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ABSTRACT

Fuzzy logic controllers (FLCs) are widely used to control complex systems with model uncer-
tainty, such as alternating current motors. The design process of the FLC is generally based
on the designer’s adjustments on the controller until the desired performance is achieved.
However, doing the controller design in this way makes the design process quite difficult and
time-consuming, so it is often impossible to make a suitable and successful design. In this study,
the output membership functions of the FLC are optimized with heuristic algorithms to reach
the best speed control performance of the permanent magnet synchronous motor (PMSM). This
paper proposes a new hybrid algorithm called H-GA-GSA, created by combining the advantages
of the Genetic Algorithm (GA) and Gravitational Search Algorithm (GSA) to optimize FLC. The
paper presents a convenient adjustment and design method for optimizing FLC with heuris-
tic algorithms considered. To evaluate the effectiveness of H-GA-GSA, the proposed hybrid
algorithm has been compared with GA and GSA in terms of convergence rate, PMSM speed con-
trol performance and electromagnetic torque variations. Optimization performance and results
obtained from simulation studies verify that the proposed hybrid H-GA-GSA outperforms GA and
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1. Introduction

Permanent magnet synchronous motors (PMSMs) are
widely used in household and industrial applications
due to their high power and torque densities, high
efficiency, and low dimensions as they can operate
in a wide speed range [1]. PMSM can be modelled
using different mathematical models. Modelling oper-
ations are mostly done with fixed circuit parameters.
However, besides the non-linear and non-modelable
machine dynamics in the motor structure [2], the wind-
ing resistances of the motors vary depending on the
temperature and the winding inductances depend on
magnetic saturation [3-7]. These problems that cause
model uncertainty make it difficult to control perma-
nent magnet synchronous motors with traditional con-
trol methods.

Fuzzy logic controllers (FLCs) are widely used espe-
cially controlling systems with model uncertainty [8].
This control method, developed based on the dynamic
behaviour of the system, is not affected by the uncer-
tainties and non-linear dynamics in the mathemat-
ical model of the system to be controlled [8-10].
Therefore, FLCs have become a better alternative to
traditional control methods. FLCs have many design
parameters that need to be adjusted accurately and
carefully. In determining these parameters, the tra-
ditional trial-and-error method is mostly used by

using the knowledge, intuition and experience of the
experts. However, FLC parameters are explicitly deter-
mined for the system under consideration and can-
not be applied to another system. These disadvantages
encountered in the design process make the optimal
controller design troublesome and time-consuming.
Heuristic optimization algorithms are widely preferred
to overcome the specified problems. Because heuris-
tic optimization algorithms can provide solutions very
close to the optimum solution at a reasonable time
in any situation. These algorithms have been used by
many researchers in optimizing fuzzy logic member-
ship functions, rule table and scaling factors, reducing
rule base size, and optimal controller design. Genetic
algorithm (GA) [11-16], gravitational search algorithm
(GSA) [17-20], particle swarm optimization (PSO)
[21-24], ant colony algorithm (ACO) [25] and bee
colony algorithm (BCO) [26] are some of the popular
heuristic algorithms used in FLC optimization.
Although heuristic algorithms give successful results
in the solution of optimization problems thanks to their
superior features, they have undesirable shortcomings.
For instance, GA has a strong global search feature
and prevents the problem from falling into local opti-
mum using crossover and mutation operators, but it
has a low convergence rate compared to the other algo-
rithms like PSO [27-29]. GSA has a rapid convergence
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at the beginning of the search process and the abil-
ity to find the nearest best result, whereas it has some
drawbacks such as easily falling into the local opti-
mum and losing the ability of exploration at the end
of the search process [30-32]. PSO is easy to imple-
ment, but it can suffer premature convergence while
solving complex problems [33,34]. Overall, when the
above-mentioned heuristic algorithms are evaluated,
each algorithm has advantageous and disadvantageous
features in solving optimization problems. In different
studies, to improve optimization performance, many
researchers have applied hybrid approaches of heuris-
tic algorithms by combining them with each other.
Hybrid structures of GA and PSO [35-39], PSO and
GSA [40-44] and GA and GSA [45-49] have been
utilized in various applications. Similarly, there are
many hybrid structures formed by combining differ-
ent heuristic algorithms to solve optimization prob-
lems. Summary information of these hybrid structures
utilized in the optimization problems is presented in
Table 1.

In this study, a hybrid heuristic algorithm called
H-GA-GSA created by combining the advantages of
GA and GSA is proposed to optimize the FLC used
in the speed control of the PMSM. Thus, the optimal
positioning and tuning of the output membership func-
tions of FLC have been provided for the best speed

Table 1. Hybrid approaches in optimization problems.

control performance of PMSM. To verify the proposed
controller superiority, the performances of controllers
optimized with GA, GSA and H-GA-GSA heuristic
algorithms have been analyzed and compared with each
other.

The rest of this paper is organized as follows.
Mathematical modelling of the PMSM is presented in
Section 2. The proposed H-GA-GSA algorithm and a
brief review of the GA and GSA algorithms, design
and optimization processes of FLC are described in
Section 3. Simulation studies and performance analy-
ses are provided in Section 4. Finally, conclusions are
presented in Section 5.

2. Mathematical modelling of PMSM

There are three different mathematical models for mod-
elling PMSM: three-phase a-b-c reference model, two-
phase d-q rotor reference model and two-phase fixed
plane a-p reference model. The complexity of the
motor’s dynamic equations can be reduced by con-
verting the three-phase reference model structure into
two-phase reference models with appropriate trans-
formations [1,50]. The two-phase d-q rotor reference
model is similar in structure to the external excited
direct current motor model, and the control of the
motor is facilitated when this model is used. Thus, in

Application Description Findings In
Hybrid GA and PSO Optimization of mathematical benchmark functions with  The proposed hybrid approach provides better performancein  [35]
GA and PSO- based hybrid algorithm. terms of different comparison criteria.
Automatically designing FLCs to minimize the The proposed GA and PSO-based algorithm provides lower [36]
steady-state error of a plant’s response. steady- state error and better stability.
A study on solving constrained optimization problems The obtained results show that the hybrid algorithm is effective  [37]
with the hybrid GA and PSO technique. and efficient for locating the global solution.
A study on minimizing the molecular potential energy The proposed hybrid algorithm provides faster convergence [38]
functions with the hybrid algorithm. without trapping in local minimum.
A study on mining quantitative and categorical Performance improvements have been achieved compared [39]
association rules. with the basic algorithms in terms of different criteria.
Hybrid PSO and GSA  Parameter identification of hydraulic turbine governing PSO-based improved algorithm provides high accuracy results,  [40]
system with the hybrid algorithm. stability and performance improvement for the GSA.
Optimization of static state estimation problem with the ~ The proposed hybrid technique provides successful results [41]
proposed hybrid algorithm. in terms of optimization performance compared to other
related techniques.
Solving binary problems with the PSO and GSA-based The proposed algorithm provides better performance than the  [42]
hybrid algorithm. original versions of other algorithms in terms of avoiding
local minimum and exploration.
Optimizing process parameters of a bidirectional carbon Provides superior performance to the other techniques in [43]
fibre epoxy composite. terms of computational time and the number of iterations
to arrive at the end results.
Optimization of energy efficiency in spectrum sensing The hybrid PSO and GSA-based algorithm provides [44]
for a cognitive radio network. performance improvement for PSO in terms of convergence.
Hybrid GA and GSA Tuning the damping controller parameters of unified The proposed algorithm increases the convergence efficiency [45]
power flow controller with the GA and GSA-based and provides faster solution in terms of computational time
hybrid algorithm. for obtaining the optimum values.
Optimization of complex benchmark test functions with The hybrid GA and GSA-based algorithm improves the [46]
the proposed hybrid algorithm. exploration and exploitation ability of GSA.
A study on image segmentation for multi-level The developed GSA and GA-based algorithm reduces the [47]
thresholding with the developed hybrid algorithm. computational complexity and also improves the search
accuracy and speed of GSA.
A study on solving constrained optimization problems The obtained results show that the proposed algorithm [48]
with the GA and GSA-based hybrid algorithm. provides more feasible and more optimal results than the
existing ones present in the literature.
A study on scheduling the load in the cloud computing The proposed hybrid algorithm improves the performance of [49]

environment with the hybrid GA and GSA-based
algorithm.

GSA and reduces the total cost of computation considerably
compared to the other algorithms.
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Figure 1. PMSM d-q rotor reference equivalent circuit.

this study, the d-q rotor reference model of PMSM
is preferred. Two-phase d-q rotor reference equivalent
circuit of PMSM is seen in Figure 1 [51].

In Figure 1, R; is the synchronous resistance, L; and
Ly are the d-q axis synchronous inductances, V; and
V, are the d-q axis components of the stator voltage, ig
and i, are the d-q axis components of the stator current,
W, is the magnetic flux of the permanent magnet, w, is
the angular velocity of the rotor. Voltage equations for
the d-q axis components in an equivalent circuit can be
expressed as follows [1,52].

) d

Va = Rsig + E\de - wr\pq (1)
) d

Vg = Rsig + E\Ijq + w,Yy (2)

where W, and W, represent the equivalent magnetic
flux linkages of the d-q reference axis are expressed as
follows.

Vg = Lgig + Vi (3)
W, = Lyig (4)

when Equations (1)-(4) are used and organized
together, d-q axis voltage equations are obtained.

dig

Vi=Rsig+ Ly ot

— wrLgig (5)

di
V, = Rig + qu—f + wLgig + oWy (6)
The electromagnetic torque of the motor can be
expressed as shown in Equation (7).

T = 2p(La— Lig + Wi ()
Electromagnetic torque of the motor depends on d-q
axis current components iz and iy, equivalent magnetic
flux ¥, and total pole pairs number of the motor. The
dynamic equation of the motor can be expressed as
follows:

d
T, = Tr + Bow, +]E‘wr (8)

where T7 is the electromagnetic torque of the load, B is
the static friction and ] is the inertia. When Equations
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(1)-(8) are organized together, state-space equations of
the motor will be obtained as follows [1,52].

d. 1 . .

Eld = L_d(vd — Rsig + a)qulq) )
4, ! (V, Rii Lgi v, (10)
Tl = 7 Vg = Rslg — Wrlglg — Wr¥m
a1,

d Te - TL - Ba),
—w, = — = 11
dtwr i (11)

If a speed controller is designed employing the
model presented above, some assumptions must be
made to get the controller [52]. Those assumptions
reduce the performance of the controller. As shown in
[8-10], fuzzy logic-based controllers have an acceptable
performance to overcome uncertainties because they
are not model-based controllers.

3. Optimization studies

In this section, first, a brief description of the operation
structures of GA and GSA algorithms is summarized.
Then, a hybrid GA-GSA algorithm that combines the
features of GA and GSA algorithms is proposed. Finally,
the FLC optimization process is described.

3.1. Genetic algorithm

GA is a population-based optimization method devel-
oped based on the theory of evolution and natural
selection mechanism [53,54]. According to the theory
of evolution, the genetic structure of a living population
changes over time through random mutations. Indi-
viduals, who better adapt to environmental conditions,
will have a higher chance of survival and reproduc-
tion. Individuals, who cannot adapt to environmental
conditions, will have less chance of survival and thus
will not pass on their heritable traits to the next gen-
erations. The genetic algorithm optimization process
consists mainly of steps [55].

Step i. The initial population is generated. The initial
population can be generated randomly or using
possible solutions to the problem.
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Step ii. The fitness values of the all individuals are
calculated.

Step iii. Selection, crossover and mutation genetic
operators are applied, respectively. Genetic oper-
ators expand the solution space by enabling indi-
viduals who provide better solutions.

Step iv. Step ii and iii is repeated until the stopping
criterion is satisfied.

3.2. Gravitational search algorithm

Gravitational search algorithm (GSA) is a novel
population-based heuristic optimization algorithm
developed based on Newton’s law of gravity and motion
[56]. This law states that all objects in the universe
attract every other object with a force of gravitational
attraction that is directly proportional to the product
of masses and inversely proportional to the square of
the distance that separates their centres. Inspired by this
law, GSA starts with the first population consisting of
masses called agents, representing a potential solution
of the optimization problem. Each agent in the pop-
ulation will have a bigger mass in direct proportion
to its closeness to the best solution. Bigger and heav-
ier masses that correspond to good solutions will move
more slowly than smaller and lighter masses that corre-
spond to bad solutions. Agents with bigger masses will
attract the agents with smaller masses towards them-
selves. The GSA algorithm process consists mainly of
the following steps [56,57].

Step i. The initial population is generated by a ran-
domly generated (Nxm) size set of agents.

Xi= XL X0 L XM),i=1,2,...,N (12)

Here N is the number of agents, m is the problem size
and X;? represents the position of i-th agent in the d-th

dimension.

Step ii. Fitness values of all agents in the population are

calculated.
Step iii. The best and worst agent in the population is
determined.
best(t) = min fitness;(t 13
(t) je{l)_{.)N}ﬁ ness;j(t) (13)
worst(t) = max fitness;(t 14
(®) je{le}ﬁ (1) (14)

For a minimization problem, best(t) and worst(t) solu-
tion values are calculated as above. If the problem under
consideration is a maximization problem, the best and
worst solution values are replaced.

Step iv. The coefficient G (gravitational constant) is
updated.

G(t) = Goe @/D (15)

Here, Gy indicates the initial value, « is the constant
coeflicient, t is the current number of iterations and T
is the maximum number of iterations.

Step v. The masses of the agents are calculated.

B fitnessi(t) — worst(t)

mi(t) = best(t) — worst(t) (16)
XL m

where, m;(t) represents the relative mass, M;(t) repre-
sents the mass and fitness;(t) represents the fitness value
of the agent 7 at time ¢.

Step vi. The forces of the agents are calculated.

F;l(t) = G() Mpi(t) S Maj(t)

Rij(t) +eé
< (XI(t) — x10) (18)
R;() = || Xi(®X;(0) I, (19)
N
Fl(= ) nFj® (20)
j=Lj#i

In Equations (18)-(20), F,-jd(t) is the force acting on
mass “7” from mass “j” at time ¢, G(?) is the gravitational
constant at time ¢, M); is the passive gravitational mass
of i, My; is the active gravitational mass of j, R;; is the
Euclidean distance between the mass “/” and mass 5,
€ isa small constant, r; isa random number in the inter-
val [0, 1] and Fi4(¢) represents the force of i-th agent in

the d-th dimension.

Step vii. Assuming the equality of the active, passive
and inertial mass of i-th agent in Equation (21),
the acceleration, speed and position of the agents
are updated by the following equations.

Mai = Mpi = Mjj = M;,

i=1,23,...,N (21)
F4(t)
d _hi
al(t) = M) (22)
VAt +1) = Vi) + ad(1) (23)

X+ )=x{O+Vie+n (24

The acceleration value of the agent, calculated from
Equation (22), is added to the current speed of the
agent, and its new speed is obtained, as shown in
Equation (23). The new speed of the agent varies
depending on the previous speed and acceleration.
Where r; is a random number in the interval [0, 1]. The
agent’s position in the next population is determined



according to Equation (24) using its current position
and current speed.

Step viii. Steps ii, iii, iv, v, vi and vii are repeated until
the stopping criterion is satisfied.

3.3. Proposed hybrid H-GA-GSA algorithm

The search speed of the GSA decreases exponentially
due to the gravitational constant in the last stage of the
searching process. Therefore, the convergence speed of
the GSA decreases which often causes the optimization
problem to get stuck in the local optimum or optimiza-
tion process becomes inactive. In addition, the GSA
is memory-less, and only the current position of the
agents is used in the speed updating process. In con-
trast, GA can prevent the problem from falling into
local optimum using its crossover and mutation opera-
tors; nevertheless, it can suffer from premature conver-
gence, and so it can take more time to reach the optimal
solution. In this study, it is proposed a new hybrid
algorithm,H-GA-GSA, by combining the global explo-
ration feature of GA and rapid convergence feature of
the GSA to overcome above-mentioned drawbacks of
GA and GSA. In the proposed hybrid algorithm, the
speed updating procedure introduced in the improved
gravitational search algorithm [40] (IGSA) is used.
IGSA is a hybrid algorithm that combines the search-
ing strategy of PSO with GSA [40]. During the speed
update process in the PSO algorithm, which is similar
to a kind of in-swarm memory and interaction, parti-
cles in the swarm update their positions based on those
particles, following the previous best particle (best par-
ticle in the current swarm) and the best-so-far particle
(the best particle in the swarms ever achieved). In the
proposed hybrid algorithm, the speed update equation
used instead of Equation (23) is given below.

VAt + 1) = VA 4 ad (D) 4 a173(Gpest? — X2 (1))
+ a4 (Ppest? — X4(1)) (25)

where V;4 represents the speed of the i-th agent in the d-
th dimension. r;, r3 and r4 are random numbers in the
interval [0, 1]. ¢7 is the social acceleration rate and c;
is the cognitive acceleration rate. Ppeg is the position of
the best agent in the current population, and Gy is the
position of the best agent obtained among all popula-
tions. The proposed hybrid algorithm provides a more
effective and efficient optimization by combining the
advantages of GA and GSA. The proposed H-GA-GSA
algorithm process consists of the following steps.

Step i. An initial population of randomly generated N
agents/individuals is created.

Step ii. The fitness values of all agents/individuals in
the population are calculated. (GA and GSA algo-
rithms)
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Step iii. The three best and worst agents/individuals
in the population are identified. (GA and GSA
algorithms)

Step iv. A total of (N/2) agents, consisting of the three
best agents and the rest (N-6)/2 agents selected
randomly and without repetition, are used for
GSA.

Step v. A total of (N/2) agents, consisting of the three
best individuals and the rest (N-6)/2 individu-
als selected randomly and without repetition , are
used for GA.

Step vi. Procedures of GA and GSA algorithms are
executed.

(a) a. Crossover and mutation operators are
applied for GA.

(b) b. For GSA, calculating the gravitational coef-
ficient G, calculating the mass of the agents,
calculating the force of the agents, updating
the acceleration, updating the velocity using
Equation (25) and updating positions of the
agents.

Step vii. The population consisting of (N/2) individuals
is updated with GA, and the population consist-
ing of (N/2) agents is updated with GSA. The
updated populations are then combined, and a
new population consisting of N agents/individuals
is obtained.

Step viii. Steps ii, iii, iv, v, vi and vii are repeated until
the stop criterion is satisfied.

The flow chart for the proposed H-GA-GSA algo-
rithm is presented in Figure 2.

3.4. Fuzzy logic controller optimization process

The concept and theory of fuzzy logic modelling was
introduced by Zadeh (58) [58]. FLCs are made up of
three interconnected sections: fuzzification, rule-based
inference mechanism and defuzzification [59]. In the
fuzzification section, the membership degrees of the
membership functions corresponding to the input vari-
ables are determined and converted into verbal expres-
sions. In the rule-based inference mechanism section,
the fuzzy conclusions are reached by evaluating the
degrees of membership according to the rules of ver-
bal supervision, as in the process of human decision-
making. Here, fuzzy output expressions are obtained
using fuzzy relation operators. In the defuzzification
section, the sum of fuzzy expressions from the rule-
based inference mechanism is converted into a crisp
output value that can be applied to the system to be
controlled.

In the optimization studies carried out, speed
error and change in speed error are used as input
variables. Here, seven different verbal entries are used
for membership functions: Negative Big (NB), Nega-
tive Medium (NM), Negative Small (NS), Zero (ZE),
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—

'

agents / individuals in the population

v

Selection
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¢
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( Total of N agents / individuals )

Y

Stop criterion
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Figure 2. Flow chart for the proposed H-GA-GSA algorithm.

Positive Small (PS), Positive Medium (PM) and Pos-
itive Big (PB). The rules created based on the input
variables for the rule base are presented in Figure 3.
In the study, while rules and output membership func-
tions are defined, breaking and bidirectional rotation
are not considered because the primary purpose of
the study is to verify the effectiveness of the proposed
hybrid algorithm. Membership functions used for input
variables are shown in Figure 4. The Mamdani fuzzy
inference method [59] is used in the rule-based infer-
ence mechanism of the controller, and the weighted
average method [59] is used in the defuzzification
unit. All design units and sub-units (fuzzification,
rule-base, inference mechanism and defuzzification)

—

all agents / individuals in the population

Identification of the three best and worst

Initial population generated with
N agents / individuals is created

<

N—6
) individuals

Randomly selection of ¢
from population

¢

Total of N/, individuals

(N-6)
(3

individuals + 3 best individuals )

v

Execution of GA
(Crossover and Mutation)

Yes

End

were designed and implemented using fully user-
defined software in MATLAB/Simulink environment.
The same operating structure was used for all designed
and optimized FLCs.

In optimization studies, FLC output membership
functions are optimized with GA, GSA and proposed
H-GA-GSA heuristic algorithms. The optimized out-
put membership functions are expressed with individ-
uals in the population for GA and with agents in the
population for GSA. Here individuals and agents rep-
resent the centres of gravity of the output membership
functions to be optimized. Integral absolute error (IAE)
and integral time-weighted absolute error (ITAE) per-
formance indices were used for fitness functions in



RULE Change of Error (Ae)

TABLE Ing |NM | Ns | zeE | ps | pm | PB

NB | NB|NB|NB|NB|NM| NS | ZE

NM| NB| NB| NB|NM| NS | ZE | PS

NS | NB| NB|NM| NS | ZE | PS | PM

ZE | NB| NM| NS | ZE | PS | PM | PB

Error (e)

PS | NM | NS | ZE PS | PM | PB | PB

PM| NS | ZE | PS | PM | PB | PB | PB

PB | ZE | PS | PM | PB | PB | PB | PB

Figure 3. Rule table.

optimization studies. The mathematical equations for
these performance indices are given below.

IAE = / le(£)|dt (26)
ITAE = / tle(t)|dt 27)

Optimization studies minimized the fitness functions,
IAE and ITAE error performance indices. The areas
and change intervals of the membership functions have
been updated automatically throughout the iterations.
The maximum number of iterations has been used as
the stopping criterion for optimization processes. The
basic structure of the optimization scheme is shown in
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Input Membership Functions

NB NM NS ZE PS PM PB

0.5 §

Membership Degree

8 6 4 -2 0 2 4 6 8
Error & Change of Error

Figure 4. Input membership functions.

Figure 5; circuits created in MATLAB/Simulink envi-
ronment for optimization studies are shown in Fig-
ures 6 and 7.

In the optimization studies, the speed error (e) and
change in speed error (Ae) values obtained by compar-
ing the motor speed information with the input refer-
ence speed information were used as input variables for
the FLC. These variables are multiplied by the scaling
factors s; and s,, respectively. The output of the FLC is
multiplied by the scaling factor s3 to obtain the actual
output value that will be applied to the system to be
controlled. Scaling factors are considereds; = 1,55, = 1

Fuzzification Unit

B < + g >
Reference 1

Updating and positioning

Speed Ae

Rule Based
Inference Mechanism

<----| of the output membership
functions

Defuzzification Unit

A

Speed
Feedback

Figure 5. Optimization schematic.

Optimization Process

fitness | g fitness

Population

Discrete,
Ts = 1e-05s.

powergui

Figure 6. Optimization circuit created to obtain fitness values.

Mamdani Inference
PMSM Model
Population Size:40

Fitness Values
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Figure 7. Optimization circuit created to obtain fitness values from PMSM.
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Figure 8. Change intervals of the output membership functions optimized with GA, GSA and H-GA-GSA (IAE Performance Indice).
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Figure 9. Change intervals of the output membership functions optimized with GA, GSA and H-GA-GSA (ITAE Performance Indice).
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Figure 10. Rule surface of the optimized FLC with GA, GSA and H-GA-GSA (IAE Performance Indice).
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Figure 11. Rule surface of the optimized FLC with GA, GSA and H-GA-GSA (ITAE Performance Indice).

Table 2. Parameters of PMSM.

Parameter Value
Stator Resistance (Rs) 0.96 Q
Stator Inductance (Lg = Lg) 5.25mH
Viscous Damping (B) 0.0003 Nms
Inertia of Motor (J) 0.00064 kgm>2
Magnetic Flux Linkage () 0.1827 Wb
Pole Pairs (p) 4

Table 3. Parameters used for the FLC optimization process.

Definition Parameter name Value
General Parameters Population Size 40
Problem Size 7
Number of Max. Iteration 100
Limits of the Problem [—1,+1]
Parameters of GA Crossing Rate 0.9
Mutation Rate 0.005
Parameters of GSA Initial gravitational value (Gp) 1
Constant coefficient («) 2.5
Parameters of H-GA-GSA Initial gravitational value (Go) 1
Constant coefficient («) 2.5
Social acceleration rate 1
Cognitive acceleration rate 1

and s3 = 6. Seven verbal variables: Negative Big (NB),
Negative Medium (NM), Negative Small (NS), Zero
(ZE), Positive Small (PS), Positive Medium (PM), Pos-
itive Big (PB) were used as output membership func-
tions in iterations. In Figures 6 and 7, fitness values were
calculated for each individual/agent in the population
in circuits created in the MATLAB/Simulink environ-
ment according to the IAE and ITAE error performance
indices. The fitness values that provide the most suc-
cessful results are determined, and then each heuris-
tic algorithm is executed using the aforementioned
steps of GA, GSA and H-GA-GSA. The new popula-
tion obtained from the optimization process enables
the creation of updated output membership functions
to be used for the next iteration. The output member-
ship functions will be optimized as specified until the
stopping criterion is satisfied.

4. Simulation studies and performance
analysis

In this section, simulation studies have been carried out
with each optimized FLC applied to PMSM. Table 2
shows the parameters of PMSM and Table 3 shows
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Figure 12. Convergence of GA, GSA and H-GA-GSA (IAE Perfor-
mance Indice).
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Figure 13. Convergence of GA, GSA and H-GA-GSA (ITAE Per-
formance Indice).

the parameters used for GA, GSA and the proposed
H-GA-GSA algorithms.

For a fair comparison, each optimization method
use the same general parameters, such as the number
of the maximum iterations, the number of population
size, limits of the problem and the problem size, as indi-
cated in Table 3. The optimized output membership
functions using IAE and ITAE performance indices
are shown in the graphs in Figures 8 and 9, respec-
tively. Rule surfaces obtained depending on the input
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Figure 14. Comparisons of speed control performance of the controllers optimized with GA, GSA and H-GA-GSA (IAE and ITAE

Performance Indices).

variables of optimized FLCs using IAE and ITAE per-
formance indices are presented in Figures 10 and 11,
respectively.

The convergence performances of GA, GSA and
proposed H-GA-GSA algorithms for IAE and ITAE
performance indices are shown in Figures 12 and
13, respectively. Here, the variations of the mini-
mum fitness function values obtained for three dif-
ferent algorithms throughout the iterations are seen.
Figures 12 and 13 show that GSA converges quickly
at the beginning of the searching process compared
to the other two algorithms. But, after running the
algorithm about 10-20 times, it is seen that the GSA
no longer searches, and so it loses its exploration abil-
ity. Although the GA seems to be more successful than
the GSA in preventing stuck at the local optimum,

Variable Speed Control Performance Comparison ( T

the GSA outperforms the GA significantly in terms of
convergence rate. The GA needs more time to con-
verge to an optimum solution, which the GSA reaches
much earlier. Figures 12 and 13 show that the pro-
posed H-GA-GSA hybrid algorithm is very success-
ful in overcoming the problem of getting trapped in
the local optimum and is superior in terms of con-
vergence rate to the GA and GSA. Speed control
performance and electromagnetic torque variations of
PMSM for variable reference speed, respectively, and
constant load operating conditions are shown in Fig-
ures 14-17. PMSM is started with 50 rad/s reference
speed; then the speed is reduced to 25rad/s at 0.025s
and increased to 40rad/s at 0.05s; meanwhile, the
load torque was kept constant at 2Nm during the
simulations.
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Figure 15. Comparisons of speed control performance of the controllers optimized with GA, GSA and H-GA-GSA (IAE and ITAE

Performance Indices).
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Figure 16. Electromagnetic torque variations for the controllers optimized with GA, GSA and H-GA-GSA (IAE Performance Indice).

When the speed control comparison graphs in Fig-
ures 14 and 15 are examined, FLCs optimized with the
proposed H-GA-GSA algorithm provide more success-
ful results cthan the controllers designed with GA and
GSA algorithms. FLCs optimized based on ITAE per-
formance indices have better performance than IAE
performance indices.

When the torque variation and stator iy - i; current
variation graphs in Figures 16-19 are evaluated, torque
variation graphs are similar to stator ig - i; current vari-
ation graphs. Figures 18 and 19 demonstrate the stator
ig and iy currents for optimized FLCs for IAE and ITAE
performance indices. As the d-axis current iz is equal to
zero, the electromagnetic torque of the PMSM directly
depends on i, current. To satisfy the required electro-
magnetic torque during the acceleration stage of the
PMSM, the i, current converges to the load torque after
reaching the reference speed while initially above the
load torque value.

Stator flux trajectories are presented in Figures 20
and 21, where flux trajectory waveforms rotate along

Electromagnetic Torque Variation

(T,

Loaq = 2 Nm)-(ITAE) (T,

Load

Electromagnetic Torque Variation Electr
=2 Nm)-(ITAE) (T,

the circular curve. As seen in the figures, the d-axis cur-
rent iy is equal to zero. In this case, flux trajectories con-
stituted using inverse park transformation showed that
stator flux is adjusted with i; current obtained from the
output of the FLC. Evaluation of the simulation results
obtained by considering the speed control graphs in
Figures 14-15 and the electromagnetic torque varia-
tion graphs in Figures 16-17 is shown in Table 4. Here,
rise time, settling time and torque ripple (peak to peak)
values are listed for different reference speeds.

The obtained results for the three different reference
speeds are given in Table 4. For the reference speed
of 50rad/s, FLC optimized with the proposed H-GA-
GSA based on ITAE performance indices has provided
the shortest rise time of 1.458 ms and the shortest set-
tling time of 2.016 ms. Additionally FLC optimized
with the proposed H-GA-GSA based on IAE perfor-
mance indices has provided the minimum percentage
of torque ripple of 14.559%. Table 4 shows that FLC
optimized with the proposed H-GA-GSA provides an
average of 0.032ms better rise time, 0.078 ms better
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Figure 17. Electromagnetic torque variations for the controllers optimized with GA, GSA and H-GA-GSA (ITAE Performance Indice).
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324 e S. UNSAL AND I. ALISKAN

iyandi M Current Variation
(GA) - (ITAE Performance Indice)

igyandi a Current Variation
(GSA) - (ITAE Performance Indice)

iyand iq Current Variation
(H-GA-GSA) - (ITAE Performance Indice)

—iy (A)
—ig (A |

— iy (A)
— iy ()

—ig (A)
—iy (&)

2 | 1 2
-4 | -4
6 6
6 0.025 0.05 0.075 0 0.(;25
Time (s)

Time (s)

0.025

0.075 0 0.075

Time (s)

Figure 19. Stator ig and iq current variations (ITAE Performance Indice).
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Figure 20. Trajectories of the stator flux (IAE Performance Indice).

settling time and 2% less percentage of torque ripple
compared to the FLCs optimized with the other two
algorithms.

The performance indexes of the FLCs for the refer-
ence speed of 25rad/s are similar to the performance
indexes obtained for the previous reference speed. Here,
FLC optimized with proposed H-GA-GSA has pro-
vided the shortest rise time of 0.425 ms, the shortest
settling time of 0.673 ms and the minimum percentage
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of torque ripple of 12.975%. In this case, FLC optimized
with the proposed H-GA-GSA provides an average of
0.048 ms better rise time, 0.068 ms better settling time
and 2.32% less percentage of torque ripple compared to
the FLCs optimized with the other two algorithms.

For the last reference speed (40rad/s), the perfor-
mance indexes of the FLCs were also obtained similar to
previous reference speeds. FLC optimized with the pro-
posed H-GA-GSA has provided the shortest rise time
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Figure 21. Trajectories of the stator flux (ITAE Performance Indice).
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Table 4. Performance indexes of the developed controllers.

IAE performance indice

ITAE performance indice

Speed Performance criterion GA GSA H-GA-GSA GA GSA H-GA-GSA
50 rad/s Rise Time 1.495 ms 1.486 ms 1.46 ms 1.501 ms 1.481 ms 1.458 ms
Settling Time 2121 ms 213 ms 2.063 ms 2.083 ms 2.042 ms 2.016 ms
Torque Ripple 16.393% 16.708% 14.559% 16.544% 16.559% 16.533%
25 rad/s Rise Time 0.503 ms 0.445 ms 0.443 ms 0.514 ms 0.433 ms 0.425 ms
Settling Time 0.774 ms 0.708 ms 0.707 ms 0.803 ms 0.681 ms 0.673 ms
Torque Ripple 15.072% 15.388% 12.975% 15.463% 15.259% 15.243%
40 rad/s Rise Time 0.53 ms 0.539 ms 0.512ms 0.512ms 0.501 ms 0.487 ms
Settling Time 1.011 ms 1.115ms 0.982 ms 0.946 ms 0.906 ms 0.898 ms
Torque Ripple 16.658% 16.807% 15.107% 17.702% 17.439% 17.13%




of 0.478 ms, the shortest settling time of 0.898 ms and
the minimum percentage of torque ripple of 15.107%.
In this case, FLC optimized with the proposed H-GA-
GSA provides an average of 0.033 ms better rise time,
0.096 ms better settling time and 2.04% less percentage
of torque ripple compared to the FLCs optimized with
the other two algorithms.

For all reference speeds FLCs optimized with the
proposed H-GA-GSA according to the ITAE perfor-
mance indices have provided the shortest rise time and
settling time; also FLCs optimized with the proposed
H-GA-GSA based on the IAE performance indices
have provided the minimum percentage of torque

ripple.

5. Conclusion

In this paper, we performed a study to optimize FLCs
employed in the speed control of the PMSM using the
GA, GSA and the proposed hybrid H-GA-GSA. The
main purpose of this research is to develop a new hybrid
algorithm that effectively combines GA and GSA to
optimally locate and tune the output membership func-
tions of the FLC to achieve the best speed control
performance of PMSM.

Simulation results show that GSA has a quite fast
convergence rate at the beginning of the search pro-
cess, but after a certain number of the running of
the algorithm, GSA stops searching due to its operat-
ing structure and optimization process losing its activ-
ity. On the other hand, that the GA could overcome
the problem of getting stuck in the local optimum,
but it has a very low convergence rate compared to
the other two algorithms. When the proposed H-GA-
GSA algorithm is involved, it effectively prevents the
problem of entrapment in the local optimum, and the
algorithm can continue the search process thanks to
the crossover and mutation operators of the GA. Fur-
thermore, the proposed H-GA-GSA is superior to the
GA and GSA in terms of minimum fitness function val-
ues and convergence rate; thus, it provides a closer and
better convergence to the optimum solution. Table 4
demonstrates the superiority of the proposed hybrid H-
GA-GSA algorithm that provides better speed control
performance, shorter rise and settling times and fewer
electromagnetic torque ripples.

Overall, the results apparently indicate that in the
optimization studies based on IAE and ITAE per-
formance indices, the proposed hybrid H-GA-GSA
algorithm outperforms the GA and GSA. The main
contribution of the proposed H-GA-GSA algorithm to
the study is to obtain a more effective and efficient
optimization procedure by eliminating the disadvan-
tages of GA and GSA. For future works, the proposed
hybrid optimization algorithm will be designed based
on different objective functions to investigate perfor-
mance improvements. In addition, the study scope will
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be expanded to reduce the electromagnetic torque rip-
ples of PMSM by including different membership func-
tions and the other design parameters of the FLC in the
optimization process.
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