnetic
induction waveform is depicted in Figure 7 by assum-
ing a constant air-gap width, completely radial air-gap
flux, and magnets. Integrating magnetic induction on
the area bounded by the winding, determined by the
angle in the cross-section, yields the flux across the coil.
Note that the EMF remains the same, but the magnets’
thickness and the coils’ openness can now be adjusted

Figure 6. Area of the air-gap, stator coils, and magnets

Figure 7. The air-gap flux waveform

to maximize the flux and that the EMF peak is now the
maximum.

α = β = π

p
(23)

The analytical technique revealed the same patterns as
the sensitivity of the thickness of the EMF spike. For
the variables α and β , nevertheless, the fluctuation is
non-linear. Furthermore, it has been demonstrated that
a trapezoidal EMF requires an intermediate tooth in
the center of each slot and that the thickness of its
expanding αi has a significant impact. For a framework
with a ratio of slots to magnets of 3/4, the succeed-
ing relationship is established, presuming that the stator
is adequately flat to facilitate the dispersion of flux in
the air-gap is as per the assumptions, but not exces-
sively to evade creating amagnetic obstruction between
winding.

αi = α

5
(24)

The geometric dimensions are well-defined in Figure 5.
From Figure 5b, the following relations are derived.

Anc =hd
(
2π×

[
Ds

2
−eb

]
−π

×hd−Se×(ld + li)) (25)

Anc × Kr = 3
2

× z × I
δ

(26)

Dext = Ds + 2 × (e + ha + hcr) (27)

Dint = Ds − 2 × (eb + hd + hcs) (28)

hc = eb
cos α

2
− Ds

2
×

(
1

cos α
2

− 1
)

(29)

hi = Ds

2
×

(
1 − cos

αi

2

)
+ hc × cos

αi

2
(30)

where Se denotes the total number of slots, Dint and
Dext denote the inner and outer diameters, δ denotes
the conductor current density, Kr denotes the factor
due to slot filling (< 1), and Anc denotes the total slots
sections. The hold height hc is found to obtain a right
angle between the pole shoe and the primary tooth. The
width of the middle tooth widening hi is found so that
the elevation of a middle tooth is equal to one of a pri-
mary tooth hc, and there is a right angle among the
middle tooth and pole shoe. Eq. 31 presents the mean
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radius of the winding terminal, and Eq. 32 shows the
average span of a half turn.

Rt ≈ ld − li
4

+
[
Ds

2
− eb − hd

2

]
× π

2 × Se
(31)

Ld ≈ Lm
kf

+ π × Rt (32)

The total motor axial length LT is calculated using
Eq. 33, and various active part weights are represented
in Eqs. 34-39.

LT ≈ Lm
kf

+ 2 ×
[
Ds

2
− eb − hd

2

]
× π

Se
− li

2
(33)

Ma = da × p × β × ha

×
[
ha +

(
2 × Ds

2
+ e

)]
× Lm × rrs (34)

Mcr = dcr × π × hcr

×
[
hcr +

(
2 × Ds

2
+ e + ha

)]
× Lm × rrs

(35)

Mcs = dt × π × hcs

×
[
2 ×

(
Ds

2
− eb − hd

)
− hcs

]
× Lm (36)

Mds = dt × Se

×
[
(li + ld) × hd

+
(

α
eb + hc

2
+ αi

hi + hc
2

)
× Ds

2

]
× Lm

(37)

Mcu = dcu × 3
2

× z × I
δ

× Lds (38)

The total mass of all the active partsMTt is the sum
of individual weights of all parts.

MTt = Ma + Mcr + Mcs + Mds + Mcu (39)

where kf < 1 denotes the metal sheets bulk factor,Mcu,
Mds, Mcs, Mcr, and Ma denote the mass of the copper,
teeth of the stator, stator yoke, rotor yoke, andmagnets,
respectively, dcu, dt , dcr, and da denote the density of
copper, stator teeth, rotor yoke, andmagnets, and 1.2 ≥
rrs ≥ 1/kf denotes the ratio of the rotor length on one
of the stators.

The average flux density values in stator back iron,
rotor yoke, magnets, and teeth are Bcs, Bcr, Ba, and Bd,
respectively. The flux conservation between the pole
shoe and the primary tooth and the pole shoe and the
middle tooth is given in Eq. 40 and Eq. 41, respectively.

Bd × ld = Be × α × Ds

2
(40)

Bd × li = Be × αi × Ds

2
(41)

The pole shoe width is measured to allow the flux
absorbed by the portion of the pole shoe traveling
through the primary tooth to flow through, resulting in
flux conservation, as given in Eq. 42.

Bd ×
[
eb − Ds

2

(
1 − cos

(
sin−1 ld

Ds

))]
= Be

×
[
α

2
− sin−1 ld

Ds

]
× Ds

2
(42)

Because 50% of the flux traversing the magnet departs
one side of the rotor yoke while the other 50% departs
the other, flux conservation between the rotor yoke and
the magnet, as given in Eq. 43.

1
2

× Ba × β

(
Ds

2
+ e

)
= Bcr × hcr (43)

Similarly, flux conservation between the stator yoke and
the primary teeth, as given in Eq. 44.

1
2

× Ba × ld = Bcs × hcs (44)

Eventually, the flux between a magnet and the primary
tooth is also conserved, as presented in Eq. 45.(

Ba × β

(
Ds

2
+ e

)
× rrs

)
× kfi = Ds

2
× α × Be

(45)
where kfi denotes the leakage coefficient calculated
using FEM modeling and is always less than 1. It
expresses how the leakage flux across magnets crosses
a portion of the air-gap and the rotor but does not enter
the stator.

By applying Ampere’s law at no load condition, a
relation between the magnet’s geometric dimensions,
magnetic circuit, the MMF, and the flux densities in
various portions.

Bcr
μcr(Bcr)

×
[
hcr
2

+ π

2p
×

(
Ds

2
+ e + ha + hcr

2

)]

+
[
Ba − Br(1 + αa × Ta)

μa

]
× ha + Be

× e + Bd
μt(Bd)

(eb + hd) + Bcs
μt(Bcs)

×
[
hcs
2

+ π

Se

(
Ds

2
− eb − hd − hcs

2

)]
= 0

(46)

where μcr and μt denote the relative permeabilities
of the rotor yoke and sheet metal, αa < 0, Br, and
μa denote themagnet temperature, thermal coefficient,
the remnant flux density of the magnets, and relative
permeability, respectively.

While assuming that the permeabilities of rotor yoke
and sheet metal are greater than vacuum, and thus
that the magneto-motive force used in the circuit is
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insignificant compared to that expended in the air-gap.
Therefore, Eq. 46 is simplified as seen in Eq. 47(

Ba − Br(1 + αa × Ta)

μa

)
× ha + Be × e = 0 (47)

Sufficient current flows in the coils whenever the motor
is energized. Magnetization in the magnets can exceed
the threshold for an excessively large current, resulting
in demagnetization. As a result of the low induction, the
magnetic permeability is large, and theMMF expended
in the magnetic circuit can be ignored. The phase cur-
rent reaches its maximum tolerable values at a critical
magnetic induction in the magnets Bc.(

Bc − Br(1 + αa × Ta)

μa × μo

)
× ha + z × Imax

4p
+ Bc

μo

× β

α
×

(
1 + 2e

Ds

)
× rrs × kfi × e = 0 (48)

The electrical loss can be found by defining the phase
resistance and is given in Eq. 49.

Rph = ρ × (1 + αcu × Tcu) × z
2

× Lds × δ

I
(49)

where Tcu denotes the coil temperature, αcu > 0
denotes thermal coefficient, and ρ denote the cop-
per resistivity. The electrical copper loss is calculated
using Eq. 50, and the fundamental frequency is given
in Eq. 51.

Pcu = 2 × Rph × I2 (50)

f = pN
2π

(51)

The core or iron loss is calculated using Eq. 52.

Pir = qt ×
(
f
ft

)1.5

×
[
Mcs ×

(
Bcs
Bt

)2
+ Mds ×

(
Bd
Bt

)2
]

(52)

where qt denote the specific loss for flux density Bt
and a frequency ft . Therefore, the motor efficiency is
calculated using Eq. 40, in which Pmec denotes the
mechanical losses.

η = Tm × N − Pmec

Tm × N + Pcu + Pir
(53)

The thermal model is straightforward. Conversely, it is
assumed that thermal conduction resistances are much
lesser than thermal convection resistances. As a result,
the temperature of all stator parts in touches, such as the
stator yoke, teeth, and coils, is the same. However, even
if the rotor and stator are not in touch due to rolling,
large areas are in touch with air space. The confined air
is represented as a substance with low thermal conduc-
tivity under these circumstances. Despite this, it is low

because the thermal resistance between the stator and
the rotor is equivalent to the depth of air separated by
the thermal conduction and the face-to-face surfaces.
As a result, the temperature gradient within the motor
is minimal, and all active components are assumed to
be at the same temperature.

Ta = Tcu (54)

In the theory of an enclosed motor, the exterior surface
where convection occurs is equal to Eq. 55.

Aext = π

2
× Dext

2 + π × Dext × LT (55)

Therefore, the overall temperature of the motor is cal-
culated using Eq. 56.

Tcu = Text + Pm + Pcu + Pir
h × Aext

(56)

where Text denotes the ambient temperature and h
denotes the convection coefficient in air.

3.3. Problem formulation

In [53], a BLDC motor benchmark was presented, and
the basic code inMATLAB is publicly available to com-
pute the fitness functions. The studied problem has
a MATLAB model that can be used for research rec-
ommendations in [52], where 78 non-linear equations
are introduced with five optimization variables and six
inequality constraints in the single-objective problem
or with five constraints in the multi-objective prob-
lem. In this paper, two objective functions, such as
minimization of motor mass (f1) and maximization of
motor efficiency (f2) with five design/optimization vari-
ables, such as back iron Bcs, magnetic induction both
in the teeth Bd, the current density in the conductors
δ, magnetic induction in the air-gap Be, and bore sta-
tor diameter Ds, and six inequality constraints, such as
temperature Ta, magnetics maximum current Im, inner
diameter Din, external diameter Dex, total mass MTt ,
and the determinant (Discr) used for the slot height
calculation based on five optimization variables. This
research focuses on the multi-objective situation, thus
adopting electromagnetic fields with the new concept
of MOCHIO. The optimization aims to achieve min-
imum total mass and maximum efficiency within the
acceptable range of optimization parameters under the
constraint variables’ restriction, as shown in Table 1.

In this paper, a benchmark (five constraints with
pole pair constant) with two objective functions is con-
sidered. The thermal model in this method is very
straightforward since the model is for pre-sizing con-
siderations only. It is also presumed that the thermal
conduction resistance is smaller than the thermal con-
vection resistance and that the temperature gradient
within themotormight be ignored because of themotor
geometry. So, it is presumed that the temperature of the
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Table 1. BLDC wheel motor’s design variables and its
constraints

Type Variables Definition
Upper
limit

Lower
limit

Design
variables

Ds (mm) Diameter of the
stator

300 150

Bcs (T) Mean flux density
in stator back
iron

1.6 0.6

Be (T) Airgap flux density 0.76 0.5
Bd (T) Mean flux density

in teeth
1.8 0.9

δ (A/mm2) Winding current
density

5 2

Inequality
Constraints

Ta (oC) Motor temperature ≤ 120

Im (A) Maximum phase
current

≥ 125

Din (mm) Internal diameter ≥ 76
Dex (mm) External diameter ≤ 340
MTt (Kg) Total motor mass ≤ 15
Discr Determinant for

the slot height
calculation

Discr (δ,Ds, Be, Bd) ≥ 0

Objective
variables

MTt (Kg) Total motor mass -

η (%) Motor efficiency -

copper exists in the active parts. Therefore, the biggest
change in heat is between the surrounding temperature
and the motor. Generally, this problem is a multidis-
ciplinary optimization challenge. Two objective func-
tions are considered, such as the motor mass (f1) and
motor efficiency (f2). It is possible to write the MOOPs
as follows.

Minimize, [f1, f2] = [MTt , 1 − η] = f (Ds , Bcs , Be , Bd , δ)

Subjected to constraints :

Din ≥ 76mm
Dex ≥ 340mm
Ta ≤ 120oC
Im ≥ 125A
Discr(δ, Ds , Be,Bd) ≥ 0

Upper and Lower Bounds:

150mm < Ds < 300mm
0.6T < Bcs < 1.6T
0.5T < Be < 0.76T
0.9T < Bd < 1.8T
2 A/mm2 < δ < 5 A/mm2

4. Simulation results and discussions

This section discusses the simulation analysis of the
proposed MOCHIO algorithm and performance com-
parison between the other competitive algorithms,
such as MOPSO, MOBA, MOGWO, MOMFO, and
MOWOA. The BLDCwheel motor design problem has
two objective functions and six inequality constraints.
Therefore, it is fair enough to test the MOCHIO
algorithm on several standard benchmark test func-
tions. Therefore, the proposed MOCHIO algorithm
is validated on standard benchmark test functions,
such as CONSTR, SRN, BNH, TNK, ZDT1-ZDT4, and
ZDT6. Later, the proposed algorithm and other com-
petitive algorithms are applied to the BLDC motor
design problem, and the performance is also analyzed.
The control parameters of various algorithms are pre-
sented in Table 2. The population size and maximum

Table 2. Control parameters of various algorithms

Algorithm Parameters Definition Range

MOPSO nArc Size of Archive 200
C1 and C2 Constants 1.5

w Inertia weight 0.75
MOBA nArc Size of Archive 200

α and γ Constants 0.9
MOGWO nArc Size of Archive 200

a Linear decrease 2
MOMFO nArc Size of Archive 200
MOWOA nArc Size of Archive 200

a Linear decrease 2
MOCHIO nArc Size of Archive 200

BRr Basic reproduction rate 0.5
MaxAge Maximum infected cases age 100

iterations for all selected algorithms are 100 and 1000,
respectively. For a fair comparison, each algorithm is
executed 30 times individually.

4.1. Performancemetrics

The performance metrics are very important for a fair
comparison of the MOCHIO with other state-of-the-
art multi-objective algorithms. Therefore, the perfor-
mance indicators, such as Delta, Epsilon, Spread, Gen-
erational Distance (GD), Inverted Generational Dis-
tance (IGD), and Spacing, are calculated and discussed
in this paper [33,35,54]. The performance metrics are
calculated as follows.

Spacing �

√√√√ 1
n − 1

n∑
i=1

(d̄ − di)
2 (58)

Spread =
√√√√ o∑

i=1
max(d(ai, bi)) (59)

Generational Distance (GD) =
√∑no

i=1 d
2
i

n
(60)

Inverted Generational Distance (IGD)

=
√∑nt

i=1 (d′
i)
2

n
(61)

Diversity Metric(DM) =
∣∣∣∣dl + dm + ∫nti=1 |di − d|

dl + dm − (n − 1)d

∣∣∣∣
(62)

where dm and dl are Euclidean distances between
attained Pareto front and true Pareto front, and d
denotes the number of attained Pareto optimal solu-
tions and averaged all solutions distance. nt denotes the
number of true Pareto-optimal solutions, no denotes
the number of true Pareto set (PS), o denotes the num-
ber of objectives, n denotes the number of attained
PS, di is Euclidean distance between attained Pareto
front and true Pareto front in each point and is
equal to minj(|f i1(�x) − f j1(�x)| + |f i2(�x) − f j2(�x)) for i,
j=1,2, . . . ,n., d̄ denotes the average of di, di and d′

i
specifies the Euclidean distance, and bi and ai denotes
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minimum andmaximum values in the ith objective. For
validation, the performance of theMOCHIO algorithm
and other competitive algorithms, such as MOPSO,
MOBA,MOGWO,MOMFO, andMOWOA in terms of
faster convergence metrics, such as Spread, GD, com-
bined diversity-spread, such as Epsilon and Spacing,
and combined uniformity-convergence-spread, such as
DM, IGD, are discussed.

4.2. Classical constrained benchmark functions

First of all, the performance of the suggestedMOCHIO
algorithm is confirmedusing thewell-known constraint
multi-objective benchmark problems, such as CON-
STR, SRN, BNH, and TNK, the benchmark optimiza-
tion test functions presented in [55], before applying
to the design and optimization problem of a BLDC
motor. All four problems have two objective functions
and four constraints. The objective functions and their
constraints are presented in Eqs. 63-66.

CONSTR :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize f1(x, y) = x

Minimize f2(x, y) = (1 + y)/x

g(1) = 0.1 ≤ x ≤ 1

g(2) = 0 ≤ y ≤ 5

g(3) = 0 ≥ 6 − y − 9x

g(4) = 0 ≥ 1 + y − 9x

(63)

SRN :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize f1(x, y) = (x − 2)2 + (y − 1)2 + 2

Minimize f2(x, y) = 9x − (y − 1)2

g(1) = −20 ≤ x

g(2) = y ≤ 20

g(3) = 0 ≥ x2 + y2 − 225

g(4) = 0 ≥ x − 3y + 10
(64)

BNH :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize f1(x, y) = 4x2 + 4y2

Minimize f2(x, y) = (x − 5)2 + (y − 5)2

g(1) = 0 ≤ x ≤ 5

g(2) = 0 ≤ y ≤ 3

g(3) = 0 ≥ (x − 5)2 + (y)2 − 25

g(4) = 0 ≥ −(x − 8)2 + (y + 3)2 + 7.7
(65)

TNK :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize f1(x, y) = x

Minimize f2(x, y) = y

g(1) = 0 ≤ x

g(2) = y ≤ π

g(3) = 0 ≥ −x2 − y2 + 1 + 0.1∗
cos

(
16arctanx

y

)
g(4) = 1

2 ≥ (
x − 1

2
)2 + (

y − 1
2
)2

(66)

The above four multi-objective benchmark prob-
lems are optimized using the proposed MOCHIO
algorithm to test the ability of the proposed MOCHIO
in handling the multi-objective problem with inequal-
ity constraints. The proposed MOCHIO algorithm’s
performance is compared with the other well-known
and recentmulti-objective algorithms, such asMOPSO,
MOBA, MOGWO, MOMFO, and MOWOA for the
classical constrained multi-objective benchmark test
functions. The obtained Pareto front (PF) for all four
test functions, with the optimal solutions, are plotted
and illustrated in Figure 8.

Tables 3–6 lists all the performance metrics values
by all selected algorithms on various benchmark test
functions, such as CONSTR, SRN, BNH, and TNK.
The performance indicators enumerate the conver-
gence and the coverage of Pareto optimal solutions
assessed by various algorithms. The bold letters in
all the tables indicate the best results. As discussed
earlier, the results are taken after simulating 30 indi-
vidual runs. From Tables 3–6, it is observed that the
proposed MOCHIO is outperforming the other algo-
rithms in terms of all performance indicators, fol-
lowed byMOGWO,MOMFO,MOPSO,MOWOA, and
MOBA.

4.3. ZDT benchmark test functions

Secondly, the proposed algorithm and competitors are
validated on unconstrained ZDT benchmark func-
tions (ZDT1-ZD4 and ZDT6). All ZDT functions
have 2-objectives with 30-dimensions (ZDT1-ZDT3)
and 10-dimensions (ZDT4 and ZDT6). The ZDT1-
ZDT2 functions have unimodal characteristics, ZDT3-
ZDT4 functions have unimodal/multimodal charac-
teristics, and ZDT6 has multimodal characteristics
[35,54]. The unimodal characteristics are suitable for
assessing the exploitation stage, while the multimodal
characteristics are suitable for assessing the explor-
ing stage. The MOCHIO algorithm’s exploitation and
exploration capabilities are analyzed and compared
to other state-of-the-art algorithms in this sense. The
results obtained by all algorithms on ZDT bench-
mark functions are listed in Tables 7–12. It is obvi-
ous that the MOCHIO produces the best results for
ZDT benchmark test functions. In order to assess
the performance of the MOCHIO algorithm, the val-
ues of various performance metrics -are obtained by
all selected algorithms and presented in Tables 7–12.
The MOCHIO algorithm shows the faster convergence
(GD and Runtime (RT)), the best uniform conver-
gence (DM, IGD, and Spacing), and the combined
diversity (Spread and Epsilon). The PF obtained by
all algorithms is plotted and illustrated in Figure 9.
The findings demonstrate that the Pareto optimal solu-
tion on the computed PF is distributed evenly for all
problems.
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Figure 8. Pareto fronts obtained by the proposed MOCHIO algorithm; (a) CONSTR, (b) SRN, (c) BNH, (d) TNK

Table 3. Performance comparison of various algorithms for CONSTR

Algorithm DM Epsilon Spread GD IGD Spacing

MOPSO 1.3528 0.087284 1.1788 0.0002941 0.0034098 0.07439
MOBA 1.5967 0.034578 1.2368 0.00019807 0.00096741 0.11333
MOGWO 1.3773 0.085223 1.1979 0.00013277 0.0035998 0.057799
MOMFO 1.4943 0.053943 1.2042 0.00019598 0.0017192 0.08068
MOWOA 1.4858 0.044312 1.1834 0.00025891 0.0011774 0.094263
MOCHIO 1.1252 0.050385 1.2971 0.00012991 0.0009199 0.067902

Table 4. Performance comparison of various algorithms for SRN

Algorithm DM Epsilon Spread GD IGD Spacing

MOPSO 1.088 9.3888 1.0863 0.015203 0.00030618 1.7198
MOBA 1.0961 6.2194 1.0945 0.011729 0.00022835 1.3137
MOGWO 1.1367 6.8601 1.1344 0.024488 0.00033117 2.2011
MOMFO 1.1551 11.3608 1.1524 0.019977 0.00063907 3.2687
MOWOA 1.1758 11.3532 1.1732 0.013941 0.00067671 3.3165
MOCHIO 1.0216 4.9672 1.0191 0.011134 0.00013241 1.5873

Table 5. Performance comparison of various algorithms for BNH

Algorithm DM Epsilon Spread GD IGD Spacing

MOPSO 1.2984 4.3221 1.2456 0.032969 0.0058033 3.9771
MOBA 1.3332 5.9898 1.3131 0.024976 0.0074386 3.6298
MOGWO 1.2755 2.9590 1.2769 0.02828 0.0027545 2.6517
MOMFO 1.3222 4.7917 1.3033 0.038368 0.00327 2.8668
MOWOA 1.3628 5.1142 1.3420 0.023671 0.0039312 2.6719
MOCHIO 1.2032 3.4975 1.1891 0.022469 0.0027112 1.6717

Tables 7–12 presents the Mean and STD values
obtained by all optimizers for ZDT problems. Table 7
gives the DM values to verify the diversity maintenance

capability. The MOCHIO delivers the best outcomes in
four of the five problems. Table 8 provides the Spread
values to show how the non-dominated solutions are
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Table 6. Performance comparison of various algorithms for TNK

Algorithm DM Epsilon Spread GD IGD Spacing

MOPSO NaN 0.027803 NaN NaN 0.0012339 NaN
MOBA NaN 0.025042 NaN NaN 0.0014032 NaN
MOGWO NaN 0.024603 NaN NaN 0.0017123 NaN
MOMFO NaN 0.031469 NaN NaN 0.001569 NaN
MOWOA NaN 0.050145 NaN NaN 0.0015854 NaN
MOCHIO NaN 0.01806 NaN NaN 0.0010303 NaN

NaN indicates that the values are not available

Table 7. Mean and standard deviation (STD) values of DM obtained by all algorithms

Problem MOMFO MOBA MOPSO MOMFO MOWOA MOCHIO

ZDT1 8.1207e-1 (1.43e-2) 8.3753e-1 (1.08e-2) 7.0757e-1 (1.00e-2) 4.2717e-1 (7.41e-2) 9.0220e-1 (0.00e+0) 9.0220e-1 (0.00e+0)
ZDT2 8.3740e-1 (1.35e-2) 8.6610e-1 (4.51e-3) 2.5447e-1 (4.12e-1) 4.9800e-1 (3.50e-2) 8.5893e-1 (1.32e-2) 8.8777e-1 (5.25e-3)
ZDT3 9.7425e-1 (8.92e-3) 9.3815e-1 (1.05e-2) 9.2985e-1 (4.86e-2) 2.6555e-1 (1.78e-2) 9.1087e-1 (1.98e-2) 9.7950e-1 (1.79e-2)
ZDT4 8.2677e-1 (1.32e-2) 8.9477e-1 (9.55e-3) 4.7650e-1 (3.98e-1) 3.6320e-1 (3.56e-2) 9.0220e-1 (0.00e+0) 8.2897e-1 (1.71e-2)
ZDT6 8.4390e-1 (6.80e-3) 8.5867e-1 (1.74e-2) 6.9067e-1 (3.34e-2) 8.1417e-1 (1.96e-2) 8.7093e-1 (2.89e-3) 8.7093e-1 (2.89e-3)

Table 8. Mean and STD values of Spread obtained by all algorithms

Problem MOMFO MOBA MOPSO MOMFO MOWOA MOCHIO

ZDT1 3.7956e-1 (4.03e-2) 2.7413e-1 (1.32e-3) 8.5086e-1 (4.98e-2) 1.3645e+0 (1.38e-1) 2.7364e-1 (4.28e-4) 2.5600e-1 (2.55e-2)
ZDT2 3.7130e-1 (7.97e-2) 1.4764e-1 (1.69e-3) 9.6816e-1 (5.51e-2) 1.1861e+0 (3.24e-2) 2.5354e-1 (2.15e-2) 1.4276e-1 (9.37e-4)
ZDT3 4.3111e-1 (5.95e-2) 5.6005e-1 (5.01e-3) 9.0538e-1 (6.82e-2) 1.7667e+0 (6.47e-3) 5.3771e-1 (1.39e-2) 2.7635e-1 (1.32e-2)
ZDT4 4.0346e-1 (3.14e-2) 2.7749e-1 (6.05e-3) 9.8778e-1 (1.27e-2) 1.4173e+0 (6.65e-2) 2.7260e-1 (1.99e-3) 2.5194e-1 (2.10e-2)
ZDT6 4.3435e-1 (4.06e-2) 1.4109e-1 (4.96e-3) 9.5171e-1 (8.29e-2) 4.2545e-1 (3.81e-2) 1.3753e-1 (6.49e-4) 2.7427e-1 (3.83e-2)

Table 9. Mean and STD values of GD obtained by all algorithms

Problem MOMFO MOBA MOPSO MOMFO MOWOA MOCHIO

ZDT1 1.5741e-4 (4.94e-5) 3.7630e-5 (3.64e-5) 5.4570e-2 (1.73e-2) 1.9203e-5 (2.11e-5) 1.0415e-4 (1.33e-5) 1.6852e-5 (2.40e-6)
ZDT2 1.2738e-4 (5.48e-5) 1.5410e-4 (6.64e-5) 1.1095e-1 (3.82e-2) 1.0663e-4 (2.62e-5) 6.3508e-5 (3.90e-5) 6.2060e-6 (2.30e-6)
ZDT3 7.5873e-5 (2.54e-5) 2.0217e-4 (3.88e-5) 9.0643e-2 (2.74e-2) 8.0794e-5 (1.19e-5) 7.9505e-5 (8.41e-6) 9.4683e-6 (4.81e-6)
ZDT4 3.1700e-5 (9.70e-6) 3.1927e-4 (1.99e-4) 1.6345e+0 (9.20e-1) 7.0693e-5 (2.95e-5) 1.4941e-4 (1.31e-4) 3.2860e-5 (6.05e-6)
ZDT6 3.7838e-6 (4.09e-7) 1.7000e-4 (5.32e-5) 1.5788e-2 (1.44e-2) 3.6256e-6 (1.01e-7) 6.4800e-5 (2.16e-5) 3.5448e-6 (1.05e-7)

Table 10. Mean and STD values of IGD obtained by all algorithms

Problem MOMFO MOBA MOPSO MOMFO MOWOA MOCHIO

ZDT1 4.7829e-3 (3.05e-4) 3.9776e-3 (1.57e-5) 5.3280e-1 (1.50e-1) 2.1872e-2 (3.77e-3) 3.9619e-3 (2.05e-6) 4.4153e-3 (1.10e-4)
ZDT2 4.8755e-3 (4.87e-4) 4.0097e-3 (8.06e-5) 1.4105e+0 (5.83e-1) 1.8745e-2 (2.83e-3) 4.5271e-3 (1.41e-4) 3.8586e-3 (4.11e-5)
ZDT3 5.3882e-3 (1.98e-4) 1.1984e-2 (1.99e-4) 6.3830e-1 (1.68e-1) 1.0086e-1 (6.93e-4) 1.1425e-2 (1.07e-4) 5.1009e-3 (1.32e-4)
ZDT4 4.4649e-3 (4.13e-5) 5.3851e-3 (1.06e-3) 1.5822e+1 (8.74e+0) 3.1551e-2 (2.03e-3) 4.4705e-3 (6.66e-4) 4.4004e-3 (2.77e-4)
ZDT6 3.7427e-3 (5.64e-5) 3.5418e-3 (2.25e-4) 6.8336e-2 (1.07e-1) 4.2217e-3 (4.45e-4) 3.4182e-3 (7.88e-5) 3.1982e-3 (5.44e-5)

Table 11. Mean and STD values of Spacing obtained by all algorithms

Problem MOMFO MOBA MOPSO MOMFO MOWOA MOCHIO

ZDT1 6.8348e-3 (7.57e-4) 4.9625e-3 (2.91e-5) 1.2392e-2 (2.83e-3) 3.5684e-2 (7.43e-3) 5.6978e-3 (6.61e-4) 4.9043e-3 (4.47e-6)
ZDT2 6.4892e-3 (4.05e-4) 4.4510e-3 (9.16e-5) 3.0291e-3 (5.25e-3) 3.2567e-2 (2.59e-3) 4.2702e-3 (4.57e-5) 5.6507e-3 (5.35e-4)
ZDT3 8.1461e-3 (9.30e-4) 1.7475e-2 (3.35e-4) 1.7114e-2 (3.94e-3) 1.0760e-1 (3.72e-4) 1.6249e-2 (2.24e-4) 5.6939e-3 (6.10e-5)
ZDT4 7.0331e-3 (5.48e-4) 4.9546e-3 (7.47e-5) 2.0275e-2 (1.80e-2) 4.3742e-2 (5.54e-3) 5.5806e-3 (5.31e-4) 4.7864e-3 (1.39e-4)
ZDT6 6.1500e-3 (4.80e-4) 3.0309e-3 (1.36e-4) 1.4177e-2 (3.70e-3) 6.7458e-3 (5.75e-4) 4.7176e-3 (3.82e-4) 2.9289e-3 (2.40e-5)

Table 12. Mean and STD values of RT obtained by all algorithms

Problem NSGAII MOEAD MOPSO NMPSO CMOEAD CAMOEA

ZDT1 1.3297e+1 (6.48e-2) 1.9241e+0 (3.94e-2) 3.4788e+1 (3.91e-1) 1.6480e+1 (1.88e-1) 2.7731e+0 (1.03e-1) 1.5120e+0 (8.94e-2)
ZDT2 1.3319e+1 (6.44e-2) 1.6869e+0 (1.08e-1) 3.4207e+1 (1.81e-1) 1.6169e+1 (7.97e-2) 2.6354e+0 (1.30e-2) 1.4229e+0 (3.17e-3)
ZDT3 1.4153e+1 (8.70e-1) 1.8093e+0 (1.27e-2) 2.3751e+1 (3.40e-1) 1.6531e+1 (3.48e-1) 2.7009e+0 (4.19e-2) 1.4271e+0 (7.66e-3)
ZDT4 1.3355e+1 (9.97e-2) 1.8043e+0 (1.45e-1) 1.8406e+1 (1.56e+0) 1.6481e+1 (3.31e-1) 2.4223e+0 (7.54e-2) 1.3397e+0 (6.09e-3)
ZDT6 1.3315e+1 (1.01e-1) 1.9021e+0 (1.76e-1) 3.3866e+1 (9.41e-1) 1.5852e+1 (2.03e-3) 2.4317e+0 (1.13e-2) 1.4011e+0 (1.97e-2)

well-distributed. Table 9 shows that the MOCHIO
algorithm acquired the best GD values for ZDT prob-
lems, demonstrating the MOEO’s superior conver-
gence rate than other approaches. Table 10 provides the
IGD values to measure the quality of estimations to the
PF acquired by the proposed algorithm, and it shows
that theMOCHIO has the best outcomes for four out of
the five problems. Table 11 includes the Spacing values

to indicate the non-dominated solutions spacing accu-
racy. For all problems, the proposed algorithm has the
optimal parameters, implying that the spacing accu-
racy of the non-dominated solutions provided by the
proposed algorithm is superior to all algorithms. The
RT values are listed in Table 12 to analyze the compu-
tational cost. The MOCHIO achieves the best results
in all ZDT problems, demonstrating that MOCHIO
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has lower computational complexity than all other
optimizers.

4.4. BLDCmotor design optimization problem

After test cases analysis, the BLDC motor design
optimization problem is optimized using six selected
multi-objective algorithms, including the proposed
MOCHIO. All the selected algorithms are executed
in 30 trials. The control parameters of all algorithms
are selected based on Table 2. Since the BLDC wheel
motor design problem has six constraints, the proposed
algorithm is employed with a constraint handling
mechanism. To transform the constraint problem into
an unconstraint problem, this study uses a static penalty
method. If at all constraint is breached, a significant

penalty Pi is imposed on the fitness function. The con-
straint handling approach is modeled and represented
in Eq. 67.

fi(X) = fi(X) +
x∑

j=1
Pjmax{gj(X),0}

+
y∑

j=x+1
Pjmax{|hj(X)| − δ,0} (67)

where fi(X) denotes the objective function (i = 1,
2, . . . ,N),N denotes the number of objective functions,
X denotes decision variables ({x1,x2, . . . , xm}), gj(X)�0
denotes the inequality constraints (j = 1,2, . . . , x),
hi(X) = 0 denotes the equality constraints (j = x +
1, . . . , y), and δ denotes the tolerance of equality con-
straint.

Figure 9. PF obtained by all algorithms for ZDT problems
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Figure 9. Continued.

In order to find the best compromise (BC) results,
this study uses the fuzzy membership approach is
employed with the proposed algorithm. It is used to
establish BC results over the trade-off features after get-
ting the Pareto solutions and finding the BC among the
non-dominated solutions that are dynamically in the
decision stage [56]. The solution to each jth problem is
represented by a membership function given in Eq. 68.

μi
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, f ij �f ilb
f iub − f ij
f iub − f ilb

, f ilb�f ij �f iub

0, f ij �f iub

(68)

where f ilb and f
i
ub represent the lower bounds and upper

bounds of the fitness function. If the value of the

membership function is high, then the solution is opti-
mal. As shown in Eq. 69, the normalized membership
function can be generated at each non-dominated solu-
tion (NDS).

μj =
∑N

i=1 μji∑M
j=1

∑N
i=1 μji

(69)

where M signifies the NDSs. The BC result is the one
with the high value of μj.

The proposed algorithm and all other selected algo-
rithms are applied to the BLDC wheel motor design
problem, and obtained results are discussed in this
section. The best optimal solutions are generated by
all algorithms, and obtained PFs are plotted. Figure 10
shows the Pareto optimal solutions generated by all
algorithms.
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Figure 9. Continued.

In this study, in the optimization problem, a third
objective function f3 to be minimized is introduced in
relation to the number of infeasible constraints. The
population that meets all the given constraints, i.e. the
value of f3 equal to zero, is referred to as feasible solu-
tions, whereas the population that does notmeet at least
one of the constraints is infeasible solutions. The fol-
lowing assumption was addressed in this context when
the third objective function was adopted in this paper.
Throughout the early phases of the search process, lead-
ing to local optima or conditional Pareto front, the
satisfactory convergence could be lost if the infeasible
solutions are fully ignored. In Figure 10, all algorithms’
compromised result is illustrated to readers for their
better understanding. From Figure 10, it is observed
that the proposed MOCHIO algorithm is superior in
handling all the constraints and produces good results
compared to all other selected algorithms. In addition,
the five design/optimization variables, such asBcs,Bd, δ,
Be, andDs optimized by using all six algorithms and the
corresponding objective functions values, such as the
motor efficiency, themotormass, and the compromised
(by balancing the motor mass and themotor efficiency)
are listed in Tables 13–18.

Tables 13–18 shows that the proposed MOCHIO
algorithm performs better than the other algorithms
in all aspects. Thus, it is observed that the MOCHIO
performs better in handling the BLDC motor design
problem. The decision space and objective during the
optimization process by the individual population of
theMOCHIO algorithm are illustrated in Figure 11 and
Figure 12, respectively. From Figure 11 and Figure 12,
it can be seen how the decision variables are opti-
mized to get the optimal Pareto solutions (objective
space). It also illustrates how each population in the

algorithm looks for the optimal solution by optimizing
the decision variables. It is observed that none of the
decision variables are not crossing the boundary lim-
its. This is due to the fact that the proposed algorithm
is provided with an effective constraint handling mech-
anism called a static penalty scheme. Figure 12 shows
how the proposed algorithm ismoving towards optimal
efficiency and motor mass. Out of 100 possible popula-
tion solutions, one of the optimal solutions is returned
by the algorithm.

To further prove the MOCHIO algorithm’s effi-
ciency, the statistical analysis that includes minimum
(Min), Mean, and standard deviation (STD) of the pro-
posed algorithm and other algorithms are presented
in Table 19. Similar to the test benchmark problems,
the performance indicators, such as Delta (�), Epsilon
(ε), Spread, GD, Inverted General Distance IGD, and
Spacing, are listed for the BLDCmotor design problem.

The proposed algorithm produces the lowest STD
value, showing that the proposed algorithm’s reliability
is better than other competitive algorithms. The low-
est value of GD and IGD indicates the fast convergence
characteristics of the proposed algorithm. It can be seen
from Tables 13–18 that the best efficiency (i.e. 95.36%)
refers to the suggested MOCHIO, thus achieving an
optimal total mass (i.e. 14.8867 Kg). The proposed
MOCHIO algorithm also achieved the lowest mass
value (i.e. 10.6509 Kg) in terms of total motor mass
without disturbing the second objective (i.e. 93.92%).
Furthermore, it can be noticed that in terms of �, ε,
Spread, GD, IGD, and Spacing outperformed MOPSO,
MOBA, MOGWO, MOMFO, MOWOA algorithms by
having 0.8589, 0.0234, 0.7009, 3.1869e-04, 0.0071, and
0.0152. Therefore, the dominance of the MOCHIO
algorithm over MOPSO, MOGWO, MOMFO, MOBA,
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Figure 10. Pareto optimal solutions obtained by various algorithms; (a) MOPSO, (b) MOBA, (c) MOGWO, (d) MOMFO, (e) MOWOA, (f )
MOCHIO

Table 13. Best results obtained by the MOPSO algorithm

Indices Bd (T) Be (T) Bcs (T) Ds (m) δ (A/mm2) MTt (Kg) η (%)

f1 1.7999 0.6640 1.6000 0.1860 3670737.688 10.6213 93.60
f2 1.7896 0.6608 0.8854 0.2012 2137080.216 14.9478 95.29
BC values 1.8000 0.6617 1.5581 0.1804 2720384.343 12.0744 94.54

Table 14. Best results obtained by the MOBA

Indices Bd (T) Be (T) Bcs (T) Ds (m) δ (A/mm2) MTt (Kg) η (%)

f1 1.7926 0.6651 1.6000 0.1865 3687048.881 10.6555 93.59
f2 1.7855 0.6620 0.8642 0.1999 2186808.398 14.8957 95.26
BC values 1.7928 0.6620 1.5153 0.1784 2832724.661 11.4291 94.43

Table 15. Best results obtained by the MOGWO algorithm

Indices Bd (T) Be (T) Bcs (T) Ds (m) δ (A/mm2) MTt (Kg) η (%)

f1 1.7738 0.6649 1.5750 0.1861 3684518.517 10.6835 93.60
f2 1.7641 0.6645 0.8769 0.2011 2175044.191 14.9799 95.28
BC values 1.7927 0.6636 1.5508 0.1795 2783871.123 11.5635 94.48
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Table 16. Best results obtained by the MOMFO algorithm

Indices Bd (T) Be (T) Bcs (T) Ds (m) δ (A/mm2) MTt (Kg) η (%)

f1 1.78768 0.65938 1.57208 0.18398 3490639.719 10.6823 93.78
f2 1.7584 0.6596 1.0422 0.2037 2149179.188 14.8911 95.26
BC values 1.7879 0.6592 1.4854 0.1807 2720537.401 11.7505 94.56

Table 17. Best results obtained by the MOWOA

Indices Bd (T) Be (T) Bcs (T) Ds (m) δ (A/mm2) MTt (Kg) η (%)

f1 1.7849 0.6591 1.5850 0.1852 3583296.644 10.6519 93.68
f2 1.7761 0.6587 0.9975 0.2006 2057684.395 14.9433 95.29
BC values 1.7874 0.6631 1.5276 0.1810 2714549.090 11.7904 94.56

Table 18. Best results obtained by the proposed MOCHIO algorithm

Indices Bd (T) Be (T) Bcs (T) Ds (m) δ (A/mm2) MTt (Kg) η (%)

f1 1.7946 0.6593 1.5432 0.1818 3366034.636 10.6509 93.92
f2 1.7881 0.6597 0.9365 0.2005 2075616.953 14.8867 95.36
BC values 1.7989 0.6595 1.4536 0.1829 2608762.151 11.6852 94.68

and MOWOA in the aforementioned performance
metrics can be concluded. The results of the design
specifications attained by the MOCHIO are presented

in Table 18 when the efficiency is maximum, or the
total mass is minimum, or compromise between the
best efficiency and best mass.

Figure 11. Decision variables optimized in each population; (a) Bd , (b) Be, (c) Bcs, (d) Ds, (e) δ



168 C. KUMAR ET AL.

Figure 12. Objective functions optimized in each population;
(a) Motor total mass, (b) Motor efficiency

5. Conclusions

In general, swarm intelligence and evolutionary algo-
rithms have proved to be robust and effective methods
for finding the optimal Pareto front for MOOPs. In
this situation, the CHIO algorithm is a recent optimiza-
tion algorithm that imitates the herd immunity behav-
ior of the infected individual, ultimately leading the
individual to the best chance of survival. The effective-
ness of the MOCHIO algorithm on the BLDC motor
design problem was validated in this paper. The non-
dominated sorting scheme and CD strategies were used
to handle with the multi-objective BLDCmotor design
problem and achieve an acceptable tradeoff between the
total mass andmotor efficiency. Considering total mass
and efficiency as two fitness functions, the PFs observed
compared to MOPSO, MOBA, MOGWO, MOMFO,
and MOWOA demonstrate that even without spoiling
the other one, the suggested MOCHIO algorithm can
achieve theminimumvalues for both objectives respec-
tively. Compared to other selected algorithms, the pro-
posedMOCHIO algorithm also achieves theminimum
values in terms of �, ε, Spread, GD, IGD, and Spac-
ing. Therefore, it can be inferred that MOCHIO is an
efficient algorithm applied to the BLDC motor design
problem.

For future research, we examine the proposed
MOCHIO algorithm’s implementation in other elec-
tromagnetic optimization-related case studies. More-
over, the effectiveness of various robust MOCHIO han-
dling techniques will be examined to enable MOCHIO
to deal with different kinds of uncertainties, which
are essential to solving real-world engineering opti-
mization problems. The proposed algorithm can be Ta
bl
e
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applied to other multi-objective engineering optimiza-
tion problems, such as vehicle routing, feature selection,
controller tuning, optimal capacitor placements, dis-
tributed generation units, FACTS devices, economic
emission dispatch, economic load dispatch, optimal
power flow problems, etc.
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