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ABSTRACT
In this study, moving object recognition is performed by using images from a camera mounted
on an unmanned ground vehicle. A GPS coordinate-based algorithm has been developed to
obtain moving object silhouettes. In order to classify these silhouettes, an interconnected arti-
ficial neural network (ICANN) architecture consisting of two stages has been developed. The
method consists of two phases. In the first phase, real-time images are converted to binary
images at the end of the GPS-assisted image registration process. Then, the silhouettes are
extracted from the background of the images using connected component labelling. In the
second phase, two interconnected neural networks are used. The first neural network classifies
silhouettes as objects or noise. The second neural network divides objects into seven subclasses
as pedestrians, potholes, cars, etc. Compared to CNN-based techniques, a simpler NN architec-
ture was employed in the research, and better accuracy rates were achievedwith fewer samples.
Another contribution of the research is simultaneous localization and mapping (SLAM) applica-
tions can be performed in non-GPS environments using pre-recorded images containing GPS
information. In experimental studies, maximum success rates of 96,1% in object classification
were obtained. The results obtainedwere compared to YOLO, the recently popular algorithm for
object recognition.
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1. Introduction

Object detection is the first stage of object recogni-
tion studies and has indispensable importance for intel-
ligent robotics and autonomous systems [1]. These
techniques are used to understand and analyze any
scene in images or videos. Its main application areas
include target recognition and tracking [2], face detec-
tion, optical character recognition, agricultural disease
recognition, and pedestrian detection for driving assis-
tance systems [3–5]. Nowadays, intensive studies on
unmanned vehicles have led to increased research on
moving object recognition (MOR). Especially, studies
on unmanned ground vehicles (UGV) [6,7], unmanned
aerial vehicles (UAV) [8,9], advanced driving assistance
systems [10], and unmanned submarine vehicles [11]
have increased. The studies on MOR in the literature
can be grouped under two main headings. Studies with
fixed cameras [12,13] and moving cameras [9,14]. In
the case of fixed cameras, the background is fixed.
All pixels showing a significant change between two
consecutive frames belong to moving objects except
for noises. Consequently, the performance of moving
object detection is high, and its computational costs are
low. The work done with moving cameras can also be
examined in two categories: video streaming (offline)

and real-time images (online). The background images
change due to the camera’s movement when moving
cameras are used. The algorithms to be used have
to distinguish the images, which seem like moving
because of the camera’s movement and the real mov-
ing objects. There is no time limitation in offline studies
[15]. There is sufficient time for the revision of exper-
imental studies and methods. It is used to identify
important patterns such as crime detection and sus-
pect behaviour detection from large amounts of video
data [16]. Real-time work is much more challenging.
There is limited time to detect foreground and back-
ground changes, detect objects and recognize them.
Otherwise, the installed real-time system will fail and
will not achieve its purpose. Another constraint is com-
putational cost and processing time. In real-time mov-
ing object detection and recognition, it is necessary to
revise themethods to decrease the computational costs,
increase the processing speed and regulate some con-
ditions in advance. Therefore, pre-processing is gener-
ally required [7,17,18]. Hussain et al. [19] developed
an object recognition framework based on whale opti-
mization to address all of these challenges. The first
step in MOR is to detect objects. In the moving object
detection (MOD) step, the foreground and background
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are separated. Moving objects are usually obtained as
binary large objects (BLOBs). The methods used for
MOD are evaluated under threemain steps: modelling-
based background subtraction, optical flow, and frame
differencing. Modelling-based background subtraction
is a widely used method in MOD. In this method,
changes in the pixel values of the images are observed
in video streams. These changes are modelled with sta-
tistical methods, and each pixel is classified as a back-
ground or foreground. Single Gaussian [20], Mixture
of Gaussian (MOG) [21], adaptive Gaussian [22], and
Spatio-temporal [23] methods are used in the mod-
elling. If all pixels are modelled, the processing time on
the computer is quite long. For this reason, descriptors
or features are often used instead of all pixels. Moving
objects can be detected with these methods, but they
are susceptible to noise [24]. The optical flow meth-
ods [25] give stable results in detecting objects from
the moving cameras. These methods can be applied as
feature-based or area-based [26]. However, due to the
low time interval between the successive frames and
the movement of the background, the computational
cost of optical flow methods is high. As a result, unless
you have specialized hardware, using these approaches
is inconvenient [27]. The frame differencing method
[28] is an easy-to-understand and low-cost method. It
is based on taking the differences between consecutive
frames. However, it fails to detect the entire object [24].
MOR involves more complex processes than MOD.
Therefore, fewer studies are encountered in the liter-
ature. In general, the studies are performed on image
data sets [29] or video data sets [15]. Heuristic methods
are generally used as recognition methods due to suc-
cessful results. CNN, one of the most popular methods
in recent years, is one of these methods [30]. CNN is a
technique that is becomingmore popular in a variety of
fields. It is utilized in topics like facial recognition[31],
network security [32], and text recognition [33]. Some
of the most common CNN-based approaches today
are Region-based CNN (R-CNN) [34], Fast R-CNN
[35], Faster R-CNN [36], and You Only Look Once
(YOLO) [37]. Among these approaches, YOLO is the
most effective for real-time object recognition [38]. It
is widely used to recognize traffic signs encountered by
autonomous vehicles during their navigation [39,40]. In
addition, object recognition is performed with modi-
fied versions [41]. Although a high proportion of back-
ground modelling is used to obtain blobs representing
moving objects, very few GPS-based techniques have
also been used. In a study by Kong et al. [42], aban-
doned objects were detected using video frames. For
this purpose, the videos retrieved from the same GPS
coordinates were roughly aligned and compared. In the
study, no results indicating accuracy or precision have
been published. The success rate was low due to the
rough matching process. The objects in the scene were

detected in the study by Morales et al. [7], by com-
paring object-free and object-containing video frames
retrieved from the same GPS coordinates. Accuracy
values were not given in the paper. Only computational
times were published. Accordingly, the computational
times vary between 20 and 200ms depending on the
object density. Furthermore, because the images were
recorded monthly, daily, and hourly due to the used
algorithm, specific equipment capable of storing large
amounts of data was necessary.

In this study, real-time object recognition was per-
formed using images obtained from a camera-mounted
unmanned ground vehicle. MOR studies performed
on unmanned vehicles must be in real-time. There-
fore, a GPS-assisted algorithm was developed for the
required high processing speed. A two-stage intercon-
nected artificial neural network (ICANN) was estab-
lished for MOR processes. In the first stage; Instead
of the noise filtering process of the images, a neural
network (NN) was created that can learn the differ-
ence between noise and the object. In the second stage,
BLOBs selected as objects are classified as pedestri-
ans, group of pedestrians (GoP), cars, riders, potholes,
speed bumps, and dogs. One of the main things for
a UGV is recognizing objects that are likely to come
across on the road. For this reason, seven objects are
specified for classification. They are objects where a
UGV would most likely meet on the road, and when
that occurs, the UGV needs to respond. For exam-
ple, if there is a pothole in front of the UGV, it
must slow down or manoeuver. Thus, no time was
lost in recognizing unnecessary objects to take action
for UGV.

The main contributions of this paper are as follows:

• Thanks to the object-free images taken from pre-
selected GPS coordinates, a constant background
for each scene was obtained during the real-time
movement. Thus, the difficulties caused by the back-
ground’s irregular changes have been overcome.

• In comparison to CNN-based techniques, a sim-
pler NN architecture was employed in the research,
and better accuracy rates were achieved with fewer
samples. As a result, the computational time was
decreased even further, and the time constraint in
real-time motion was overcome.

• Even if there are no GPS signals on the stud-
ied routes, simultaneous localization and mapping
(SLAM) applications can be performed thanks to
pre-recorded image sets, including GPS informa-
tion.

• All object-free background images on the routes are
recorded based on geographical coordinates. Thus,
modifications or anomalies that may occur in the
scenes over time can be easily detected. Moreover,
periodic changes can be detected in such areas.
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The rest of this paper is organized as follows.
In section 2, the whole algorithm is explained. Pre-
processes are presented in detail in Section 3, and real-
time operations in Section 4. Results and conclusions
are presented in Section 5 and Section 6, respectively.

2. Suggested approach

Moving object recognition was performed in two
phases. The first phase is the pre-processing phase,
and the second phase is the real-time phase. The
real-time processing phase is also divided into MOD
and MOR sub-phases. Preliminary preparations are
required along the path of the UGV to increase the
object detection speed. For this purpose, some GPS
coordinates are selected as the reference and symbol-
ized K1,K2, . . .Kn at short intervals along the route.
The coordinate information includes latitude, longi-
tude, and height information. Images are taken by a
camera when there are no moving objects in the scene
at each reference coordinate. These images are repre-
sented by symbols {RI1,RI2, . . .RIn} and are referred to
as reference images. The reference images and coordi-
nates are demonstrated in Figure 1.

The reference coordinates, the reference images, and
the lighting values of the scenes are recorded in the
relational database. In the real-time processing phase,
the UGV takes a snapshot from the reference coordi-
nates and compares it to the reference image of the same
coordinate in the memory. The two images are geomet-
rically aligned before comparison because of angular
and linear differences between the images. The com-
parison process is done between binary images. If the
resulting blobs are classified as noise in the MOR sub-
phase, the UGV continues moving. If classified as an
object, the process continues according to the object
class.

3. Pre-processing

3.1. Creation of image andGPS coordinate
database

Javad Triumph-1M model GPS device is used for
reference coordinate determination. The horizontal
and vertical sensitivities of this device are below
1 cm. The refresh frequency of the device is 10Hz.
The operations performed in this section are part
of the preparation phase. The transactions are as
follows.

(1) The reference coordinates are taken at approx-
imately 1m intervals. The UGV is able to update
GPS coordinates between reference coordinates at both
speeds of 3 and 4 km/h. (2) When there are no moving
objects in the scene, images are taken from the refer-
ence coordinates, and their features are extracted. Thus,
by saving the feature vectors to the database during
the pre-processing phase, no time is spent extracting
the features of the reference image in the real-time
phase. Feature extraction methods will be discussed in
the “Image Registration” section. (3) The UGV has a
sensor that measures the brightness of daylight. Dif-
ferences due to weather conditions between reference
and snapshot pairs are eliminated using measured val-
ues from the sensor. (4) The data mentioned above
(reference coordinates, reference images, features, and
brightness values) are specific to each reference coordi-
nate. They are associated with each other and saved in
the database.

3.2. Creation of image dataset

The effect of the rolling shutter should be taken into
account in the image acquisition studies with cam-
eras mounted onmoving platforms. In order to achieve
accurate results, this effect must be compensated [43].

Figure 1. Reference coordinates along the route of the UGV and reference images taken from these coordinates.
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In order to suppress this effect, a lowpass filter was
applied to the images [44].

ICANN is composed of NNs performing two dif-
ferent tasks. These NNs are designed according to the
principle of supervised learning. The better the inputs
are selected and organized in supervised learning, the
better the relationship to the outputs is expressed.
Therefore, it is necessary to collect sample images to be
used to train NNs. We took sample images on the route
where the real-time movement will be performed. We
have endeavoured to let NN learn asmany blobs as pos-
sible by taking images fromdifferent camera viewpoints
in different positions and locations.

3.3. Data pre-processing

All the images were converted into binary images by
morphological operations. After the conversion, all the

blobs obtained by Connected Component Labelling
(CCL) method were extracted. If the blob represents an
object, it is labelled according to its class. Otherwise, it
is labelled as noise. Some samples of object and noise
blobs are shown in Figure 2.

In this way, the image dataset to be used in training
was made ready. In the next step, two types of fea-
tures group are serially fused. The first feature group
consists of 6 standard features: area, perimeter, solidity,
etc. The other group contains 72 features that represent
the distances and angles of boundary lines at 10-degree
intervals. Fusing features have also been used in dif-
ferent studies. One of them is the machine inspection
application by Hussain et al. [45]. Figure 3 illustrates
how to obtain these features.

In Figure 3, (d1 . . . d36) represents the amplitude
of the vectors between the border coordinates, which
are arranged in 10o intervals, (θ1 . . . θ36) represents

Figure 2. (a) Samples of object blobs, (b) Samples of noise blobs.

Figure 3. A formal expression of BLOB’s feature extraction.
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the angles of these vectors, (Cx,Cy) denotes the centre
of gravity of the blob and (B1x,B1y) . . . (B36x ,B36y ) indi-
cates the coordinates of the border points. The sec-
ond portion of the fused feature is composed of di
and θi (i = 1to36). They are calculated as shown in
Equation 1, 2.

di = 2
√

(Bi+1
y − Biy)

2 + (Bi+1
x − Bix)

2 (1)

θi = tan−1 B
i+1
y − Biy

Bi+1
x − Bix

(2)

3.4. Training of the icann

ICANN includes three training processes. These pro-
cesses were; training of object/noise classifier and train-
ing of object type classifier. The schematic represen-
tation of each process is given in Figure 4 a, b, and
c. A dataset of 1325 blobs was created for the train-
ing. Seven hundred eighty of these blobs were used
for object/noise classification and 830 for object clas-
sification. 80% of this dataset was used for training,

10% for testing, and the remaining 10% for verification.
Seventy-eight formal features were extracted from each
blob.

Levenberg-Marquardt [46,47] and Scaled Con-
jugate Gradient [48] methods were used as the
backpropagation algorithm. The Levenberg-Marquardt
method gives much better results in terms of both
performance and processing speed. The Levenberg-
Marquardt algorithmwas selected because the process-
ing speeds of computers are significant in real-time
motion.

Several experimental tests were performed to build
the ICANN architecture that provides high efficiency
and low processing time. Table 1 shows the results for
the four better architectures in classifying object/noise
and object type.

In Table 1, HLS represents the hidden layer size, TP
Rate represents the true positive rate in the confusion
matrix obtained after training, and computational time
is the average recognition time per sample. The per-
formance metric used in the analysis was calculated as
shown in Equation 3. The Model-3 architecture, which

Figure 4. The schematic representation of the ICANN process (a) object/noise classifier and (b) object type classifier.

Table 1. Results obtained in the ICANN training and processing time test.

Model HLS/Neuron Number Epoch Number TP Rate (%)
Performance (min

is the Best)

Computational
Time per Sample

(ms)

Object/ Noise
Classification

Model 1 1/[20] 21/200 95.4 13.64 16.9

Model 2 2/[10 10] 16/200 97.1 12.26 17.6
Model 3 2/[20 20] 39/200 98.5 7.37 17.9
Model 4 3/[10 10] 92/200 98.5 12.37 18.5

Object Classification Model 1 1/[20] 24/200 94.4 26.13 15.6
Model 2 2/[10 10] 22/200 95.0 32.02 15.0
Model 3 2/[20 20] 39/200 95.2 9.89 16.7
Model 4 3/[10 10] 72/200 96.4 23.55 19.2
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Figure 5. Object classifier architecture of ICANN.

provides the most accurate results for both classifica-
tions, was selected.

Performance = |Outputdesired − Outputcalculated| (3)

Model-3 architecture is shown in Figure 5.

4. Real-time operations

In real-time motion, some processes are run sequen-
tially. With the MOD process, moving objects are
detected as blobs on the image. TheMOR process starts
immediately after this process. In this process, the real
object and noise blobs detected in the previous step are
first classified as objects or noise, and then the object

recognition process is made by determining the classes
of the objects. The UGV used in the study, shown in
Figure 6, has two 420W DC motors and two BTS 7960
PN motor drivers. 1024 ppr encoder mounted on both
wheels.

It has an NVIDIA Jetson TX2 development board
and a ZED camera. Image processing was performed
with 1280× 768 resolution images using Open CV. The
UGV operates at two speeds: 3 and 4 km/h. There are
two batteries with 12V 60A capacity providing power
to the vehicle. Since we are using Jetson TX2 and Zed
cameras, we have some benefits regarding disk capabil-
ity. JetsonTX2 has an internal hard disk of 32GB. It also
supports up to 128 GB of SD Disk. Zed stereo camera

Figure 6. Rear view of the UGV used in experimental studies.
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compresses the image frames and transfers them to disk
in H264 format. Due to these hardware features, the
disk requirement has decreased.

4.1. Image transformation

When UGV moves in real-time, it takes snapshots
called {CI1,CI2, . . .CIn} from each reference coordi-
nate. The aim is to detect moving objects in the snap-
shot by comparing these images with reference images
{RI1,RI2, . . .RIn}. For this purpose, each CIi image
is compared with RIi of the same coordinate in the
database at the snapshot time.However, due to the cam-
era’smovement (non-stationary camera), reference and
snapshot pairs may be taken from different viewpoints
and spatial points. Therefore, it is necessary to align
the snapshots with the reference images. Image reg-
istration techniques are generally used for alignment.
This technique consists of feature extraction, feature
mapping, determination of the transformationmethod,
and image recovery processes [49]. In this study, reg-
istration is performed using invariant features such as
SURF [50], Harris [51], and Fast [52] algorithms. The
number of features of the images differs according to
the background complexity and methods. In the later
step, many features are needed for optimal matching
between snapshots and reference images. In real-time
operation, the processing time of the feature extrac-
tion process is also essential. Therefore, an experimen-
tal study was performed to discover the method that
extracts the most features in the shortest time. Results
are given in Table 2.

Since the most appropriate values in processing
time and the number of features were taken in the
SURF method, SURF was chosen as the feature extrac-
tion method. In order to ensure sufficient processing
time, only the geometric transformation method was
used [53]. Euclidean distance (ED),Manhattan distance
(MD), and Normalized Cross-Correlation (NCC) tech-
niques were tested to calculate the shifting distance and
angle between reference images and snapshots. The two
images were geometrically aligned using these shifts,
and the difference between them was detected. Differ-
ence pixels were regarded as they were moving objects.
EDk,MDkandNCCk vectors were calculated for feature
matching as follows:

Table 2. The average number of features and computational
times obtained as a result of the experimental studies.

Noise Object

Computational
Time (s)

Number of
Features

Computational
Time (s)

Number of
Features

FAST 0.16 45.11 0.13 635.1
HARRIS 1.31 3306.65 1.45 4596.24
SURF 0.76 304.14 0.76 1134.95

Table 3. Results obtained in the feature matching test.

Length of
Feature
Vector

Number of
Experiments

Computational
time (sn)

Successfully
Detection

Rate

ED 64 102 0.068 %89
MD 64 102 0.054 %93
NCC 64 102 0.82 %74

Euclidean distance:

EDk =
m∑
k=1

n∑
j=1

t∑
i=1

((FRki − FIji)
2)1/2 (4)

Manhattan Distance:

MDk =
m∑
k=1

n∑
j=1

t∑
i=1

|FRki − FIji | (5)

NCC:

NCCk =

∑m
k=1

∑n
j=1

∑t
i=1(FR

k
i − FRkavg)

∗(FIJi − FRJavg)

[
∑m

k=1
∑n

j=1
∑t

i=1 (FRki − FRkavg)
2

∗(FIJi − FRJavg)
2
]

1/2 (6)

Here, FR; the feature vector of the reference image,
FI; the feature vector of the snapshot, t; element num-
bers of feature vectors, n; the number of features of the
snapshot, m; the number of features of the reference
image, the arithmetic mean of the avg vector, and i, j, k
are the index numbers of the feature vectors. The results
from the experimental studies to determine the efficient
method in feature matching are given in Table 3. As
seen in Table 3, the NCC method was eliminated due
to very high computational time and low success rate.
The MD method was used in real-time studies due to
its high success rate and low processing time.

After this process, the snapshot (CIi) was aligned
to the reference image RIi. Image differencing method
[54] and image binarization were used to detect mov-
ing objects present in the snapshot. In this method, it
is essential to determine the threshold value for bina-
rization. The objects will not fully appear or will be
difficult to detect because the noise will increase when
the incorrect threshold value is used. In order to prevent
this fault, the illumination value of the scene was also
recorded in the database. At the end of this stage, blobs
are obtained. Some of the blobs are real objects, while
others are noise. The next step is theMOR, in which the
recognition processes are performed.

4.2. Mor

4.2.1. Creating interconnected neural network
The ICANN architecture created is shown in Figure 7.
In this section, two interconnected NN are used. The
first block is a classifier. The input vector consists of for-
mal features of the blobs obtained in the MOD phase.
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Figure 7. Complete architecture of ICANN.

At its output, it decides whether these inputs represent a
real object or a noise. This block has a large share of the
high success rate in the study. If trained strongly, it can
achieve high successful classification rates. Therefore,
long-lasting morphological processes are not required.
The second block of ICANN is a classifier. Only the out-
puts classified as objects in the first block can be the
inputs of these two blocks. The output layer of the sec-
ond block has seven classes. These classes are selected
from objects that are likely to encounter a UGV on
the road during real-time movement. These are pedes-
trians, a group of pedestrians, bicycles, cars, potholes,
speed bumps, and dogs.

5. Experimental results

The images used in the ICANN training process were
taken from four separate places inside the campus. In
addition, two different locations were used in real-time
experiments. Images from the internet were also used
in a few experiments. Any photos of the locations used
are seen in Figure 8.

The routes within the campus used to generate the
dataset and the number of test drives performed on
each route is given in Table 4.

5.1. Training process

The success of the object/noise classification has a high
share in the total success. The confusion matrix result-
ing from the training is given in Table 5.

In Table 5, the precision column shows the per-
centages of correct and incorrect predictions for each
class, respectively. Diagonal cells correspond to correct
predictions, non-diagonal cells correspond to incorrect
predictions. The rows at the bottom of the table show
the percentages of all samples for each class classified
correctly and incorrectly.

In ICANN training, two datasets were used. The first
dataset was used to classify object/noise, and the sec-
ond for the object type classification. These datasets
were obtained by performing a total of 11 test drives
on four separate campus roads. When a test drive was
made on all roads, 805 images were recorded. Object
and noise features derived from these images were used
for ICANN training. The first dataset consists of 960
blob samples, 560 objects, and 400 noise.

Each sample is represented in this dataset by a vec-
tor consisting of 78 features. 80% of this dataset was
used for training, 10% for testing, and the remaining
10% for verification. Verification data was used for early
stopping. Levenberg-Marquardt and Scaled Conjugate
Gradient methods were used as the backpropagation
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Figure 8. Photos from a few training and test locations.

Table 4. Routes used to create the image dataset.

Route Number Route Length (m) Effort Number of laps

1 210 Training test 3
2 120 Training test 3
3 305 Training test 2
4 170 Training test 3
5 180 Real-time test –
6 212 Real-time test –

Table 5. Confusion matrix of Object / Noise classification.

Classes Object Noise Precision

Scaled conjugate
gradient

Object 382 15 %96.22

%48.9 %1.9 %3.78
Noise 18 365 %95.3

%2.3 %46.8 %4.7
TP Rate %95.5 %96.05 %95.76

%4.5 %3.95
Levenberg
Marquardt

Object 395 7 %98.25

%50.64 %0.9 %1.75
Noise 5 373 %98.7

%0.6 %47.8 %1.3
TP Rate %98.75 %98.16 %98.5

%1.25 %1.84

algorithm. As can be seen from Table 5, the Levenberg-
Marquardt method gives much better results.

Features extracted from the 830 object blob were
used in the object type classification process. Object
classification is the second step of ICANN. Only the
samples classified as objects in the first step can pass
to this step. More sample blobs were used in this step
to increase classification success 20% of the dataset was
used for testing and validation, and 80% for training.
Levenberg- Marquardt and Scaled Conjugate Gradient
methods were used for training.

The results were obtained by the Levenberg
-Marquardt method. There was no significant differ-
ence between the two methods in terms of perfor-
mance and processing speed. According to the results,

the accuracy rate of the classification performance was
95.22%. The best performances took place in the pedes-
trian, dog, and car classes.

5.2. Successful classification rates

In experimental studies, UGV was moved at two dif-
ferent speeds, 3 and 4 km/h. Real-time movements
were performed on four different routes and in various
weather conditions, and a total of 392 reference coordi-
nates were passed. Some results from recognition tests
with single objects are given in Figure 9.

Several criteria have been identified as performance
metrics. The two main ones are single and multiple
object recognition rates. In the scenes preparation for
the test studies, UGVwas enabled to come across obsta-
cles such as pedestrians, cars, dogs, etc., while mov-
ing at the determined speed, and recognition perfor-
mances were calculated. Real-time motion at 4 km/h
is more challenging. Because the system has less time
to perform MOD and MOR processes, it will be more
affected by deviations due to environmental conditions.
Table 6 shows the results obtained from the experimen-
tal studies at both speeds and where single objects were
detected.

Table 7 shows the results obtained from the experi-
mental studies in which multiple objects were detected
at both speeds.

As can be seen from Table 7, the accuracy rates are
quite high. The high accuracy rate shows the success
of the object/noise classification performed in the first
step. The developed approach is capable of recogniz-
ing all objects in the scene. Although there were small
changes according to environmental conditions, no dif-
ference was observed in the studies at general at 3 and
4 km/h. The distance between two reference coordi-
nates was determined as 1m on the four routes where
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Figure 9. (a) Original images used in single object recognition, (b) object recognition results.

Table 6. Successful classification rates in single object recogni-
tion tests at two different speeds.

Accuracy for
3 km/h (%)

Accuracy for
4 km/h (%)

Pedestrian 92.2 90.1
GoP 90.4 87.2
Speed bump 96.1 92.3
Car 95.3 90.8
Rider 92.7 89.1
Pothole 81.6 81.6
Dog 90 87.3

Table 7. Successful classification rates inmultiple object recog-
nition tests at two different speeds.

Accuracy for
3 km/h (%)

Accuracy for
4 km/h (%)

Pedestrian 87.4 82.6
GoP 83.1 80.4
Speed bump 93.5 91.6
Car 90.4 83.3
Rider 83.8 80.2
Pothole 80.6 79.2
Dog 86.8 81.2

the experimental studies were performed. According to
this, the time interval between two reference coordi-
nates at 3 km/h is 1.2 sec and at 4 km/h is 0.9 sec. The
MOD and MOR processes must be completed within
these periods. In real-time experimental studies, it was

observed that the calculation time was not sufficient
when the speed ofUGVwas higher than 5 km/h. There-
fore, higher-level computer hardware should be used
whenUGV is operated at these speeds. Multiple objects
recognized by ICANN are given in Figure 10.

5.3. Comparisonwith YOLO v3

The results obtained using ICANNwere comparedwith
those obtained with YOLO v3, one of the most popular
object recognitionmethods of recent years, by conduct-
ing experimental studies. The YOLO v3 network was
trained with 80 images per class under the same con-
ditions as ICANN. The object recognition process was
performed with YOLO v3 and ICANN in 140 images
(30 pedestrians, 20 GoP, 20 cars, 20 bicycles, 20 dogs, 15
potholes, and 15 speed bumps). Accuracy and average
computational times are given in Table 8.

After training under the same conditions as ICANN,
YOLO v3 had lower image recognition performance. In
order to make successful recognition with YOLO v3,
it is necessary to use datasets consisting of thousands
of images for each class in training. Some examples
of images used for the recognition of objects by both
methods are shown in Figure 11.
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Figure 10. (a) Original images used in multiple object recognition, (b) object recognition results.

Table 8. YOLO vs ICANN performance comparison results.

ICANN YOLO v3

Object Type
Accuracy

(%)

Average
Computa-
tional Time
per Sample

(ms)
Accuracy

(%)

Average
Computa-
tional Time
per Sample

(ms)

Pedestrian 87.4 16.2 81.3 17.8
GoP 83.1 17.1 79.0 21.2
Speed Bump 94.8 13.6 80.2 21.2
Car 90.4 15.9 88.7 16.1
Rider 83.6 17.1 81.1 19.8
Pothole 71.8 14.2 44.8 22.8
Dog 86.8 17.2 86.1 19.9

There is no need for any pre-processing for object
recognition in YOLO v3. In addition, the YOLO v3
algorithm can recognize more distant objects than
ICANN. However, as seen in Table 8, when YOLO v3
was trained with the same number of samples, it was
less successful than ICANN in terms of accuracy rate
and processing time. The advantages and disadvantages
of bothmethods within the scope of this study are listed
below.

• In ICANN, objects are recognized using formal
features over binarized images. Since YOLO v3
uses RGB images and deep neural networks for
training, a lot of images are required, and train-
ing time is much longer than ICANN. The objects
found in the images must be labelled one at a
time for training. This is challenging because the
objects’ centre of gravity and the bounding box’s
information onwidth and lengthmust be recorded
into a text file.

• These comparisons did not include the newer
YOLO V4 due to a few factors. One of the most
important differences between the YOLO V4 and
the YOLO v3 is that the YOLO V4 can produce
accurate results at higher fps. Because only 30
fps are employed in this study, this advantage is
ineffective. Another benefit is an increase in the
mean average precision (mAP) value. However,
for YOLO v3 and v4 to achieve high mAP values,
extensive training with a large number of samples
is required. For example, in the training processes
with YOLO v4, 2594 sample images were used by
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Figure 11. Recognized objects using (a) ICANN, (b) YOLO v3.

Albahli et al. [55] and 70000 by Li et al. [56]. There-
fore, when the number of samples used for training
is low, as in this study, YOLO v4 has no advantage.

• The longest training period in ICANN is 8.1 s
for three hidden layers composed of 10 neurones.
YOLO v3 runs out approximately 39 billion oper-
ations for one image. It then needs high-capacity
computer systems [57,58].

• The YOLO v3 algorithm can recognize more dis-
tant objects than ICANN in images with complex
backgrounds, but this often turns into a disadvan-
tage. Errors such as recognizing a car as a truck,
shoes as a skateboard, or detecting three pedestri-
ans instead of two can occur.

• When using the whole weight file, CNN-based
methods also try to recognize unnecessary objects
in the background. However, ICANN focuses only
on the specified objects.

• Since the background images of the route that do
not contain any foreign objects (reference images)
are stored in the system memory in the proposed
method, modifications in the backgrounds over
time can also be detected. There is no such pos-
sibility in CNN-based methods.

When the literature was reviewed, no other study
was found that used all the objectswe classified. Instead,
there are individual pedestrian, bicycle, or car recog-
nition studies. For example, in the study where only
pedestrian recognition was performed by Lan et al.
[3], successful results were obtained with 88.71% with
YOLO and 80.11% with ConvNet. In another pedes-
trian recognition study conducted by Kuang et al. [5],
a precision rate of 76.8% with YOLO and 65.14% with
R-CNN was achieved. Benjdira et al. [59] achieved
98.8% with YOLO and 65.4% with Faster R-CNN in
their car recognition study. In a study performed by
Sarıbaş et al. [60] in which unmanned aerial vehicles
were used, an 83.5% success rate and 0.136 s processing
time were achieved with YOLO. When the results are
compared, it is realized that our successful recognition
rates are greater thanmost research. However, it should
be underlined that other studies were performed using
neural networks trained for only a single object.

6. Conclusion

In this study, a system has been developed for a UGV to
detect and recognize the obstacles encountered during
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its real-time movement on predetermined routes. The
system uses images consisting of blank backgrounds
previously taken from the geographical location and
stored in the memory for detection. Due to the com-
putational cost advantage of this situation, the time
limits required for object detection and recognition are
not exceeded. Interconnected ANN sequences are used
for object recognition. The object/noise classification
training performed in the first step of ICANN achieved
98.5% accuracy. In fact, the success of this classification
significantly affects the success and speed of the whole
system. In the MOD step, the morphological filtering
steps that increase the computational cost have been
neglected due to the success of the object/noise classi-
fication. Therefore, the real-time processing speed has
increased.

Accurate recognition rates are average 91.2% for sin-
gle objects. However, this rate drops to 86.5% in Multi-
Object Recognition. This decrease is due to the lack of
desired quality of the snapshot taken from the refer-
ence coordinates due to environmental conditions. Due
to camera shake, shadow effect, and light irregulari-
ties, sometimes the desired quality of the image could
not be obtained. In order to reduce the negative effect
of the illumination on the image quality, photo resis-
tive sensors were used, and different threshold values
were determined at any time of the day. In addition,
the results obtained in the tests carried out at 4 km/h
speed are lower than the other speed. One of the rea-
sons is thought to be vibration. Another reason is that
some reference coordinates are missed due to speed.
Although this situation decreases the success rate, the
objects can be detected successfully after the missed
reference coordinate.

As a result, when the experimental results of the
developed system were examined, the average suc-
cess rates for single objects were 91.2% at 3 km/h
and 88.3% at 4 km/h. For multiple objects, it was
86.5% and 82.6%, respectively. The developed system
provides cost savings since these operations are per-
formed using only the camera. Successful classifica-
tion rates can be increased by increasing the num-
ber of samples in ICANN training processes. In order
to increase the speed of UGV, it is necessary to use
computer systems with higher CPU and GPU capac-
ity. Roads and roadside traffic signs will be added to
the classes that will be recognized in future studies.
In the next stage of this study, it is planned to per-
form simultaneous localization and mapping (SLAM)
study in non-GPS environments using pre-recorded
images.
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