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ABSTRACT
Sufficiently accurate, fast and computationally efficient solution of the system of linear equa-
tions is required inmany estimation problems. Richardson iteration is one of themain solvers for
linear equations, which provides optimization possibilities for time critical and accuracy critical
applications. Convergence rate improvement and reduction of the computational complexity
of the Richardson iteration are the most important problems in the area. The introduction of
Newton–Schulz iterations is the efficient way for convergence rate improvement and the paper
starts with systematic overview of the high-order Newton–Schulz matrix inversion algorithms.
In addition, the unified framework for recursive computationally efficient convergence accelera-
tors and errormodels for a number of combinations of Richardson andNewton–Schulz iterations
is developed. A new nonrecursive parameter estimation concept is introduced and compared in
this paperwith recursive estimation. Recursive andnonrecursive Richardson algorithms together
with the standard LU decomposition method were applied to the electric grid power quality
monitoring problem. The algorithms were tested for the detection of the sag and swell signa-
tures in the voltage and current signals on real data in three-phase power system. Nonrecursive
Richardson algorithms which save close to half of the computational time compared to LU
decomposition method were recommended for power quality monitoring applications.
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1. Introduction

1.1. Restricted linear system of equations and
Richardson iteration

The solution of the system of linear equations

Aθ∗ = b (1)

with respect to θ∗ with SPD (Symmetric and Positive
Definite) (and ill-conditioned in many cases) matrix
A is required in many application areas such as con-
trol, system identification, signal processing, statistics
as well as in many big data applications, machine learn-
ing and in many others, [1–4].

The iterative Richardson method for solving (1)
is often preferable due to the optimization possibil-
ity (achieved via a proper choice of the number of
iterations), robustness, less processor time and mem-
ory space compared to direct methods. The trade-off
between parameter estimation accuracy and computa-
tional burden allows different optimization of Richard-
son algorithms for approximate computing in time
and accuracy critical applications. Convergence rate
improvement and reduction of the computational com-
plexity of the Richardson iteration are the most impor-
tant problems in the area.

The convergence rate of the Richardson iteration can
be improved via the introduction of fast iterativematrix
inversion algorithms, [5–8] such as high order New-
ton–Schulz algorithms, [9–19]. Iterative algorithms for
calculations of the inverses and different generalized
inverses are widely used in cryptography, control sys-
tems, signal and image processing and in many other
areas. Notice that practical applications of the iterative
matrix inversion methods are hampered by the lack
of general unified description. Mini-tutorial with gen-
eral unified description of the iterativematrix inversion
algorithms with convergence analysis is presented in
this paper.

Convergence rate improvement is usually associ-
ated with additional computational burden. In order
to reduce the computational complexity the follow-
ing algorithms should be developed: (a) the recur-
sive procedures associated with combinations of New-
ton–Schulz and Richardson iterations and (b) nonre-
cursive forms of the Richardson algorithm.

1.2. Nonrecursive Richardson algorithms

The Richardson iteration can be presented in a non-
recursive form, where the estimate is the function of
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initial estimate and initial power series and all the
quantities are calculated once only, [5]. The Richard-
son algorithm written in a nonrecursive form can be
implemented on parallel computational units using
sequential matrix vector multiplications only. Accu-
racy critical applications require a relatively large num-
ber of iterations of the recursive algorithm for the
ill-conditioned case. This results in a large num-
ber of matrix vector multiplications in a nonrecur-
sive counterpart. The approach is computationally effi-
cient for large-scale systems and less efficient for small
and medium size matrices. The algorithm should be
selected according to the properties of the system in
each application.

Factorizations of the power series, see for example
[8,15,20] in combination with matrix vector multipli-
cations can be applied for the improvement of the com-
putational efficiency of the solution taking into account
the size of the matrix A.

1.3. Application: electric grid power quality
monitoring

Power quality disturbances such as sag and swell events
may cause significant damages and problems to criti-
cal equipment connected to the network. Fast detec-
tion with possible mitigation of these events is one
the most important problems in the area, [21–24].
A number of approaches such as peak voltage detec-
tion, root mean square method, Fourier transforma-
tion and many others have been developed for sag and
swell detection. Voltage peak detection is not robust
in the presence of harmonics and the detection meth-
ods, which use the windowing technique can be slow
for a sufficiently large window size, [25]. The approach
presented in this paper allows to use short enough
windows for the estimation of the frequency con-
tents of oscillating signals and rapid detection of the
disturbances. The estimation involves solution of (1)
with positive definite and ill-conditioned (due to a
small window size) information matrix A by using
Richardson algorithms with improved convergence
rate.

The algorithms developed in this paper have been
tested for the detection of the sag and swell signatures of
real failure event in voltage and current signals in three-
phase power systems, [26]. Nonrecursive Richardson
algorithms which can be optimized via a proper choice
of the number of steps for approximate computing save
close to half of the computational time compared to the
LU decomposition method which does not allow opti-
mization of the performance. Detection performance
improvement associated with computational savings of
the nonrecursive Richardson method is an essential
contribution to time critical power quality monitoring
applications.

1.4. Structure of the paper andmain
contributions

This paper starts with short systematic overview
(presented as a mini tutorial) of iterative matrix
inversion algorithms with unified convergence anal-
ysis in Section 2. In addition to unified description
of known algorithms, a new high order iteration with
memory based convergence accelerator is introduced.
A new unified framework for recursive computation-
ally efficient accelerators for the Richardson algorithm
presented in the form of Newton–Schulz iterations, see
Section 3 is the first main contribution of the paper.
New nonrecursive estimators (the second main contri-
bution of the paper) are introduced in Section 4 and
compared to recursive estimators in Section 5. Grid
power quality monitoring application is considered in
Section 6, where nonrecursive and recursive estimators
and the standard LU decomposition method are com-
pared. The paper endswith brief conclusions and future
outlook in Section 7.

2. Overview of iterative matrix inversion
algorithms: mini tutorial

A brief overview of iterative matrix inversion algo-
rithms with convergence analysis is presented in this
Section. The overview is presented in the system-
atic way (from simple algorithms to more sophisti-
cated ones) in the chronological sequence with conver-
gence analysis and starts with the second order New-
ton–Schulz algorithms in Section 2.1 followed by the
description of high order Newton–Schulz algorithms
in Section 2.2. Computationally efficient Durand iter-
ations are described in Section 2.3. High-order New-
ton–Schulz algorithmswith improved convergence rate
are presented in Section 2.4, where the combination
of high order Newton–Schulz and Durand algorithms
is also discussed. Finally, a new high-order New-
ton–Schulz iteration with memory based convergence
accelerator is presented in Section 2.4.4.

Iterative algorithms for calculations of the inverses
and different generalized inverses are widely used in
cryptography, control systems, signal and image pro-
cessing and in many other areas.

2.1. Second order Newton–Schulz iterations

Consider the following iterations, [9–12]:

Gk = Gk−1 + Fk−1Gk−1, Fk = I − GkA (2)

where Gk is the estimate of the inverse of the matrix A
and I is the identitymatrix, k = 1, 2 . . . . The evaluation
of the error in the first step F1 yields:

F1 = I − (G0 + F0 G0) A = I − (I + F0) G0 A

= I − (I + F0) (I − F0) = I − I + F20 = F20
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F2 = F21 = F40

which gives the error model:

Fk = F2
k

0 (3)

Algorithm (2) which is also known as the New-
ton–Schulz–Hotelling matrix iteration, [10] estimates
the inverse of the matrixA via minimization of the esti-
mation error Fk provided that the spectral radius of
initial matrix

ρ(F0) = ρ(I − G0A) < 1 (4)

is less than one, where G0 is the preconditioner (ini-
tial guess of A−1). The preconditioner has especially
a simple form for SPD matrices which can be split as
A = S−D. The spectral radius of the matrix I − S−1A
is less than one, ρ(I − S−1A) = ρ(S−1D) < 1 provided
that the preconditioner is chosen as G0 = S−1 = I/α
with α = ‖A‖∞/2 + ε, where ‖ · ‖∞ is the maximum
row sum matrix norm, ε > 0, [3].

The proof of convergence is presented in [9–12],
where the algorithm (2) is written in the following form:
Gk = Gk−1 + Gk−1Fk−1, where Fk = I − AGk.

The order of the iterative algorithm can be increased
for convergence rate improvement by the introduction
of the power series in the algorithm (2).

2.2. High- order Newton–Schulz iterations

High-order algorithms (which are also known as hyper-
power iterative algorithms, which are widely used for
calculation of generalized inverses) can be presented in
the following form for n = 2, 3, . . . , [13–15]:

Gk =
n−1∑
j=0

Fjk−1Gk−1

= (I + Fk−1 + F2k−1 + · · · + Fn−1
k−1 )Gk−1 (5)

or in the form presented in [6,14]:

Gk =
n−1∑
j=0

Fjk−1Gk−1 = Gk−1 + Fk−1

n−2∑
j=0

Fjk−1Gk−1

(6)
The error Fk in (5) can be written in the following form:

Fk = I − GkA

= I − (I + Fk−1 + F2k−1 + · · · + Fn−1
k−1 )Gk−1A

= I − (I + Fk−1 + F2k−1 + · · · + Fn−1
k−1 )(I − Fk−1)

= Fnk−1

Fk = Fn
k

0 (7)

Notice that algorithm (5) is written in following form
in [13–15] (and it is widely used in this form):

Gk = Gk−1

n−1∑
j=0

Fjk−1

= Gk−1(I + Fk−1 + F2k−1 + · · · + Fn−1
k−1 ) (8)

with Fk = I − AGk. Notice that the error Fk = I − GkA
is better aligned with the Richardson iteration and
therefore is considered further in this paper.

2.3. Durand iterations

The computationally efficient matrix inversion method
described by Durand, [16,17] can be derived from the
relation associated with the initial error in the New-
ton–Schulz approach, A−1 = F0A−1 + G0 by the sub-
stitution of Gk instead of A−1 as follows:

Gk = F0Gk−1 + G0 (9)

Gk − A−1 = F0(Gk−1 − A−1) (10)

Fk = I − GkA = Fk+1
0 (11)

The error models (10), (11) are valid for the algor-
ithm (9). Higher order Durand iterations are discussed
in [4,17].

Notice that the convergence rate of Newton–Schulz
iterations is significantly higher than the convergence
rate of Durand iterations. However, Durand itera-
tion (9) requires only one matrix product in each step.

Notice also that the convergence performance can be
enhanced by the introduction of the initial power series
as preconditioning G0 (which is calculated only once)
in Newton–Schulz and Durand iterations [4,18]. The
order of initial power series can be chosen sufficiently
high, which essentially improves the convergence rate.
Convergence rate can also be improved via combina-
tion of two Newton–Schulz iterations, which also cover
Durand iterations as special case, see next Section 2.4.

2.4. Convergence rate improvement of high order
Newton-Schulz iterations

2.4.1. Iterativemethodwith improved convergence
rate
The improved iterative method can be written in the
following form, [19]:

Zk =
n−1∑
j=0

(I − Zk−1A)jZk−1 (12)

Gk = Gk−1 + (I − Gk−1A)Zk (13)

where both Zk and Gk are the estimates of the matrix
inverse and n = 2, 3, . . . is the order. Multiplication
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of (13) by A together with evaluation of the power
series (12) yields:

I − GkA︸ ︷︷ ︸
Fk

= I − Gk−1A︸ ︷︷ ︸
Fk−1

− (I − Gk−1A)︸ ︷︷ ︸
Fk−1

ZkA︸︷︷︸
I−Lnk−1

and algorithm (12) and (13) has the following error
model, [8]:

Lk = Lnk−1, Lk = I − ZkA (14)

Fk = Fk−1Lnk−1, Fk = I − GkA (15)

Introduction of the power series for Fk−1 improves
further the convergence rate.

2.4.2. Combination of two high order Newton–
Schulz iterations
Two Newton–Schulz iterations can be combined as
follows, [8]:

�k = I − Lk−1A (16)

Lk =
⎧⎨
⎩

n−1∑
j=0

�
j
k

⎫⎬
⎭ Lk−1 (17)

�n
k = I − LkA (18)

Gk = Lk︸︷︷︸
Newton–Schulz
Iteration

+ �n
k︸︷︷︸

High−Order
Convergence
Accelerator

⎧⎨
⎩

n−1∑
j=0

Fjk−1

⎫⎬
⎭ Gk−1

︸ ︷︷ ︸
Newton–Schulz
Iteration

(19)

Fk = I − GkA = �n
kF

n
k−1 (20)

Fk = Fk nk+1+nk
0 , for n > 1 (21)

where L0 = ∑n−1
j=0 �

j
0 S

−1,�0 = F0 = I − S−1A, where
G0 = S−1 satisfies (4). Notice that Durand iteration (9)
can be derived from (16)–(19) with n = 1. The error
model (24) can be evaluated as follows:

Fk = I − GkA = I − LkA︸ ︷︷ ︸
�n
k

−�n
k

n−1∑
j=0

Fjk−1 Gk−1A︸ ︷︷ ︸
I−Fk−1

= �n
kF

n
k−1 (22)

The error model (21) is obtained via explicit evaluation
of (22). The algorithm (16)–(21) has a faster conver-
gence due to the high order error Fnk−1 in the error
model (20) compared to algorithm (12) and (13) which
has the error model (15) with the first order error Fk−1.

The algorithm (16)–(19) has two independent com-
putational parts, where the first part is associated
with the calculations of �k, Lk and �n

k , where �k =
�n
k−1, and the term

∑n−1
j=0 Fjk−1Gk−1 is calculated in

the second part. This algorithm is suitable for parallel
implementation.

2.4.3. Nested Newton–Schulz iterations
The following new algorithm with nested New-
ton–Schulz loops and improved convergence rate
extends the framework described above as follows:

�k = I − Lk−1A (23)

r loops

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lk =
⎧⎨
⎩

n−1∑
j=0

�
j
k

⎫⎬
⎭ Lk−1, �n

k = I − LkA

Pk =
⎧⎨
⎩

n−1∑
j=0

�
nj
k

⎫⎬
⎭ Lk, �n2

k = I − PkA

· · ·

Gk = Tc︸︷︷︸
CompositeNewton–
Schulz Iteration

+ �c︸︷︷︸
High−Order
Convergence
Accelerator

⎧⎨
⎩

n−1∑
j=0

Fjk−1

⎫⎬
⎭ Gk−1

︸ ︷︷ ︸
Newton–Schulz
Iteration

(24)

Tc = Lk + �n
kPk + · · · ,

�c = I − Tc A = �
(nr+1−n)

(n−1)
k (25)

Fk = I − GkA = �c Fnk−1 (26)

Fk = F
knk+1 (nr−1)

(n−1) + nk

0 for n > 1 (27)

where L0 = ∑n−1
j=0 �

j
0S

−1, �0 = F0 = I − S−1A, G0 =
S−1 and r = 1, 2, 3, . . . is the number ofNewton–Schulz
loops.

2.4.4. High order Newton–Schulz iteration with
memory based convergence accelerator
The high order iterative method with memory based
convergence accelerator, where the estimate in the step
k is calculated using the estimates from the steps k−1
and k−2 and the error model accumulates multiplica-
tively inversion errors calculated in the previous steps
can be written in the following form:

Fnk−1 = I −
n−1∑
j=0

Fjk−1Gk−1A, n = 1, 2, . . . (28)

Gk = Gk−1 + Pk−1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(I + Fnk−1)

n−1∑
j=0

Fjk−1Gk−1

︸ ︷︷ ︸
2n−1∑
j=0

Fjk−1Gk−1

−
n−1∑
j=0

Fjk−2Gk−2

⎫⎬
⎭ (29)
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Pk = Pk−1Fnk−1,

P1 = Fn0 = I −
n−1∑
j=0

Fj0G0A (30)

Fk = I − GkA = PkFnk−1 = Fn0F
n
1 · · · Fnk−2︸ ︷︷ ︸

Memory Based
Convergence
Accelerator

F2nk−1

(31)

where G1 = (I + Fn0 )
∑n−1

j=0 Fj0G0 and G0 satisfies (4).
The error model (31) is obtained by multiplication
of (29) by A which results in the error model Fk =
Fk−1 + Pk−1{F2nk−1 − Fnk−2}with subsequent evaluation
of Pk−1 using (30). The algorithm (28)– (31) is new
high-order method with a memory based convergence
accelerator, which has especially simple form for n = 1,
and a similar algorithm with memory can be found in
[27].

Interestingly enough that the algorithm (28)–(31)
represents fast power series expansion. The evaluation
of one step of the algorithm (29) for k = 2 by taking
into account that G1 = ∑2n−1

j=0 Fj0G0 and F1 = F2n0 is
presented as follows:

G2 =
2n−1∑
j=0

Fj0G0 + Fn0

⎧⎨
⎩

4n2−1∑
j=0

Fj0G0 −
n−1∑
j=0

Fj0G0

⎫⎬
⎭

=
2n−1∑
j=0

Fj0G0 +
4n2+n−1∑
j=2n

Fj0G0 =
4n2+n−1∑

j=0
Fj0G0

F2 = I − G2 A = Fn0 F
2n
1 = F4n

2+n
0 (32)

and results in the error model (32) which verifies the
model (31). The expansion can be continued for the
next steps for complete verification of the error model.

The evaluation of the power series shows the idea
of the algorithm. The power series

∑n−1
j=0 Fjk−2Gk−2 is

used for truncation of the series (I + Fnk−1)
∑n−1

j=0 Fjk−1
Gk−1 so that the resulting series multiplied by Pk−1
extends the power series coming from the previous step
Gk−1.

3. Richardson iteration: recursive accelerators
and error models

Consider the following general form, [5] of theRichard-
son iteration (33):

θk = θk−1 −

Vk︷ ︸︸ ︷⎧⎨
⎩

ωk−1∑
j=0

Fj0

⎫⎬
⎭G0{Aθk−1 − b},

F0 = I − G0A (33)

θ̃k = Fωk
0 θ̃k−1, θ̃k = θk − θ∗ (34)

θ̃k = F
∑k

j=1 ωj
0 θ̃0, θ̃0 = θ0 − θ∗ (35)

and error models (34), (35), where θk is the estimate of
unknown parameters θ∗ defined in (1) and ωk is asso-
ciated with the expansion rate of the power series, and
Vk is the convergence accelerator.

Specifying the parameters ωk and
∑k

j=1 ωj the fam-
ily of estimation algorithms with error models (34)
and (35) which allow individual and comparative per-
formance assessment is obtained, see Table 1. The
table represents the systematic view (implementation
ready tool-kit) for convergence rate improvement of the
Richardson iteration with Newton–Schulz type recur-
sive computationally efficient accelerators.

The first item in the table is the combination of
Richardson and Newton–Schulz iterations described in
[6,7], whereas the second item is recursive realization
of the combination described in [6]. The third and the
fourth items are described in [4,8]. The table can be
further extended by integration of the matrix inversion
algorithms presented in Section 2 in the Richardson
iteration.

Moreover, a stepwise evaluation of the algorithm
with the highest convergence rate (the third item in the
table), which shows the idea of fast power series expan-
sion for the convergence accelerator and validation of
the error model (34) is presented below.

3.1. Stepwise evaluation of the convergence
accelerator Vk, (3) in Table 1

The evaluation of the convergence acceleratorVk, starts
with the evaluation of the power series L1 andG1 for the
first step k = 1:

L1 =
⎧⎨
⎩

n−1∑
j=0

Fnj0

⎫⎬
⎭

⎧⎨
⎩

n−1∑
j=0

Fj0

⎫⎬
⎭ S−1 =

⎧⎨
⎩

n2−1∑
j=0

Fj0

⎫⎬
⎭ S−1

(36)

G1 =
⎧⎨
⎩

n−1∑
j=0

Fnj0

⎫⎬
⎭

⎡
⎣

⎧⎨
⎩

2n−1∑
j=0

Fj0

⎫⎬
⎭ S−1 −

n−1∑
j=0

Fj0S
−1

⎤
⎦

+
n−1∑
j=0

Fj0S
−1 =

⎧⎨
⎩

n2+n−1∑
j=0

Fj0

⎫⎬
⎭ S−1 (37)

and the convergence accelerator Vk is evaluated as
follows:

V1 = L1 + �n
1

⎧⎨
⎩

n−1∑
j=0

Fj1

⎫⎬
⎭G1 =

⎧⎨
⎩

n2−1∑
j=0

Fj0

⎫⎬
⎭ S−1

︸ ︷︷ ︸
L1

(38)
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Table 1. Recursive convergence accelerators Vk for Richardson
iteration and error models.

N Recursive parameter estimation
θk = θk−1 − Vk {Aθk−1 − b}, ρ(I − S−1A) < 1

1 ωk = nk ,
k∑

j=1

ωj = nk+1 − n

n − 1
, n = 2, 3, . . .

V0 = S−1, Vk =
n−1∑
j=0

Fjk−1Vk−1, Fk = I − VkA

2 ωk = nk+1,
k∑

j=1

ωj = n(nk+1 − n)

n − 1
, n = 2, 3, . . .

F0 = I − S−1A, V0 =
n−1∑
j=0

Fj0S
−1

Vk =
n−1∑
j=0

(I − Vk−1A)
jVk−1

3 ωk = k nk+2 + 2 nk+1, n = 2, 3, . . .,

k∑
j=1

ωj = n2
k nk+2 − (k − 1) nk+1 − 2 nk − n + 2

(n − 1)2

L0 =
n−1∑
j=0

�
j
0 S

−1, �0 = F0 = I − S−1A, G0 = S−1

V0 = (2I − L0A)L0 =
⎧⎨
⎩

2n−1∑
j=0

Fj0

⎫⎬
⎭ S−1

�k = �n
k−1, Lk =

⎧⎨
⎩

n−1∑
j=0

�
j
k

⎫⎬
⎭ Lk−1, �

n
k = I − LkA

Gk =
⎧⎨
⎩

n−1∑
j=0

�
j
k

⎫⎬
⎭

⎡
⎣Vk−1 −

n−1∑
j=0

Fjk−1Gk−1

⎤
⎦ +

n−1∑
j=0

Fjk−1 Gk−1

Fk = I − GkA, Vk = Lk + �n
k

⎧⎨
⎩

n−1∑
j=0

Fjk

⎫⎬
⎭ Gk

4 ωk = k + 2,
k∑

j=1

ωj = k2 + 5k

2
, n = 1

F0 = I − S−1A, V0 = (I + F0)S
−1, Vk = F0Vk−1 + S−1

+ Fn
2

0︸︷︷︸
�n
1

⎧⎨
⎩

n−1∑
j=0

F(n2+n)j
0

⎫⎬
⎭

︸ ︷︷ ︸⎧⎨
⎩

n−1∑
j=0

Fj1

⎫⎬
⎭

⎧⎨
⎩

n2+n−1∑
j=0

Fj0

⎫⎬
⎭ S−1

︸ ︷︷ ︸
G1

=
⎧⎨
⎩

n3+2n2−1∑
j=0

Fj0

⎫⎬
⎭ S−1 =

⎧⎨
⎩

ωk−1∑
j=0

Fj0

⎫⎬
⎭G0 (39)

ωk = knk+2 + 2nk+1 = n3 + 2n2, for k = 1
(40)

The expansionprinciple showed inEquations (38)–(40)
is valid in all the subsequent steps k = 2, 3, . . ..

Another way of parameter estimation is based on
non-recursive form of the Richardson algorithm and
factorization of the power series, described in the next
section.

4. Nonrecursive Richardson estimators

Algorithm (33)–(35) can be presented in the following
non-recursive form:

θk = θ0 −

⎧⎪⎨
⎪⎩

∑k
i=1 ωi−1∑
j=0

Fj0

⎫⎪⎬
⎪⎭G0 {Aθ0 − b} (41)

where the parameter vector θk is a function of the initial

state θ0 and power series {∑
∑k

i=1 ωi−1
j=0 Fj0}G0 only and

all the quantities in (41) are calculated once only.
Algorithm (41) can be implemented using sequen-

tial matrix vector multiplications only, [5] with power

series factorization of the polynomial
∑∑k

i=1 ωi−1
j=0 Fj0

with respect to (G0A) described for example in [8].
Accuracy critical applications require a relatively

large number of iterations for the ill-conditioned case
and in finite digit calculations. Accuracy requirements
and requirements imposed on the convergence rate

result in a high order of the polynomial
∑∑k

i=1 ωi−1
j=0 Fj0,

which involves a large number of matrix vector multi-
plications. Taking into account the size of the matrix A
and the number of iterations to reach a certain accuracy
a suitable method for factorization of the power series

{∑
∑k

i=1 ωi−1
j=0 Fj0}G0 can be found in order to reduce the

large number of matrix vector multiplications.
The procedure of the application of factorization

based estimators can be described as follows:

(1) The final step k∗ is determined using the error
model (35), pre-specified parameter estimation
accuracy and the functions

∑k
j=1 ωj presented in

Table 1.
(2) The power series {∑

∑k∗
i=1 ωi−1

j=0 Fj0}G0 which cor-
responds to the final step k∗ (determined in the
previous step) is factorized using the factorization
tool-kit, [8] taking into account the size of matrix
A and providing the best combination of matrix by
matrix and matrix vector multiplications.

(3) The final parameter estimate θk∗ which guarantees
pre-specified accuracy is calculated with (41) and
the power series factorized in the previous step.

The procedure provides nonrecursive estimation of
the parameter vector, which is more computationally
efficient than recursive estimators for relatively small
number of iterations.

5. Comparison of recursive and nonrecursive
estimators

The recursive estimator presented as item 2 in Table 1
for the second order, n = 2 is chosen for comparison.
The implementation of the algorithm requires 2 mmm
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(matrix by matrix multiplications) in each step and
matrix vector multiplications (mvm).

The nonrecursive counterpart has the form (41)

with the following factorization {∑
∑k

i=1 ωi−1
j=0 Fj0}G0 =

{∑2k+1−3
j=0 F2j0 }{I + F0}G0, [8]which requires twomatrix

products only and matrix vector multiplications.
The estimation of the parameter vector θ∗ for the sys-

tem (1) with ill-conditioned SPD information matrix
A associated with the system with harmonic regressor
and different number of frequencies is chosen for sim-
ulations. Several steps are considered for both recur-
sive and nonrecursive algorithms providing exactly the
same vector θk in both cases. The ratio of two com-
putational times for the nonrecursive algorithm (in
numerator) and the recursive algorithm (in denomina-
tor) multiplied by one hundred per cent is plotted as a
function of the step number and the size of the matrix
A (the number of frequencies for the system with har-
monic regressor multiplied by two). Simulation results
are presented in Figure 1. Nonrecursive algorithm is
faster than the recursive one (time ratio is less than
one hundred percent) for relatively small number of
iterations.

Accuracy critical applications require a relatively
large number of iterations for the ill-conditioned case.
For the same convergence rate of both algorithms the
large number of steps results in high-order polyno-

mial
∑∑k

i=1 ωi−1
j=0 Fj0 in the nonrecursive algorithm. For

example, for k = 20 and n = 2 the order is 4194300.
The implementation of Richardson iteration for a rela-
tively large number of steps requires very large num-
ber of matrix vector multiplications and the recur-
sive algorithm is preferable in this case for small and
medium size matrices, see Figure 1.

The advantage of the nonrecursive algorithm rela-
tive to the recursive algorithm is pronounced for the
large-scale systems. However, nonrecursive estimators
may have more significant error accumulation in finite
digit calculations. In other words, the algorithms have
distinct regions of applicability and can be applied for
different cases. Further comparison is performed in the
Section 6 for power system application.

6. Grid power quality monitoring

6.1. Estimation of the frequency content of the
power system signals

Suppose that the measured signal of the power system
(voltage or current) yk can be presented in the following
form:

yk = ϕT
k ϑ + ξk (42)

where ϑ is the vector of unknown parameters and ϕk is
the harmonic regressor presented in the following form:

ϕT
k = [cos(q0k) sin(q0k) cos(2q0k)

sin(2q0k) · · · cos(mq0k) sin(mq0k)] (43)

where q0 is the fundamental frequency of network (for
example q0 = 50 Hertz or q0 = 60 Hertz), m is the
number of harmonics, and ξk is a zero mean white
Gaussian noise, k = 1, 2, . . . is the step number.

The model of the signal (42) with adjustable
parameters θ∗k is presented in the following form:

ŷk = ϕT
k θ∗k (44)

The signal yk is approximated by the model ŷk in the
least squares sense in each step k of moving window of
a size s.

Figure 1. The steps k = 2, . . . , 10 are considered for recursive and nonrecursive algorithms described in Section 5 providing exactly
the samevector θk in both cases. The ratio of two computational times for thenonrecursive algorithm (innumerator) and the recursive
algorithm (in denominator) multiplied by 100% is plotted as a function of step number and the size of the matrix A (the number of
frequencies for the system with harmonic regressor multiplied by two).
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The estimation algorithm is based on minimization
of the following error Ek;

Ek =
p=k∑

p=k−(s−1)

(ŷp − yp)2 (45)

for a fixed step k, where k ≥ s.
The least squares solution for the estimation of the

parameter vector θ∗k can be written as follows:

Akθ∗k = bk (46)

Ak =
p=k∑

p=k−(s−1)

ϕpϕ
T
p (47)

bk =
p=k∑

p=k−(s−1)

ϕpyp (48)

where the matrix Ak is symmetric and positive-definite
information matrix, and the parameter vector θ∗k,
which satisfy (46) should be calculated in each step.

In power quality monitoring applications, the num-
ber of harmonics in voltage and current signals (higher
harmonics are more pronounced in the current sig-
nals) is not large in three-phase systems and the
size of the information matrix Ak is relatively small.
Notice that the information matrix may change the
size when new harmonics appear in the signals. Notice
also that Equation (46) is exactly Equation (1) and
the methods described above can be applied in this
case.

6.2. Fault detection on real data

Power quality monitoring and detection of sag and
swell events are time critical applications since the faults
should be detected as soon as possible and appropri-
ate action should be taken for power system protec-
tion. Monitoring is performed via the estimation of the
frequency content of the voltage and current signals.

Real data obtained from the DOE/EPRI National
Database of Power System Events, [26] are used for
power quality monitoring. The event (Event ID 2827)
which resulted in voltage and current sag and swell
was considered. The event is associated with the fault
on the lead cable caused by circuit breaker to trip on
substation. Measured voltages and the currents which
correspond to sag and swell in phases ‘a’, ‘b’ and ‘c’ are
plotted with green, red and blue lines respectively in
Figures 2(a,b).

It is assumed that the voltage and current signals can
be described by the model (42) with harmonic regres-
sor (43) and fundamental frequency of 60 Hz with four
higher harmonics and unknown parameter vector ϑ .

The model of the signals is given by (44) with the
vector of the parameters θ∗k which estimates unknown
vector ϑ . The estimation problem is reduced to the

restricted linear system of Equation (46) which should
be solved w.r.t. θ∗k in each step. The 10 × 10 matrix Ak
is the SPDmatrix in each step (which is verified by sim-
ulations). The preconditioner described in Section 2.1
can be easily calculated for this matrix in each step.
Measured signals are well described by the model (42)
with the small measurement noise ξk, which allows
to choose short enough window (s = 40) for rapid
detection. The choice of the window size represents
the trade-off between the quality of the detection sig-
nal and detection time. Larger window sizes (s ≥ 54)
[22] imply that matrix A is strictly diagonally domi-
nant for which better preconditioning, which reduces
convergence time, is available, [6].

Amplitudes of the first harmonic of the measured
signals recovered by the nonrecursive parameter esti-
mation algorithm described in Section 5 are used for
detection, see Figures 2(c,d). The figure shows that the
sag and swell events are more pronounced on the cur-
rent signal and detectable on both voltage and current
signal.

Three algorithms (1) recursive estimator (2) nonre-
cursive estimator (both described in Section 5), and (3)
the LU decomposition method are applied for param-
eter calculation of θ∗k in (46). The mean values of the
computational times required for the estimation of the
parameter vector are calculated for three algorithms.
The computational time for the first two algorithms
depends on the number of steps k∗ and the minimal
number of steps (four steps) which provides sufficient
quality for the detection of the sag and swell events
was chosen. Notice that the standard LU decomposi-
tion method (and parameter calculation method based
on LU decomposition) does not have any parame-
ters to optimize and provides worse parameter estima-
tion accuracy than four steps of the first two meth-
ods. Simulation results show that the nonrecursive
algorithm provides the best result and saves in average
59% of the computational time compared to the recur-
sive algorithm and 43% compared to the standard LU
decomposition method.

6.3. Discussion

The most significant computational burden associated
with the implementation of the detection algorithm
is associated with calculation of the parameters θ∗k
in Equation (46) where the matrix A is a well-
conditioned matrix for small enough window sizes.
Therefore, the parameter vector θ∗k can be rapidly cal-
culated using Richardson algorithms described above
with a small number of steps. The nonrecursive
algorithm provides the best computational perfor-
mance. The result is in agreement with the results pre-
sented in Section 5, which show the advantages of the
nonrecursive algorithm for a small number of steps and
small size matrices, see Figure 1.
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Figure 2. The voltages and the currents which correspond to the sag and swell events in phases ‘a’, ‘b’ and ‘c’ are plottedwith green,
red and blue lines respectively in (a,b). The events are associated with the fault on the lead cable caused by circuit breaker to trip on
substation. The data are obtained from the DOE/EPRI National Database of Power System Events, [26], event ID is 2827. Amplitudes
of the first harmonic (with the colours corresponding to the signals in Figures 2(a,b)) which show delectability of the sag and swell
events are plotted in Figures 2(c,d).

Notice that recursive Richardson iteration (in com-
parisonwith nonrecursive counterpart) is preferable for
accuracy critical signal processing applications in noisy
environment and in finite digit calculations. For exam-
ple, the recursive Richardson iteration is preferable for
the frequency estimation applications in microgrids
(which is both accuracy and time critical application)
where the frequency should be estimatedwith very high
accuracy [21,28].

7. Conclusions and future challenges

The family of Richardson algorithms was extended in
this paper with (a) new unified framework for recursive
convergence accelerators and error models and (b) new
nonrecursive algorithms. The paper showed that the
Richardson approach represents general optimizable
tool which is applicable to many practical problems.

Recursive and nonrecursive Richardson algorithms
together with the standard LU decomposition method
were considered in practical problem of the detection
of the sag and swell signatures in voltage and cur-
rent signals in three-phase power systems. Real data
obtained from the DOE/EPRI National Database of
Power System Events were used for a comparison of the
algorithms. New nonrecursive Richardson algorithms
which save close to half of the computational time com-
pared to the LU decomposition method were recom-
mended for power quality monitoring applications.

Additional significant distortions of voltage and cur-
rent signals are expected in the future electricity net-
works due to higher penetration level of renewable
energy sources, power electronics, non-linear control-
lable loads and many others. This will result in chal-
lenging detection/estimation problems associated with
numerical and computational methods for large-scale
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systems, where algorithms developed in this paper can
be applied.
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