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ABSTRACT
Artificial ventilation is widely used for various respiratory problems of human beings. The oxy-
gen level of the coronapatients has to bemaintained for smoothbreathingwhich is very difficult.
For achieving this state, the air pressure should be controlled in the respiration system that has
a piston mechanism driven by a motor. An Automatic respiration systemmodel is designed and
controller parameters are tuned using hybrid Optimization techniques. Hybrid Controllers like
genetic algorithm based Fractional Order Proportional Integral Derivative controller (FOPID),
Fmincon-Pattern search Algorithm based Proportional Integral Derivative (PID) controller, and
Hybrid Model predictive control (MPC) – Proportional Integral Derivative (PID) controllers were
designed and verified. Integral Square Error is considered as the objective function of the opti-
mization technique to find the controller parameters. The output responses of all three hybrid
controllers are compared based on the error indices, time domain specifications, set-point track-
ing and Convergence speed graph. The genetic algorithm-based FOPID controller gives better
results when compared with the Fmincon-Pattern search Algorithm based Proportional Integral
Derivative (PID) controller and Hybrid Model predictive control (MPC) – Proportional Integral
Derivative (PID) for the proposed artificial ventilation system.
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1. Introduction

COVID-19 is one of the major respiratory diseases that
started to spread in November 2019. The Corona Virus
reaches the lungs of human, the respiratory tract and
starts to multiply. This issue may block the lungs and
create breathing problems ranging from mild to severe
based on the health conditions of the patient. Coron-
avirus may severely affect elderly people who already
have other health problems, such as heart-related dis-
ease, asthma, and diabetes. The coronavirus family con-
tains SARS-CoV-2, the virus that activates COVID-19
[1]. When the virus enters into the good and healthy
cells, it multiplies and attacks the neighbouring cells.
The illness spreads across the respiratory tract, where
the immune system fights back. They swell and become
inflamed in the lungs and airways. About 80% of peo-
ple who have COVID-19 have symptoms that are mild
to moderate. Patients affected by coronavirus may have
a loss of smell, dry cough, loss of taste, cold and increase
in temperature. With a chest X-ray or CT scan, doc-
tors can show symptoms of lung inflammation called
Ground Glass Opacity. The ground-glass opacity is a
hazy grey region that can be seen in CT scans [2]. The
increasing density inside the lungs is indicated by these
grey spots. The patients will face severe difficulties in
breathing when they do not take proper medicines in

the starting stage.When the oxygen level reduces below
90%, the patients can breathe only with the help of a
mechanical ventilator or artificial ventilator [3,4].

An artificial respiration systemwill replace the respi-
ratory muscles that provide the energy required during
the inspiration process to ensure the flow of gas into
the alveoli ducts [5]. With the help of the artificial ven-
tilation system, the patient can breathe easily and this
makes it easy for doctors to reduce the cold that has
blocked the lungs. The oxygen level or oxygen satura-
tion level of the patient will be monitored using Pulse
oximeters often to know the amount of oxygen level to
be supplied for the patient. The doctors found it diffi-
cult when a large number of patients were admitted due
to the fast spread of Coronavirus. The Auto respiration
system helps the doctors by automatically tuning the
desired output based on the amount of oxygen required
by the patients. An air section with a piston system
driven by the motor is the main component of an artifi-
cial respiration system. The piston direction is changed
by the control mechanism. The finest value of the
constraints configuration on the artificial respiration
device is the difficult challenge since a patient’s ven-
tilator parameters depend on several variables. For its
good quality, modest control appliance, and good per-
formance, the optimization algorithm-based artificial
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ventilation system is therefore becoming more popu-
lar. Patients decide their respiratory rate during aided
respiration, but the ventilator decides the tidal volume.
In regulated breathing, the ventilator determines both
the rate of respiration and tidal length [6]. Each ven-
tilation model has different configuration ranges. More
modern and developedmachines offermore options for
operators in respiratory settings.

Swarm-based optimization techniques were used
for designing PID controllers for artificial respiration
systems. The Constricted Class Topper Optimization
algorithm gives better results when compared to Class
TopperOptimization and Particle SwarmOptimization
techniques [7]. The self-adaptive particle swarm opti-
mization is designed for the selection of a wide range
of features. The SaPSO gives better results in terms
of classification accuracy than Evolutionary and Non
Evolutionary computation counterparts [8]. Amechan-
ical ventilator is designed and examined to implement
the control methods that help researchers by outlin-
ing new trends. Classical and Intelligent control ven-
tilators have been designed using volume, time, pres-
sure, and flow [9]. The Fuzzy Logic-based controller is
considered for controlling the pressure in a mechan-
ical ventilator system. It is concluded that the Fuzzy
algorithm-based controller has the ability to regulate
the level of pressure support ventilation from contin-
uous measurements of a patient’s vital signs [10]. The
dual closed-loop control system is designed for the
mechanical ventilation system. To automatically change
the oxygen concentration in the patient’s intake air, the
controller uses the response from the patient’s arterial
oxygen saturation and combines a rapid stepwise mon-
itoring protocol with a PID control algorithm [11]. For
patients on mechanical ventilation, a method for con-
trolling the fraction of inspired oxygen (F(IO2)) and
positive end-expiratory pressure (PEEP) is designed.
F(IO2) is regulated in this method by two interact-
ing mechanisms: a fine control mechanism and a
rapid stepwise protocol that is used when the patient’s
oxygen saturation level (S(pO2)) drops suddenly
[12].

A method based on hybrids of machine learning
and nature-inspired algorithms to improve current
time-series prediction (forecasting) technologies is pro-
posed [13]. The suggested prediction model combines
machine learning, adaptive neuro-fuzzy inference,
adaptive neuro-fuzzy inference system, and enhanced
beetle antennae search swarm intelligence metaheuris-
tics. The increased beetle antennae search is used
to select the adaptive neuro-fuzzy inference system’s
parameters and to improve the predictionmodel’s over-
all performance. The suggested hybrid method out-
performed other advanced algorithms tested on the
same datasets, proving to be a helpful tool for time-
series prediction, according to simulation findings and
comparison analysis.

Soft-computing-based optimization technology is
currently being used to solve various forms of research
problems [14]. In the field of biomedical engineering,
optimization-based technology can be used to solve
multiple problems. The contribution of this paper is
to design the controller for the Airway Pressure in the
Auto Respiration System. To tune the controller values
for various types of control problems, Hybrid Model
Predictive Controller, genetic algorithm-based Frac-
tional Order PID, Fmincon-pattern search based PID
controllers have been considered. The Airway Pres-
sure of the ventilation system has to be tuned. Here
the closed-loop ventilation control is implemented. The
model is designed based on the first principle method
and the optimization techniques are implemented to
control the airway pressure. The optimization tech-
niques are compared based on the time domain spec-
ification, error indices, set-point tracking, and conver-
gence speed graph to find the best controller to be
used to tune the Airway Pressure of the Respiration
system [15,16]. Integral Square Error (ISE) is used as
the objective function for the optimization techniques
used. ISE is used as an objective function to limit the
PID parameter gain values for the fast processes. It also
reduces the large errors [17]. In the future, the dataset of
the patients may be collected and the model is trained
using machine learning techniques and an optimized
convolutional neural network may be used to tune the
controller [18].

2. Process description

The Artificial respiration system consists of sensors,
displaying equipment, and a control mechanism for the
continuous monitoring of corona patients. The basic
block diagram of the model is represented in Figure 1.
The airway pressure that is needed to be controlled is
given as input and the desired or controlled pressure
will be the output. The electric motor present here will
be used to operate the piston movement. Figure 2 rep-
resents the block diagram of the artificial respiration
system. Here, the main objective is to control the Air-
way Pressure inside the air compartment of the artificial
respiration system. Initially, the air reaches the body
from the nose or mouth and flows down to the throat
through the larynx and trachea. Then, by the main
stem called bronchi, they are accessible in both left and
right lungs, it joins the lungs. These primary stems in
the lungs split into smaller stems and split into further
smaller tubes called the bronchioles [19]. Small air sacs
called alveoli to end with these bronchioles. Each lung
has several million alveoli, and these areas are respon-
sible for the exchange of gases. Each alveolus interacts
closely with a capillary network containing pulmonary
artery deoxygenated blood.

The respiratory sensor that is connected to the con-
troller [20] detects the respiratory output from the
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Figure 1. The basic block diagram of the model.

Figure 2. The block diagram of the artificial respiration system.

Figure 3. The system dynamics of breathing mechanics.

human body. The controller delivers the necessary
amount of oxygen to the lungs based on the level of
the oxygen required [21]. The airway pressure control
is concentrated here. The Airway pressure (Pa) is deter-
mined byPneumatic resistance andLung storage capac-
ity. When considering the gain of the current control

[22] loop of the piston drive mechanism, the time con-
stant of the system is noted as a first-order differential
system [23].

The Piston system and Lung Mechanic are two
major sub-components of the artificial respiration sys-
tem [24]. The system dynamics of breathing mechanics
are represented in Figure 3 where Z is the piston speed,
V is the input voltage to the system, X is the output of
the piston drive system, Pa is the airway pressure and T
is the load torque. The Auto respiration system model
is designed based on the control loop gain, control loop
time, field flux, themoment of inertia, piston area, coef-
ficient of friction, the transmission of the piston drive
system and Pneumatic resistance, Lung storage capac-
ity of the lung mechanics [7]. The Piston drive system
block diagram is shown in Figure 4.

Table 1 represents the symbol used in the respiratory
system’s open loop model.

Figure 4. Piston system block diagram.
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Figure 5. Lung mechanics block diagram.

Table 1. The symbol andvaluesused in the respiratory system’s
open loop transfer function model.

Symbol Description Values

ka Current control loop Gain 0.368 A/V
Ta Current control loop Time 9e−5
w Field flux 2.79 Ncm/A
jeff Moment of inertia 0.0032 N cm s2

Apiston Area of the Piston 1.62 dm2

kr Coefficient of friction 0.005 N cm/rad
kg Transmission 0.4 mm/rad
Rr Pneumatic resistance 2 mbar s/l
Cr Lung Storage capacity 70 ml/mbar
Km Transfer ratio 0.0391 cm

The first-order differential equation can be used
to express the motor’s time constant. In a piston-
motor driving system, friction is considered linear. The
applied motor voltage is the input variable for the
piston-motor driving system. The load torque feedback
from the lung system is also fed into the piston-motor
drive system. The torque balance equation is repre-
sented in Equation (1).

jeff · ω = T + ka
1 + Tas

V − w2 ka
1 + Tas

ω − kr · ω (1)

where V is the input voltage, T is load Torque, ka is
current control loop gain, Ta is current control time
constant, kr is the coefficient of friction, w is field flux,
jeff is themoment of inertia. The LungMechanics block
diagram is shown in Figure 5.

The mathematical derivation of the lung mechan-
ics shown in Figure 5 in Laplace domain is shown in
Equation (2)

T = Km · A2
Piston ·

(
Rr + 1

Cr · S
)

· Z (2)

where Apiston is the area of the piston, Km is transfer
ratio, Cr is lung storage capacity and Rr is Pneumatic
resistance of lungs and Z is the piston speed. The respi-
ratory system’s open loop model is shown in Figure 6.

Table 2 represents the lung parameters in compari-
son with the age [24]. The Storage capacity of the lungs
increases with age and Pneumatic resistance decreases
with age. Here, the Automatic Respiration System is
designed for adults.

Table 2. The Lung parameters for different age groups.

Age groups Cr (ml/mbar) Rr (mbar s/l)

New Born 3–5 30–50
Infant 10–15 20–30
Kids 20–40 10
Adults 70–100 2–4

A patient feedback control loop is considered when
designing an artificial ventilator controller. The inter-
action of the patient with the system can be considered
a disturbance. The desired pressure is sent to the con-
troller as the reference signal. A controller is used to
illustrate the closed-loop model in a block diagram
shown in Figure 7.

The values of the respiration system parameters rep-
resented in Table 1 are loaded to execute the model. A
mathematicalmodel is designedusing the first principle
method [25,26]. This idea is very helpful as the Airway
Pressure that is to be controlled will vary according to
the patient of different ages and also vary if they are
affected by corona [27]. So the Cr and Rr values can
be varied whenever necessary to control the Airway
Pressure.

3. Controller design

The Airway Pressure in the Auto Respiration System
is controlled using controllers like Hybrid Fmincon-
pattern search algorithm based PID controller, genetic
algorithm-based FOPID controller, and Hybrid MPC-
PID controllers using MATLAB.

3.1. Hybrid Fmincon-pattern search based PID
controller

The block diagram of the Hybrid optimization-based
PID controller is shown in Figure 8. Here, the air-
way pressure is given as the input and output will be
the desired or controlled pressure value. The optimiza-
tion techniques are used to tune the PID parameters of
the Auto Respiration System. Using the interior-point
algorithm, the Fmincon (Find the minimum of con-
strained) algorithm is used to find the minimum of
a constrained nonlinear multivariable equation. The
algorithm selected here is ‘interior-point’ that handles
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Figure 6. The respiratory system’s open loop model.

Figure 7. The respiratory system’s closed loop transfer function model.

sparse problems, large, as well as small intense prob-
lems. The Fmincon algorithm compensates the bounds
at all iterations and also can improve from NaN or Inf
results [28]. This algorithm can use some special tech-
niques for large-scale issues. The Fmincon Algorithm
Flowchart is shown in Figure 9.

In the Fmincon algorithm process, the input value
is given which includes the Active powers, Constraints
and Starting point x0. Based on the constraints given,
an evaluation process takes place. J is considered as
the Fmincon function. Then Iteration (iter) will be
increased and new values of Kp, Kd, Ki values will be
selectedwithin the range of the constraints. The present
Fmincon function J(xi) is compared with the previous
value J(xi − 1). The iteration will be repeated until the
best optimum value of Kp, Kd, Ki value is reached or if
the iteration reaches the maximum value.

The objective function is considered as Integral
Square Error (ISE). Equation (3) represents the ISE,

Figure 8. The block diagram of the Hybrid optimization based
PID controller.

where, e(t) is the error that is the difference between
the actual and desired pressure value.

ISE =
∫ T

0
e(t)2 dt (3)
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Figure 9. Fmincon algorithm flowchart.

The initial value is considered as X = (X1,X2,X3).
MATLAB Equations (4)–(6) returns the values of the
PID parameter based on the objective function ISE.

[Kp, fv1, ef 1, op1, L,G,H]

= f (ISE,X1,A1, b1,Aeq1, beq1, lb1, ub1,N1,O1)
(4)

[Ki, fv2, ef 2, op2, L,G,H]

= f (ISE,X2,A2, b2,Aeq2, beq2, lb2, ub2,N2,O2)
(5)

[Kd, fv3, ef 3, op3, L,G,H]

= f (ISE,X3,A3, b3,Aeq3, beq3, lb3, ub3,N3,O3)
(6)

In Equations (4)–(6), the algorithm starts with the ini-
tial value and finds the minimum value of the func-
tion based on the objective function ISE. In MATLAB,
Equations (4)–(6) fmincon is abbreviated as f, the final
value is abbreviated as fv, exit flag is abbreviated as ef,
the output is abbreviated as op, L represents the struc-
ture of fields comprising the Lagrange multipliers, G
represents the Gradient of the objective function of PID
parameter. A, b are the linear inequality constraints
matrix and vector, respectively. Aeq and beq are the
linear equality constraints matrix and vector, respec-
tively. lb represents the lower bound and ub represents
the upper bound for the PID parameters. The fval is
nothing but the value of the objective function that

is returned as a real number. H represents the objec-
tive function’s Hessian of the PID parameter and O
represents the option that returns a collection of the
optimization problem.

Fmincon also returns a value [8] exit flag that defines
the exit state of the algorithm, as well as a structured
output that contains details about the optimization
process.

The Hessian of the Lagrangian is represented in
Equation (7).

H = ∇2L = ∇2 ISE +
∑
i

λi∇2Ci +
∑
j

λj∇2Ceqj

(7)

where C represents the nonlinear inequality constraint
vector and Ceq represents the nonlinear equality con-
straint vector. In Hessian, BFGS (Broyden–Fletcher–
Goldfarb–Shanno) algorithm is selected as it is an
interactive method that solves the unconstrained non-
linear optimization problems. In the Algorithm set-
ting, set Typical X values that indicate the distinc-
tive magnitude of the variables [8,29]. In the projected
conjugate iteration, the maximum iterations indicate
the maximum number of projected conjugate gradient
iterations. The relative tolerance indicates the relative
termination tolerance on the projected conjugate gra-
dient iteration. The absolute tolerance indicates the
absolute termination tolerance on the projected con-
jugate gradient iteration. The stopping criteria indicate
the reason for the termination of the algorithm. Max
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Figure 10. Fmincon-pattern search algorithm flowchart.

iterations indicate the maximum number of iterations
that the algorithm will perform. The highest number
of evaluations of the constraints and objective function
has to be mentioned in Max function evaluations. The
algorithm runs for many numbers of iterations until it
gets the best fit values. If there is any issue identified, the
algorithm terminates and the reason for termination
will be displayed.

The best fit value obtained in the Fmincon algorithm
will be given as the input for the pattern search
algorithm. The pattern search (PS) optimization tech-
nique is a derivative-free evolutionary algorithm that
can be used to solve a wide range of optimization
problems that are outside the limits of traditional
optimization techniques [30]. It has a straightforward
definition, is simple to enforce, and is computation-
ally efficient [31]. The Hybrid Fmincon-pattern search
algorithm flowchart is shown in Figure 10.The Objec-
tive function considered here is Integral Square Error
(ISE).

The initial value as obtained from Fmincon
algorithm is, X = (X1,X2,X3)

[Kp, fv1, ef 1, op1]

= ps(ISE,X1,A1, b1,Aeq1, beq1, lb1, ub1,N1,O1)
(8)

[Ki, fv2, ef 2, op2]

= ps(ISE,X2,A2, b2,Aeq2, beq2, lb2, ub2,N2,O2)
(9)

[Kd, fv3, ef 3, op3]

= ps(ISE,X3,A3, b3,Aeq3, beq3, lb3, ub3,N3,O3)
(10)

Here, the algorithm starts with the initial value and
finds the minimum value of the function based on the
objective function ISE. In the equation, pattern search
is abbreviated as ps, the final value is abbreviated as fv,
exit flag is abbreviated as ef, the output is abbreviated as
op. A, b are the linear inequality constraints matrix and
vector, respectively. Aeq and beq are the linear equality
constraintsmatrix and vector, respectively. lb represents
the lower bound and ub represents the upper bound for
the PID parameters.
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Figure 11. The simulink model of Hybrid Fmincon-Pattern Search based PID Controller.

The fitness function is nothing but the objective
function that needs to be reduced has to be specified
here. The lower and upper bounds on the variables
are to be mentioned in the constraints. The control on
how the pattern search will poll the mesh points will
be done by Poll options. This option depends on the
class of algorithms utilized. Poll Method will indicate
the method that the poll algorithm utilized to form
the mesh. The Complete poll indicates if all the points
are polled in all the iterations in the current mesh.
The polling order indicates the order that searches the
points in the recent mesh using GSS or GPS meth-
ods. Consecutive is selected in the polling order that
determines deterministic order. The term search option
refers to the algorithm’s ability to run searches at any
iteration before polling. When the search yields a point
that increases the objective property, the algorithm uses
the point in subsequent iterations rather than polling.
The mesh used for the pattern quest will be controlled
by Mesh Options. The initial mesh’s size is defined as
the length of the vector between the initial point and
themesh point. The initial sizemust always be a positive
scalar. After a good iteration, the mesh size would not
rise until the full size has been achieved. The Accelera-
tor indicates if 0.5 is multiplied to theMesh contraction
factor after all the unsuccessful iteration of the smaller
mesh size. An Accelerator is applied in the GPS and
GSS algorithms. The scale parameter is set to true if
the algorithm scales the mesh points by multiplying
the pattern vectors by constants relative to the loga-
rithms of the current point’s coordinates. The Scale is
not utilized when there is an equality constraint. The
expansion factor determines how much the mesh size
can be expanded after a favourable vote. The Expansion
factor should be a positive scalar, and it should only be
used for a GPS or GSS poll or search function. The exis-
tence of cache in the algorithm is indicated by theCache
choice. The algorithmcannot test the objective function

at any mesh points under the Tolerance if the Cache
is turned on. The stopping criteria indicate the reason
for the termination of the pattern search algorithm. The
Mesh tolerance indicates the minimum tolerance of the
size of the mesh. The maximum number of iterations
that the algorithm will perform has to be specified in
Max Iteration. The highest number of evaluations of the
constraints and objective function has to be mentioned
in Max function evaluations. The maximum time that
the algorithm has to run before terminating should
be specified in the Time limit. The algorithm runs for
many iterations until it gets the best fit values [32]. If
there is any issue identified, the algorithm terminates
and the reason for termination will be displayed. The
best fit value can be used to tune the Kp, Ki, Kd value
of the PID controller [33]. The MATLAB Simulink
model of Hybrid Fmincon-Pattern Search based PID
Controller is shown in Figure 11. The simulation time
is 10 s. PID parameters of Hybrid Fmincon- pattern
search based PID controller is tabulated in Table 3.

The Controller response vs Process variable of
hybrid Fmincon-PS based PID controller is shown in
Figure 12.

3.2. Genetic algorithm based FOPID controller

The genetic algorithm is an optimization technique
used to solve constrained and unconstrained issues
[34]. It is working based on the natural identification
process that is similar to that of the biological pro-
cess [35]. The well-known and widely used evolution-
ary algorithms are based on the Darwinian mecha-
nism of evolution, natural selection, and regular genet-
ics [36]. The controller parameters for fractional-order
PID controllers, such as proportional gain (Kp), integral
time (Ki), derivative time (Kd), fractional order integral
term coefficient (λ) and fractional order derivative term
coefficient (μ), are calculated using genetic algorithm
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Figure 12. The Controller response vs Process variable of Fmincon-PS based PID controller.

Figure 13. Genetic algorithm flowchart.

based optimization technique [37]. The Flowchart rep-
resenting the genetic algorithm is shown in Figure 13.

Fractional Order controllers may outperform tra-
ditional (integer-order) controllers in terms of system
performance and robustness, according to a recent
study. The fractional-order PID controller consists of
a collection of fractional operators as well as con-
troller gains. As a result, the FOPID controller design
approach consists of solving five nonlinear equations
with five system unknowns. The complexity of the five

Table 3. Fmincon-PS based PID controller parameters.

Controller Kp Ki Kd

Fmincon-PS based PID 1.225 131.9539 0.025

nonlinear equations, on the other hand, is significant,
owing to the fractional order [38].

The FOPID equation is mentioned in Equation (11).

G = Kp + Ki

Sλ
+ KdSμ (11)
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Figure 14. The simulink model of GA based FOPID controller.

The five parameters are tuned by considering the objec-
tive function as ISE. TheMATLABEquations (12)–(16)
represents the genetic algorithm used for tuning the
FOPID parameters.

[Kp, fval, exitflag, output]

= ga(ISE, nvars,A1, b1,Aeq1, beq1, lb1, ub1) (12)

[Ki, fval, exitflag, output]

= ga(ISE, nvars,A2, b2,Aeq2, beq2, lb2, ub2) (13)

[λ, fval, exitflag, output]

= ga(ISE, nvars,A3, b3,Aeq3, beq3, lb3, ub3) (14)

[Kd, fval, exitflag, output]

= ga(ISE, nvars,A4, b4,Aeq4, beq4, lb4, ub4) (15)

[μ, fval, exitflag, output]

= ga(ISE, nvars,A5, b5,Aeq5, beq5, lb5, ub5) (16)

nvars is the number of variables, A, b are the linear
inequality constraints matrix and vector, respectively.
Aeq and beq are the linear equality constraints matrix
and vector, respectively. lb represents the lower bound
and ub represents the upper bound for the FOPID
parameters. The number of variables used here is 5.

Here, the genetic algorithm-based FOPID controller
is implemented where the algorithm is used to find the
FOPID parameters. The fitness function is nothing but
the objective function that needs to be reduced has to be
specified here. The Fitness function’s number of inde-
pendent variables are given in the number of variables
[39]. The lower bounds and the upper bounds are the

Figure 15. GA based FOPID controller response vs process variable.
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lowest and highest values on the variables mentioned in
the constraints. Population specifies the choice for the
population of the genetic algorithm.

The Population type indicates the choice of the input
given for the fitness function. Here, the double vec-
tor is chosen that is given for the integer constraints.
The Population size indicates how many entities are
present in each generation [40]. Here, the population
size selected is default 50. The Creation function indi-
cates the function that creates the early population.
Here, Constraint dependent is chosen which is uniform
when there are 0 linear constraints, or if there are num-
ber constraints. The scaling function transforms the
fitness function’s raw fitness scores into values within
the selection function’s spectrum of acceptability. Here,
the Rank option is selected, which scales the raw scores
according to each individual’s rank rather than its rank-
ing. An individual’s rank is simply their place in the
sorted ratings. The power of the distribution of raw
scores would be nullified by the Rank fitness scal-
ing. The preference function selects parents for the
next generation is based on the fitness scaling func-
tion’s scaled values. The Tournament is used to choose
each parent by randomly chosen people, the number of
which is determined by the Tournament size, and then
selecting the best child from that group to be a parent.
The children are generated by the genetic algorithm at
each new generation based on reproduction. The num-
ber of individuals who are certain and live to see the
next generation is represented by the Elite count. The
Elite count is set to be less than or equal to the Pop-
ulation size in positive integers. The Crossover would
create a new human child for the next generation by
merging two individual parents.While there are no lin-
ear constraints, the option dispersed is selected, and
when there are linear constraints, the option interme-
diate is selected. This thing ensures the parent’s and
children’s compatibility [41]. When the population size
is set to a vector with a length greater than 1, migration
is described as the movement of individuals between
the algorithm’s subpopulations. The direction ofmigra-
tion will be forwarded into the last sub-population. The
nonlinear constraint will be represented by constraint
parameters. The starting value for the genetic algorithm
is defined by the initial penalty. The first penalty must
be equal to or higher than one. The algorithm’s termi-
nation is determined by the stopping conditions. Gen-
erations indicate the number of iterations needed by the
genetic algorithm. The time-limit specifies how long
the genetic algorithmwill run in seconds before the iter-
ation is stopped. If the best fitness value is less than or
equal to the Fitness optimum value, the algorithm will
terminate. When the average shift in the fitness func-
tion value over the Stall generations is less than the
Function tolerance, the algorithm will terminate. The
algorithmwould terminate if the best fitness value does
not change within the time interval given by the Stall

Table 4. GA based FOPID controller parameters.

Controller Kp Ki Kd λ μ

GA based FOPID 1.8993 130.98 0.00698 0.99 0.503

time limit. When the genetic algorithm is running, the
Plot functions will plot different facets of it. On the view
window, each one will be plotted on its own axis. The
algorithm runs for many numbers of iteration until it
gets the best fit values. If there is any issue identified,
the algorithm terminates and the reason for termina-
tion will be displayed. The best fit value can be used to
tune the Kp, Ki, Kd, λ, μ value of the FOPID controller.
The MATLAB Simulink model of GA-based FOPID
controller is shown in Figure 14. The simulation time
is 10 s. PID parameters of GA based FOPID controllers
is tabulated in Table 4. The Controller response vs Pro-
cess variable of GA based FOPID controller is shown in
Figure 15.

3.3. HybridMPC-PID controller

Combination of Model Predictive Controller–
Proportional Integral Derivative controller is a hybrid
controller used to control the airway pressure of the
artificial respiration system [42]. TheHybridMPC-PID
block diagram is shown in Figure 16.

MPC is a very popular controller that helps to tune
the process and removes the issues of the system.
It can vary the parameters in the ventilation system
simultaneously.

Model prediction at time step k is given in
Equation (17).

yk =
N−1∑
i=1

Si�uk−i + SN�uk−N (17)

The error generated after comparing the model out-
put and actual output is considered as the input value
for the prediction block. The forthcoming value of the
output can be expected based on the system input and
the error. The optimizer in the calculation block will
optimize the predefined objective functions at any sam-
ple time to give the upcoming control action based on
the set-points, constraints, and prediction values. Con-
trol measurements are completed in the time interval
called Sampling time (Ts), which is equal to the control
interval. The controller calculates the upcoming control
action based on the Horizon Prediction (P). To achieve
the optimal control action, the objective function must
be low.

PID controller is a popular controller used in most
of the processes because of its simplicity and wonderful
performance [43]. The PID parameters are tuned based
on Ziegler Nichols (ZN) method [44,45].
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Figure 16. Hybrid MPC-PID block diagram.

Figure 17. The simulink model of Hybrid MPC-PID controller.

Table 5. ZNmethod PID controller parameters.

Tuning method Kp Ki Kd

ZN tuning method 1.646 131.267 0.006936

The equation of PID controller is mentioned in
Equation (18)

GPID(s) = Kpe(t) + Ki

∫ T

0
e(t) dt + Kd

de(t)
dt

(18)

Balancing of the closed-loop before the occurrence of
the steady oscillations will be done in the ZN method.
The output of theMPCcontroller is given as input to the
PID controller. The MATLAB simulink model of the
HybridMPC-PID controller is shown in Figure 17. The
simulation time is 10 s.The PID parameters obtained
from ZN method is tabulated in Table 5.

The Controller response vs Process variable of
Hybrid MPC-PID controller is shown in Figure 18.

4. Results and discussion

The main objective of the work is to maintain the oxy-
gen level based on the patient’s requirement. The oxy-
gen level will not be the same, as Coronavirus spreads
rapidly and affects breathing level. The Hybrid Opti-
mization technique, Optimization-based controller,
Hybrid MPC-PID controller are used for tuning
the controller parameters of the Auto Respiration
System. The comparison of genetic algorithm-based
FOPID controller, Fmincon-Pattern search Algorithm
based PID controller, and Hybrid MPC-PID con-
trollers are done. The pulse input is given and the
response is compared for the designed controllers
using MATLAB. Figure 19 represents the comparison
response of the controller for the automatic respiration
system.

Figure 20 represents the set point tracking of the
controllers to show the response of controllers when
the required amount of pressure varies immediately.
Figure 21 represents the response of the controller that
is enlarged for clear view. The error indices of the
controllers are compared to find the best controller
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Figure 18. The Controller response vs Process variable of Hybrid MPC-PID controller.

Figure 19. The comparison response of the controller for automatic respiration system.

Table 6. The Time domain specifications the controllers.

Controller Tr (s) Ts (s)

Hybrid Fmincon-PS based PID 0.0632 0.95
GA based FOPID 0.0628 0.23
Hybrid MPC-PID 0.0636 0.36

for the automatic respiration system. The time-domain
specifications: Rise Time (Tr) and Settling Time (Ts)
are shown in Table 6. The error indices of the con-
trollers are tabulated in Table 7. From Figure 20, it
is found that the controller responds to the input
when the patient requires more oxygen at a particular
time.

Table 7. The error indices of the controllers.

Controller ISE IAE ITAE

Hybrid Fmincon-PS based PID 0.00518 0.02895 0.1026
GA based FOPID 0.00022 0.029 0.1035
Hybrid MPC-PID 0.04963 0.804 0.1649

The genetic algorithms search a population of points
in parallel. As a result, unlike traditional approaches
that search from a single point, it is capable to avoid
getting trapped in a local optimal solution. Genetic
algorithms employ probabilistic rather than determin-
istic selection principles. However, the delayed conver-
gence of a genetic algorithm-based FOPID controller
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Figure 20. The set-point tracking of the controller for automatic respiration system.

Figure 21. The enlarged controller response for automatic respiration system.

is a major disadvantage. Whereas Fmincon-Pattern-
search is a class of numerical optimizationmethods that
do not need the use of a gradient. As a result, it can
be applied to non-continuous and non-differentiable
functions. But the major drawback of this method is,
it is a slow method and is difficult to execute. The
settling time of the Fmincon-Pattern search based PID
controller is high. MPC-based controllers are more
advanced methods used to solve nonlinear problems.
But it is more complex and takes time to execute when
compared to GA-based FOPID Controllers.

The optimization problem is displayed on a con-
vergence graph to see if it is converging to the best

solution [46]. The convergence diagram of the genetic
algorithm and Fmincon-PS algorithm is shown in
Figure 22.

From Figure 22, the GA-based FOPID algorithm
converged substantially faster than the hybrid Fmincon
pattern search algorithm when using the prior airway
pressure measurement as an initial population. When
compared to the GA-based algorithm with a hybrid
Fmincon pattern search algorithm, the GA-based
algorithmwith historical airway pressure demonstrated
a 38% reduction in average delay at iteration 200. This
has the potential to significantly enhance airway pres-
sure regulation.
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Figure 22. Convergence Comparison: genetic algorithm vs Fmincon-PS algorithm.

Figure 23. Stability analysis of GA based FOPID controller.

From Table 6, it is observed that the GA-based
FOPID controller has efficient set-point tracking which
has less rise time and faster settling point when com-
pared to other controllers. From Table 7, it is observed
that GA-based FOPID controllers have fewer error val-
ues when compared to the other controllers. GA-based
FOPID controller gives a fast response with less error,
which is very important for the systemas the oxygenhas
to be supplied to the patients immediately when they
need it to save their life.

Figure 23 shows the stability analysis of the GA-
based FOPID controller plotted in box and whisker
plot was taken for 400 iterations. The values of GA-
based FOPID parameters lie between the upper and
lower bound values. Figure 24 shows the Clear View
of Stability of each parameters of GA based FOPID
Controller.

5. Conclusion

Based on the result obtained by comparing the hybrid
controllers, the genetic algorithm based FOPID con-
troller gives a better response than Hybrid Fmincon-
Pattern Search based PID controller and Hybrid MPC-
PID controller. From the result and discussion section,
it is observed that the integral square error value of
the genetic algorithm-based FOPID controller is 0.49%
less than Hybrid Fmincon-PS based PID controller
and 4.94% lesser than Hybrid MPC-PID controller.
The integral absolute error of the genetic algorithm-
based FOPID controller is 77.5% less than the Hybrid
MPC-PID controller and 0.005% lesser than Hybrid
Fmincon-PS based PID controller. The settling time of
the genetic algorithm based FOPID controller is 72%
faster than Hybrid Fmincon-PS based PID controller
and 13% faster than Hybrid MPC-PID controller. The
genetic algorithm based FOPID controller improves
the set-point tracking capability for various pres-
sure set points. Also, the GA-based FOPID algorithm
converged substantially faster than the hybrid Fmin-
con pattern-search algorithm. The stability analysis
of genetic algorithm-based FOPID controller shows
that the values are stable and lie within the bounds.
So genetic algorithm-based FOPID controller can be
used in the Auto Respiration System to supply the
required oxygen for the patients within the stipulated
time. The limitation of the proposed work is that inad-
equate patient data may lead to an imperfect model
which is difficult to achieve the design criteria. In
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Figure 24. Clear View of Stability of each parameters of GA based FOPID Controller.

the future, a model will be trained using an artificial
intelligence-based algorithm for modelling the auto
respiration system to get the required pressure value for
the corona patients.
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