
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Energy-efficient distributed password hash
computation on heterogeneous embedded system

Branimir Pervan, Josip Knezović & Emanuel Guberović

To cite this article: Branimir Pervan, Josip Knezović & Emanuel Guberović (2022) Energy-efficient
distributed password hash computation on heterogeneous embedded system, Automatika, 63:3,
399-417, DOI: 10.1080/00051144.2022.2042115

To link to this article: https://doi.org/10.1080/00051144.2022.2042115

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 28 Feb 2022.

Submit your article to this journal

Article views: 1055

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2022.2042115
https://doi.org/10.1080/00051144.2022.2042115
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2022.2042115
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2022.2042115
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2022.2042115&domain=pdf&date_stamp=2022-02-28
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2022.2042115&domain=pdf&date_stamp=2022-02-28

AUTOMATIKA
2022, VOL. 63, NO. 3, 399–417
https://doi.org/10.1080/00051144.2022.2042115

REGULAR PAPER

Energy-efficient distributed password hash computation on heterogeneous
embedded system

Branimir Pervan a, Josip Knezović a and Emanuel Guberović a,b

aFaculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia; bGreen Light Technologies Ltd., Zagreb, Croatia

ABSTRACT
This paper presents the improved version of the cool Cracker cluster (cCc), a heterogeneous dis-
tributed system for parallel and energy-efficient bcrypt password hash computation. The cluster
consists of low-power heterogeneous embedded systems with programmable logic containing
specializedhash computation accelerators, namely Xilinx Zynq-series SoCboards andZTEX1.15y
board, with different performances measured in bcrypt hash computations per second [H/s].
Zynq based nodes use the improved version of our custom bcrypt accelerator. The cluster was
formed around the open-source password cracking software package John the Ripper (JtR). To
mitigate the different performances among the cluster nodes, we developed a password can-
didate distribution scheme based on the passwords’ probability distribution. We performed an
extensive evaluation of the cluster and the proposed distribution scheme. We also compared
our cluster with various GPU implementations in terms of performance, energy-efficiency, and
price-efficiency. We show that our solution outperforms other platforms such as high-end GPUs,
by a factor of at least 3 in terms of energy-efficiency. In terms of the total operational costs, our
cluster pays off after 4500 cracked passwords for a bcrypt hash with cost parameter 12, which
makes it more appealing for real-world password-based system attacks.

ARTICLE HISTORY
Received 17 November 2021
Accepted 21 January 2022

KEYWORDS
Bcrypt; distributed
computing; energy
efficiency; heterogeneous
hardware

1. Introduction

As more and more aspects of our lives become closely
intertwined with the use of various Internet-based
applications, many of which have only emerged in
recent years, password-based authentication is still the
most popular method of gaining access to them [1].
Although various alternatives, such as graphic based
authentications, have been proposed [2], the simplicity
of text-based passwords make their replacement a slow
and even unlikely process.

The widespread use of password-based systems
emphasized one of the major drawbacks they bring –
the security vulnerability that ordinary user-generated
passwords contain, as they are easily affected by com-
mon password guessing attacks. Although most people
are aware of the importance of choosing strong pass-
words to protect their personal information, they often
lack the necessary motivation to follow the suggested
guidelines that could help them create stronger pass-
words [3]. The human aspect of this problem increases
with the number of passwords people have tomanage in
their daily lives, as they use more and more password-
based authorized applications. By using weaker pass-
words, they are often relieved of the burden of having
to remember a larger number of passwords [4].

It is interesting to define password strength in terms
of a very common attackmethod, the brute force attack,

which attempts to find passwords for every possible
combination in a given character set. Stronger pass-
words take a longer time to be cracked with brute
force attacks, as more combinations need to be checked
before the correct one is found. In general, password
strength can be linked to the information content or
entropy of the password, and both the length and the
size of the character set size affect its value.

Entropy H is given as:

H = L ∗ log2 N,

where L is password length and N is the character set
size. It is noticeable that password length increase has
a stronger effect on entropy then the increase in char-
acter set size. Some of the popular password strength
metric services, such as “PasswordMeter” [5] and “How
Secure is my Password” [6], use a bit more complex
custom-crafted rule sets for their password evaluations.

In common server-client architectures, user data
management, including authorization data, is stored at
centralized locations. This creates an opportunity for
potential attackers to steal this data for malicious usage.
If text-based passwords were stored in their original
form, with every successful attack they would be com-
pletely compromised. Encrypting password data with a
special key helps to mitigate this problem to an extent,

CONTACT Branimir Pervan branimir.pervan@fer.hr Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb,
Croatia
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2022.2042115&domain=pdf&date_stamp=2022-02-25
http://orcid.org/0000-0003-3803-0910
http://orcid.org/0000-0001-6975-4511
http://orcid.org/0000-0001-9285-6858
mailto:branimir.pervan@fer.hr
http://creativecommons.org/licenses/by/4.0/

400 B. PERVAN ET AL.

however, if a hacker gains access to the key itself, it is
trivial to decrypt the encrypted data itself.

Hashing functions create irreversible password has-
hes, forcing potential attackers to hash many combi-
nations and try to match them to the values that are
stored. Attackers often use precomputed tables with
cached outputs of hash functions called rainbow tables
[7]. Adding random prefixes or postfixes, called salts,
to passwords before applying hash functions invali-
dates common rainbow tables and makes brute-force
attacks less effective, making hashed passwords further
secured.

The three most common password hashing algo-
rithms are PBKDF2 [8], bcrypt [9] and scrypt [10], with
PBKDF2 and bcrypt (with reasonable settings of the
cost parameter) being recommended by both OWASP
[11] and IETF [12]. The process of updating or chang-
ing hash algorithms that are used is not completely
trivial. One option, albeit very user-unfriendly, is to
simply expire old user passwords and require users to
enter new password values. Another option is to use
the old hashed value as an input to the new hashing
algorithm until the next time user successfully signs in
when the new hash value is exchanged. Our research
focuses on bcrypt algorithm, mostly because of its pop-
ularity in password hashing for web-based systems, and
the legacy code base that will not be updated with the
aforementioned algorithm update process and will use
bcrypt for many years to come.

With the recent increase in computational power
that attackers have at their disposal to conduct brute
force attacks, the overall password strength needs to
increase as well. In addition, bcrypt parameterizes the
hash computation complexity with the cost parame-
ter, which enables adjusting the space and compute
complexity of the algorithm to match the increased
performance of new hardware.

This paper provides the following contributions:

• Bcrypt accelerator in the embedded system with
general-purpose CPU and FPGA logic, and the clus-
ter of devices. We improved our previous acceler-
ator hardware design and did appropriate software
changes. The resulting optimization of the critical
path in our design enabled us to improve the accel-
erator performance 1.5 times.

• Task-distribution algorithm for password candi-
dates. We describe our task-distribution algorithm
used to load balance among the nodes with different
hash computation power in the cluster.

• We provide an in-detail analysis and experimental
results on simulated real-world password cracking
scenarios.

The rest of the paper is organized as follows: in
Section 2, we give a brief description of the bcrypt hash-
ing algorithm and the overview of the related work
in the field of general password cracking and cracking

on special-purpose hardware such as FPGA SoCs and
GPUs. In Section 3, we describe single node implemen-
tation with, together with the architecture of our bcrypt
accelerator implemented in programmable logic. We
also describe the improvement of our accelerator on
hardware and software levels, and briefly describe the
evaluation of the single node implementation in terms
of other notable examples in the field of password
cracking on special-purpose hardware. In Section 4, we
describe the architecture of our cluster as a distributed
computing system and present our work distribution
algorithm which minds for various performances in
terms of bcrypt hash computations per second between
different nodes in the cluster. In Section 5.2, we present
testingmethodology, experimental results in real-world
scenarios, and the analysis of the cost-effectiveness of
the cluster, minding the relatively high initial price.
Finally, in Section 6, we conclude the paper with pro-
posals for future research.

2. Background

In this section, we provide a brief overview of the bcrypt
hashing algorithm and an overview of the related work
in the field of hash function computation on specialized
hardware.

2.1. bcrypt

Bcrypt [9] is a password hashing function designed by
Provos and Maziéres, based on Blowfish block cipher
[13], structured as a 16-round Feistel network. The key
feature of the bcrypt hashing scheme is its adaptive-
ness, embodied through the tunable cost parameter,
intended to increase as the computational strength pro-
gresses with the development of the hardware. Each
increment of the cost parameter results in an expo-
nential increase of the computational demand required
to compute the hash. The cost parameter, coupled
with pseudorandom access to memory, constitutes the
compute- and memory-intensive part of the algorithm,
making bcrypt resistant to brute-force attacks. Bcrypt
also incorporates randomly generated salts by default
to protect against rainbow (or reverse lookup) table
attacks.

Algorithm 1 bcrypt [9].
1: function bcrypt(cost, salt, key)
2: state← EksBlowfishSetup(cost, salt, key)
3: ctext← “OrpheanBeholderScryDoubt"
4: i = 0
5: while i < 64 do
6: ctext← EncryptECB(state, ctext)
7: i = i+ 1
8: end while
9: return Concatenate(cost, salt, ctext)
10: end function

AUTOMATIKA 401

Bcrypt hashing scheme consists of two phases as
shown in Algorithm 1. The first phase initializes the
Blowfish state with the key setup Algorithm 2 (line 2).
The obtained state is then used to encrypt the 192-
bit string “OrpheanBeholderScryDoubt” 64 times with
Blowfish encryption in the electronic codebook (ECB)
mode (lines 5 and 6). Finally, a concatenated string con-
sisting of cost, salt and hash value is returned presenting
the final password hash (line 9) as illustrated below:

2b[cost][128− bit salt][192− bit hash value].

The first part of the hash is version, currently, 2b as
of February 2014, followed by the cost parameter used
to generate the resulting hash. The rest of the hash
is 16-byte (128 bits) salt and 24-byte (192 bits) hash
value, both Radix-64 encoded to 22 and 31 characters,
respectively.

Figure 1 shows the block diagram of the Blow-
fish encryption algorithm presented as the symmetric
Feistel network with large S-boxes with randomized
accesses dependant on the password to prevent fast
access through caches in general-purpose CPU imple-
mentations. The algorithm consists of 16 rounds, each
splitting input into left (L) and right (R) 32-bit halves
and using P-box (denoted as K in the figure to avoid
confusion since P is often used for denoting plaintext)
and four S-boxes to perform the XORs, swaps and so-
called F-function (which randomizes the looks-up into
the S-boxes).

In Algorithm 1 (bcrypt), Blowfish encryption is used
by the EksBlowfishSetup (line 2) and by EncryptECB
(line 6). EksBlowfishSetup, a modified version of orig-
inal Blowfish encryption algorithm called Expensive
Key Schedule Blowfish, is in the core of bcrypt. It is
shown in Algorithm 2 and uses the Blowfish encryp-
tion at lines 2, 3, 6 and 7. Inputs to the EksBlowfish-
Setup are: cost, salt and key. The cost parameterizes
the expensiveness of the key setup process (line 5),
salt is a random 128-bit value, and the third parame-
ter (key) is the user-chosen password truncated to first
72 bytes.

InitState (line 2 of Algorithm 2) uses Blowfish
encryption to populate P- and S-boxes with fractional
parts of number π . Line 3 takes salt and key to permu-
tate the values in P- and S-boxes, again using Blowfish.
Lines 6 and 7 use Blowfish encryption in ExpandKey
function to derive the state determined by the values
stored in S-boxes andP-box. In actual implementations,
including OpenBSD’s original implementation, lines 6
and 7 are swapped.

It is important to note that many implementations
of bcrypt truncate the input user password to the first
72 bytes and that the maximum value for the cost
parameter is 31.

Algorithm 2 Expensive Blowfish key setup [9].
1: function EksBlowfishSetup(cost, salt key)
2: state← InitState()
3: state← ExpandKey(state, salt, key)
4: i = 0
5: while i < 2cost do
6: state← ExpandKey(state, 0, salt)
7: state← ExpandKey(state, 0, key)
8: i = i+ 1
9: end while
10: return state
11: end function

2.1.1. Cost extrapolation
As stated before, bcrypt hashing algorithm is adaptable
by adjusting the expensiveness of the key setup pro-
cess. The number of iterations of the loop (line 5) in the
EksBlowfishSetup algorithm (2) exponentially depends
on the cost, which enables us to approximate the per-
formance of an algorithm implementation on a certain
platform, by using the following equation:

Xc2 = Xc1 ∗ 2(c2−c1), (1)

where Xc1 is known (measured) performance of bcrypt
implementation with cost parameter set to c1, and c2 is
cost parameter we are approximating performance for
on the same platform. For example, if performance for
the cost 5 equals 1000 regardless of the metric, perfor-
mance for cost 7 would equal 250 since the algorithm
is approximately 4 times slower for cost 7 compared to
cost 5.

2.2. Related work

Password cracking and strength evaluation is a com-
pelling area that attracted an ample number of
researchers in the previous decades intending to con-
tribute to the problem of using weak user pass-
words in the distributed applications that use password
authentications.

In [14], authors made an extensive empirical study
on common password cracking techniques on real-
world password datasets, varying in both application
domain and user localization. Techniques used include
a variety of state-of-the-art techniques for password
guessing, including dictionary attacks, mangling using
dictionaries and probabilistic context-free grammars,
and Markov chain-based strategies. Conclusively, the
study showed that the ‘diminishing returns’ princi-
ple applies, resulting in weak passwords being more
common in the absence of an enforced password
strength policy. The authors proposed proactive pass-
word checkers for users and security auditing tools that
use an approximation of the number of guesses needed
to crack the password.

402 B. PERVAN ET AL.

Figure 1. Blowfish diagram (Gid.vn, CC BY-SA 4.0, via Wikimedia Commons).

Besides assessing password acceptability with the
approximation of its resilience to password cracking,
another approach is to use statistical methods to eval-
uate password strengths. A fine-grained measurement
of password strength was achieved [15] using adap-
tive metres based on Markov-models that estimate the

strength of a password analogous to the probabilities of
the n-grams that compose said password. Authors for-
mally prove that this construction is secure even when
the local data storage is compromised by an attacker. An
interesting, password popularity approach, described
in [16], uses a min-count data structure to achieve a

AUTOMATIKA 403

password strength acceptance based on the password
frequency in combination with a minimum acceptable
false-positive rate threshold.

Another popular attack vector in cybersecurity is
passwords leak from application storage themselves,
resulting in online services such as HaveIBeenPwneed
[17] that notify users of potential security breaches. To
mitigate the adverse effects of application storage pass-
word leaks, passwords are typically stored in hashed
values. To understand the resistance of those pass-
word hashes against attacks using non-standard com-
puting devices, in particular, FPGAs andGPUs, authors
[18] investigated two popular password hashes, bcrypt
and scrypt on custom implementation targeting these
platforms.

While many of the common passwords cracking
tools, including John the Ripper [19], have relied on
CPU usage, GPUs started gaining focus in recent years
with tools such as Hashcat [20]. However, research
such as [21], where authors implemented a high-
performance, a low-cost cluster consisting of 120
FPGAs called COPACOBANA (Cost-Optimized Par-
allel Code Breaker) machine, shows that depending
on the actual algorithm, the parallel hardware archi-
tecture can outperform conventional computers by
several orders of magnitude. In recent years secure
substantial improvements were gained using hashing
algorithms performance optimization techniques on
FPGAs [22–24].

Bcrypt implementation on a cost-effective, low-
power Xilinx Zynq-7020 FPGA consisting of 40 parallel
bcrypt cores running at 100 MHz has shown to greatly
outperform all other currently available implementa-
tions, improving password attacks on the sameplatform
by at least 42%, computing 6511 password hashes per
second for a cost parameter of 5 [25]. When consider-
ing accelerators usable in the domain of crypto analysis,
there are a couple of notable examples in the field of col-
lision search. In paper [26] authors present new hash
collision search techniques that are inherently based on
hardware reconfigurability featured by FPGA devices,
while in [27] authors present a specific accelerator for
SHA-1 collision search. One of the most recent papers
available describes a hardware hash accelerator as a key
component of blockchain applications [28].

Regarding other notable examples from the domain
of cryptographic function, but in the context of the
reconfigurable hardware, and with special attention to
peculiarities of designing such hardware, authors in
[29] propose a flexible framework for exploring, eval-
uating, and comparing SHA-2 designs. When it comes
to SHA-2 hashing, authors in [30] conducted a compar-
ative survey of different acceleration techniques regard-
ing its acceleration.

Bcrypt implementations on homogeneous and het-
erogeneous multiprocessing platforms: Parallella board
with 16- or 64-core Epiphany accelerator and ZedBoard

showed better performance per Watt compared to
CPU implementations [31]. These implementations
were integrated into John the Ripper password cracker
resulting in improved energy efficiency by a factor of
35+ compared to heavily optimized implementations
on modern CPUs.

Finally, in our previous work presented in [32], we
presented a distributed system for parallel and energy-
efficient bcrypt password hash computation consisting
of up to 32 identical heterogeneous nodes containing a
dual-coreARMCPUprocessing system and FPGApro-
grammable logic. The programmable logic was used to
implement a custom bcrypt accelerator which was fur-
ther extended into the MPI-based distributed cluster of
heterogeneous nodes. We showed the capabilities and
advantages of clustering these cheap, energy-efficient
single-board nodes equipped with programmable logic
capable of performing accelerated cryptographic oper-
ations. Furthermore, they can run a common Linux-
based operating systemwhich eases their programming
and general usage.

3. Single node implementations

In this section, we present our previous and improved
single-node implementation of the bcrypt-accelerated
embedded system consisting of ARM CPUs and pro-
grammable logic in FPGA. We first evaluate their per-
formance and compare them with similar heteroge-
neous, FPGA-based platforms, including [25]. Finally,
we compare our new best-performing implementations
with other interesting platforms such as high-endGPUs
and CPUs.

3.1. Hardware implementation

Details of our previous base implementation includ-
ing the work-partitioning and communication are pro-
vided in our previous work [31,32] with the block-
scheme shown in Figure 2. We designed and imple-
mented customized bcrypt accelerator cores in the
programmable logic and integrated them (hardware
and software) into the popular open-source password
cracking program – John the Ripper [19]. Most of
the program runs on the processing system (PS or
host) with ARM Cortex CPU cores, and for the spe-
cific case of bcrypt hash computation PS (host) per-
forms control-oriented tasks, prepares the password
candidates, and then offloads the hash computation to
the programmable logic part (PL) containing our cus-
tomized bcrypt cores. Host copies data fromDRAMvia
AXI GPIO interface to the Arbiter module in PL, which
scatters the data to bcrypt cores (Bcrypt 0-N) storing
them to BRAM (Block RAM) available in PL. BRAM
is used as fast-access storage for synchronization flags,
password candidates, salt, cost, P-, and S-boxes. The
choice of storing to BRAM before instructing the cores

404 B. PERVAN ET AL.

Figure 2. Block diagram of the bcrypt accelerated system.

Table 1. Post-implementation resource utilization per node.

Resource Utilization Available Util. (%)

LUT 34,073 53,200 64.05
LUTRAM 416 17,400 2.39
FF 7919 106,400 7.44
BRAM 140 140 100
#bcrypt cores 28
Max. clock freq. 71MHz

to start computing enabled bcrypt cores’ fast access to
data in one clock cycle. This also enables overlapping
the communication (PS) and computation phases (PL)
in hash computation. Computed hashes and read back
fromBRAM (in PL) to the host DRAM (in PS) for com-
parison with the current hash for which the password is
guessed. The work distribution together with the pass-
word candidate generation implemented in the John
the Ripper and executed on the host CPU (PS). This
enabled us to exploit advanced password generation
schemes included in JtR with intelligent password can-
didate selection and permutation, such as usingMarkov
chains [19].

Table 1 shows the resource utilization for our Zed-
Board implementation. The limiting resource is the
amount of BRAM in programmable logic which we
fully utilized. We were able to instantiate the maximum
of 56 bcrypt instances in programmable logic each
computing two bcrypt hashes resulting in 112 com-
putations performed in parallel. At lower-cost settings
such as 5, our design was limited by communication
overhead, which impacted overall performance. How-
ever, the communication overhead was compensated at
higher cost settings (above 8) because of the exponen-
tial growth in the complexity of the hash computation.

The bottleneck at small cost setting was caused by
transferring 4KB large sets of S-boxes filled with initial
values from the host (PS) to programmable logic which
could not be completely overlapped with the hash com-
putation in bcrypt accelerator cores. We subsequently
improved the design by pre-storing initial values of S-
boxes in BRAM, i.e. close to the bcrypt cores together
with other data required: P-box, synchronization flags,

password candidates, salt, and cost. We utilized whole
available BRAM to store these data and initial values
of S-boxes, thus removing the need to transfer them
once the hash computation has started. This optimiza-
tion removed the initial communication overhead and
increased the hash-computation performance of our
previous design for a small cost settings, which, albeit
not relevant to practical uses, usually are used in bench-
mark reporting. For higher costs (8 and higher) the
overhead was covered by the computation phase and
the improved design did not make any difference in
performance.

3.2. Single-node results

Figure 3 shows the performance of our previous (Old)
and new, improved (New) single-node Zynq-based
implementations.We compare themwith a similar plat-
form based on Zynq FPGA systemwith results reported
by Wiemer and Zimmermann [25]. We present two
metrics:

• Performance as the number of computed hashes per
second [H/s], and

• Energy efficiency as the number of computed hashes
per second per consumed Watt [H/s/W].

Blue-shaded bars in the Figure 3 show the mere per-
formance metric [H/s], while green-shaded bars show
the results for energy-efficiency performance metric
[H/s/W]. We compare the results for two cost settings
of the bcrypt: Cost 5 and Cost 12. Cost 5 is tradi-
tionally used in benchmarks, although not useful for
practical password protection. Cost 12 is more suitable
for practical usage and is recommended for bcrypt-
based systems [11]. Power consumption was measured
using wall socket Watt-metre under the full load of the
tested platform, i.e. maximum number of bcrypt cores
that could fit into the device. Our application, being
compute intensive and compute bound, made power
consumption constant and at its peak value throughout

AUTOMATIKA 405

Figure 3. Performance of single-node heterogeneous FPGA-based platforms (Colour online).

the whole time of benchmark, which enabled us to cal-
culate energy-efficiency easily by considering the power
as consumed energy over the execution time and the
achieved hash rate in c/s. Each benchmark with cost
as parameter was run four times with presented results
as averaged values excluding the first run. We show the
results using the logarithmic scale.

The first cluster-set presents the results of our pre-
vious implementation for the ZedBoard platform [33]
with Zynq-7020 chip denoted as Zedboard-Old. The
second set gives the results of our improved imple-
mentation for the same board: Zedboard-New. Next,
we show the results reported by Wiemer and Zim-
mermann [25] for the same board and chip, denoted
as Zedboard-WZ. Following are the results of our old
and new implementation on the Pynq board with the
same Zynq-7020 chip [34] denoted as Pynq-Old and
Pynq-New. The last cluster shows the result of our
implementations on the ZC706 board [35] featuring
Zynq-7045 chip which has the same architecture as
Zynq-7020 chip (Zedboard and Pynq) but with 4 times
more programmable logic resources and thus 4 times
more bcrypt cores compared to Zedboard and Pynq
implementations.

For cost 5 performance (dark blue bars), the best per-
formance was achieved with our new implementation
on ZC706-New (22,609.0 H/s) with 10% improvement
over the old implementation ZC706-Old (20,538.0
H/s) . For Zynq-7020 chip-based boards (Zedboards)
improvement of our new implementation, Zedboard-
New and Pynq-New exceed 50% of the old imple-
mentations Zedboard-Old and Pynq-Old: 6967.0 H/s
over 4571.0 H/s, and 7044.0 H/s over 4552.0 H/s,

respectively. Our new Zedboard-New implementation
with 6967.0 H/s outperforms Wiemer and Zimmer-
mann’s implementation Zedboard-WZwith 6511.0H/s
rate [25] for cost 5. For cost 12 performance (light blue
bars), our ZC706 implementations, both old and new,
performed equally best with the rate of 226.3 H/s. This
is 3.5 times the performance of our Zedboard imple-
mentations for cost 12 (64.8 H/s) due to 4 times more
resources in programmable logic and thus 4 timesmore
bcrypt cores (112 over 28). Also, for cost 12 our new
implementations on all platforms did not improve the
results of our old variants, as the previously described
bottleneck does not incur the performance for higher-
cost settings. Both of our Zynq-7020 chip-based imple-
mentations (Zedboard and Pynq) outperform Wiemer
and Zimmerman’s implementation for cost 12: 64.8H/s
compared to 52.0 H/s.

Green-shaded bars in Figure 3 show the [H/s/W]
metric (performance with energy efficiency). For cost
5 (dark green bars), the best results were obtained with
Pynq-New: our new implementation on thePynqboard
with Zynq-7020 chip, achieving 1903.8 H/s/W. For cost
12, i.e. light green bars, both our Pynq board implemen-
tations (Pynq-Old andPynq-New) perform equally and
again with the best results of 15.1 H/s/W. They are
even more energy-efficient than our best-performing
ZC706-New board which achieves efficiency of 13.1
H/s/W for cost 12. This is because Pynq board is less
complex, low-cost board without an excessive number
of interfaces and additional components that are not
required for our bcrypt accelerator application.

Figure 4 compares the results of Zynq-based FPGA
boardswith high-endGPUs andCPU implementations.

406 B. PERVAN ET AL.

Figure 4. Comparison of the single-node heterogeneous platforms with notable GPUs (Colour online).

We report again performance as [H/s] rate and energy
efficiency in [H/s/W].

For the energy-efficiency metric, for platforms that
we were not able to experiment with and for which we
obtained the results from other sources, we take the
specified Thermal design power (TDP) as the estimate
for the power consumption. In this case, we just con-
sider the power consumption of the computing device
(i.e. GPU) without the additional power consumption
of the whole PC that hosts the device, while for our
FPGAboard implementations, we use thewhole system
power consumed during the program execution. This
way, we compensate the usage of TDP figure in compar-
ison with our implementations, although our previous
experiments with similar platforms such as Intel’s Xeon
Phi and AMD HD 7970 GPU showed constant power
consumption close to specified TDP during the bench-
mark executions [31]. We consider this a fair trade-off
and a methodology that actually favours competing
platforms over our implementations. Furthermore, we
wanted to compare our solution to top-of-the-notch
GPU hardware, which we could not physically acquire
to measure their power consumption. These assump-
tions stay valid for the other comparisons between
various platforms in this paper.

The first set of cluster repeats the results of our
Zedboard-New implementation, followed by other rel-
evant Zynq-based implementations. We then report
the Nvidia’s Tesla V100 16GB and Nvidia’s GeForce
RTX 3090 results, both obtained and extrapolated from
reported cost 5 benchmarks [20]. The last set of bars
show the AMD Ryzen 7 1800X CPU results we bench-
marked. For all our own conducted benchmarks, we

used the same 1.8.0-jumbo-1 version of John the Rip-
per available at the Openwall’s Git repository [19]. For
Zynq-based platforms, we removed the software-based
bcrypt version with our accelerated version in pro-
grammable logic preserving all other settings and con-
figurations of the program throughout all the bench-
marked platforms. For AMD Ryzen 7, we compiled
John the Ripper using OpenMP support and run the
tests on a Linux-based operating system with 16 GB
memory. Each bar is accompanied by the numeric
result for the respective metric. We also highlight
(shade) the best numeric results for both performance
and energy-efficiency.

In terms of mere hash computing performance pre-
sented by the number of hashes per second [H/s] (blue
bars), Nvidia’s newest generation GPU GeForce RTX
3090 performed best achieving almost 96.7 kH/s and
755.0 H/s for cost 5 and 12, respectively. However,
if we consider the energy efficiency [H/s/W] (green
bars), our Pynq-New implementation achieved the best
results of approximately 1.9 kH/s/W and 15.1 H/s/W,
for costs 5 and 12, respectively. This is by order of
magnitude better than GeForce RTX 3090 efficiency:
276.2 H/s/W for cost 5, and 2.2 H/s/W for cost 12.
Also, our ZC706-New implementation with 4 times
more programmable logic than Zedboard/Pynq, and
thus 4 times more bcrypt-cores, scales in performance
while maintaining the efficiency comparable to the
best-performing Pynq-New platform.

In the rest of this paper, we show the scalability of
our approach by forming a distributed cluster of such
low-cost FPGA-based platforms which can obtain per-
formance comparable to high-end GPUs and CPUs

AUTOMATIKA 407

with the advantage of much better energy efficiency,
operational and purchasing costs than traditional GPU
or CPU-based systems. We demonstrate that our plat-
forms are better suited for real, long-term password
attacks of the bcrypt-hashed password systems. This
makes thewhole system efficient and feasible for attack-
ing contemporary systems with cost settings of 12 and
more in terms of both the performance and purchas-
ing/electricity costs.

4. Heterogeneous cluster architecture

In this section, we describe the implementation of
our cluster with multiple heterogeneous nodes con-
sisting of programmable logic for bcrypt acceleration.
Dictionary-based password cracking is an embarrass-
ingly parallel problem, since the dictionary can simply
be easily split among the nodes. The worker nodes then
work on different and disjoint parts of the dictionary.

4.1. Architecture

The base building unit of our cluster, called Cool
Cracker Cluster cCc, is a computational node. The pre-
vious version, described in [32], was homogeneous at
a cluster scale in terms of using heterogeneous nodes
with the same Zynq-7020 SoC: Zedboards and Pynq
boards. These nodes, although different in energy effi-
ciency, having the same SoC chip (Zynq-7020) pro-
vided us with the same output performance. In this
work, we mix up the nodes with various amounts of
programmable logic and various processing capabili-
ties in terms of number of hashes per second [H/s]. We
started with the cluster consisting of 8 nodes:

• 2 ZedBoards with Xilinx Zynq-7020 SoC,
• 4 Pynq boards with Xilinx Zynq-7020 SoC,
• 1 ZC706 with Xilinx Zynq-7045 SoC,
• 1 ZTEX 1.15y Quad-Spartan 6 LX150 FPGA board

originally used for crypto mining.

Each node, except for ZTEX node, is a standalone
heterogeneous processing unit with general-purpose
ARM CPU and programmable logic. The nodes run
Arch Linux based on kernel version 4.6.0-xilinx. For
intra-cluster communication for distributed password
cracking, we used the Message Passing Interface (MPI)
programming model built into the John the Ripper
and embodied by the OpenMPI implementation, ver-
sion 2.1.1. At the top of the stack, we used John the
Ripper (JtR), version 1.8.0-jumbo-1, with an improved
version of our bcrypt accelerator implemented in pro-
grammable logic, described in Section 3. The jumbo
version of JtR was used because it already had an MPI
implementation and support for the ZTEX board. The
block diagram of main components in the single pro-
cessing node of our cluster is shown in Figure 5.

Figure 5. Single node.

The ZTEX 1.15y board does not have a general-
purpose CPU but only FPGA: four Spartan-6 XC6SLX-
150 chips with substantially more logic than other
nodes, and thus capable of hosting more bcrypt com-
putation cores [36]. To introduce it into the cluster,
we used an additional Pynq hosting for running JtR
(communication, password preparation), while hash
computation is performed by ZTEX board connected
via the USB 2.0 bus. On the Pynq hosting board, we
also used John the Ripper 1.8.0-jumbo-1 which had
already the support for bcrypt cracking developed inde-
pendently of our work [37]. The same version of John
the Ripper also included a bitstream with the hardware
implementation of the accelerator for the ZTEX board.
As a cluster interconnect, we used the standard 1 Gbps
Ethernet switch to keep the networking cheap in terms
of energy consumption and infrastructure. The block
diagram of the whole cluster can be found in Figure 6.

Theoretically, there is no restriction on a device or its
type that can be added to this cluster whatsoever with
only requirement to support the specified version of
John the Ripper (with MPI implementation) and that it
can connect to a standard Ethernet network. Nodes can
also be added without our accelerator implemented in
programmable logic, such as standard desktop comput-
ers with or without GPU accelerator support (although
this would severely impact the energy efficiency, as we
will demonstrate in the rest of the paper).

While all nodes participated in the hash computa-
tion (except the Pynq hosted ZTEX board), one node
also acted as the master, while the remaining nodes
acted as workers. The master node is responsible for:

• job orchestration through MPI, i.e. starting, stop-
ping, and distributing work packages between
worker nodes; The work packages are basically the
set of password candidates from the dictionary resid-
ing on the shared file which will be used for hash
calculation. If the node exhausts its password can-
didates without computing the hash that is being
under cracking, the node can repeat the process for
the next hash in the list of hashes to be cracked, also
residing in the shared file;

• synchronization of in-job events. This is necessary
because, although distributing the password candi-
dates from the dictionary, and guessing with the

408 B. PERVAN ET AL.

Figure 6. High level block diagram of the CCC.

different passwords, all nodes attack the same set of
hashes to be cracked. To avoid unnecessary guess-
ing, when one of the nodes successfully cracks a
bcrypt hash (finds out the password that resulted in
the hash), the other nodes are notified so that they
do not need to repeated password guessing (hash
computation) for that particular hash;

• hosting the NFS (network file system) used to
exchange wordlists with hashes to be cracked and
dictionaries of password candidates. In essence, the
nodes share the dictionary (exhaustive list of pass-
word candidates), the hash list (the list of hashes
to be guessed), and passwords list (list of cracked
passwords).

4.2. Work distribution

The default implementation of MPI backed cluster-
ing provided by JtR assumes homogeneous clusters, i.e.
each node in the cluster was assumed to have the same
performance measured in hash computations per sec-
ond [H/s]. Additionally, the password dictionaries are
usually sorted with regard to password statistical prob-
ability (more probable passwords are first guessed).
These facts made the existing password distribution for
our cluster architecture with nodes with varying [H/s]
rates inefficient as the algorithm simply fed the nodes
every nth word in a word list with different initial offset,
where n denotes the total number of nodes in the clus-
ter. This simple work distribution algorithm is given in
listing 3.

Algorithm 3 Simple work distribution.
1: procedure ProcessWord(ID, n, dictionary)
2: offset = ID
3: m = Count(dictionary)
4: for i in Range(1,m) do
5: CalculateHash(dictionary[offset + i ∗ n])
6: end for
7: end procedure

In the assumed case of homogeneous nodes, the dis-
tribution algorithm ensures that each node gets the fair
share of more probable passwords and less probable
passwords and thus ensuring the load balancing – each
node will finish its work at roughly the same time.

In our case, the heterogeneity of our cluster implies
that processing capabilities may vary between differ-
ent nodes. This leads to sub-optimal performance with
the existing password distribution algorithm, as some
nodes (the more performance ones) potentially fin-
ish earlier and thus remain idle for some time while
other nodes still work on their password candidates.
We noticed this flaw by running the password cracking
job on our cluster with word file containing more than
14 million passwords sorted by their statistical signifi-
cance (more probable passwords first, followed by less
probable passwords).

To mitigate this, we introduce the password candi-
date distribution scheme dependant on the probability
of the candidate (the position in the dictionary) and
the performance of the individual nodes in the clus-
ter. Although the algorithm is relatively known, to our
knowledge, there is no implementation of it in a sim-
ilar context of the heterogeneous distributed cluster
for password hash computations which considers pass-
words’ probabilities and nodes’ performance to opti-
mize the overall cluster execution. The algorithm is ini-
tiated by the master node, which obtains performances
of each node through their self-assessment. The self-
assessment relies on the built-in test function of John
the Ripper, which measures the time taken in comput-
ing bcrypt cost 5 hashes for a small set of passwords.
Using this function, we are able to compute perfor-
mance values for other costs by extrapolating from per-
formance for cost 5. The performance measure used
in algorithms is defined as number of hash computa-
tions per second [H/s]. The enumeration of the nodes
in the cluster is done by MPI implementation used
(OpenMPI), which enumerates the nodes sequentially,
starting at 1, with a total of N nodes in the system.

AUTOMATIKA 409

For each node k = 0 . . .N, where N is the number
of nodes in the cluster, we define s(k) as the perfor-
mance of node k in [H/s]. Consequently, the cumulative
performance of all of the nodes in the cluster sall is:

sall =
N∑

i=1
s(i). (2)

We then define sprevious(k) as the cumulative perfor-
mance of all nodes listed before node k:

sprevious(k) =
k−1∑

i=1
s(i). (3)

The algorithm for processing the dictionary is given in
the Listing 4. The algorithm iterates over the dictionary
until it exhausts it (lines 3 to 9). Each iteration except
possibly the last one computes the hashes for the chunk
of sall passwords from the dictionary. Inside the itera-
tion, each node determines the offset where its chunk
of password candidates for this iteration resides within
the complete dictionary (line 4 in Algorithm):

offset(k) = (iter ∗ sall)+ sprevious(k). (4)

After positioning itself in the new computation win-
dow starting at offset from the beginning of the dic-
tionary, node k computes s(k) consecutive password
hashes (line 6). This process repeats until the end of the
dictionary is reached (no more password candidates to
guess). Therefore, the algorithm ensures that each node
in the cluster gets a fair share of the most probable and
least probable password candidates, which is critical for
load balancing and performance of the whole job.

Algorithm 4Work distribution.
1: procedure ComputeHashes(dictionary, node k)
2: iter = 0
3: repeat
4: offset(k) = (iter ∗ sall)+ sprevious(k)
5: for n in Range(0, s(k)) do
6: CalculateHash(dictionary[offset(k)+

n])
7: end for
8: iter = iter + 1
9: until end of dictionary
10: end procedure

An example distribution of password candidates in a
cluster with 3 nodes and performances of 3, 1 and 2 H/s
is shown in Figure 7

N = 3, k = {1, 2, 3}, s(1) = 3, s(2) = 1, s(3) = 2. (5)

The cluster aims to simulate real-world cracking
scenarios, and this was the reason why the algorithm
was implemented by striding the passwords instead of

Figure 7. Distribution of password candidates.

dividing word lists into contiguous chunks of different
sizes. As previously noted, dictionaries sort the pass-
words candidates by their probability in descending
order (frequency of occurrence gathered with previous
password leaks). By using the strided access pattern,
the cluster nodes try the most likely passwords first
and get their fair share of all passwords (more and less
probable), reducing the time required to find passwords
specified by input to the cluster, and thus better load
balancing the work for the cluster with heterogeneous
nodes.

Additionally, we considered using the standard
producer-consumer paradigm, where nodes (con-
sumers) would consume password candidates provided
by a dictionary-managing node (producer). Worker
nodes would send their requests for password candi-
dates and the master node would respond with the
candidate, all using MPI messages. While the above
solution would scale well, it would not be able to keep
up with the high speed of the specialized hardware
implemented in programmable logic. Empirically, one
MPImessage generates a latency of about 11.5ms,mea-
sured on a similar cluster in our lab. Our best perform-
ing node processes 93.25 H/s for cost 5, which means
that it takes about 0.01 ms for 1 password candidate.
Thus, the master node is de facto unable to generate
enough password candidates to meet the requirements,
since the latency caused by the network layer (MPI)
is significantly larger than the time required by our
best performing node to compute a single bcrypt hash.
Moreover, it was easier and cheaper, in terms of engi-
neering hours, to adapt the existing naive algorithm to
our proposed algorithm than to change the paradigm

410 B. PERVAN ET AL.

completely, since we did not find any clear added value
from the paradigm shift.

5. Results

In this section, we present and discuss the results from
the experiments with the cluster. We also compare
our cluster in terms of performance, price-efficiency,
and energy efficiency with current GPU solutions in
terms of bcrypt hash computation reported by various
sources. Given the relatively higher initial price of the
cluster, we perform a price-efficiency analysis

5.1. Methodology

For experimental purposes, we used our cluster previ-
ously described in Section 4. The experiment consisted
of utilizing the cluster in a classical password crack-
ing task. We used a single password hashed using the
bcrypt algorithm with cost settings of 5, 8, 10, and 12.
We attempted a dictionary attack, where the dictionary
consisted of passwords leaked in the famous RockYou
attack that exposed over 32million user accounts,many
of which had passwords stored in plaintext. The dictio-
nary contains 14million password candidates, of which
we used the top 7 million to make experiments finish
in reasonable time while ensuring that the dictionary is
large enough to test the performance, energy efficiency,
and scalability.

In the dictionary, we intentionally omitted pass-
words whose hash representation we were trying to
crack in the experiment. In this way, we wanted
to ensure that each node try out all the candidates
intended for that particular node. Otherwise, there
would be a possibility that a node would reveal the
original string of the hash to be cracked before all nodes
reached the end of their packets, which would stop the
cracking job for this particular hash to be guessed.

To get reliable results, we conducted experiments
multiple times. More concretely, each specific test was
executed four times with the results of the first run dis-
carded. The results of the remaining three runs were
averaged to obtain the power and performance met-
ric we show in the results. Power consumption was
measured using a plug-in watt-metre with all nodes
and the network switch connected to the power grid
through it, so we measured the consumption of all the
components, i.e. the whole system. Since our applica-
tion is extremely computed intensive, a peak value of
the power consumption was constant throughout the
whole cracking job, which enabled us to consider it as
an average power equal to consumed energy over exe-
cution time. The average of the samples was used to
determine the power consumption and calculate the
energy-efficiency.

The mechanism used for data-sharing was the net-
work file system (NFS) hosted on the master node,

which contains a dictionary, a list of to-be-cracked
hashes, and a text file containing the list of node
addresses used by OpenMPI. Due to the constraints
imposed by theOpenMPI, the absolute path to the John
the Ripper executable had to be the same on every node
in the cluster.

5.2. Experimental results

We report experimental results of individual nodes and
the cluster in Table 2. Due to the limited space, we
used abbreviations to denote data attributes. Perfor-
mance (Perf.) is noted in bcrypt hash computations
per second [H/s]. Energy-efficiency (denoted by EE) is
given in [H/s/W], and is calculated by dividing per-
formance and measured power consumption for the
particular cost. Price-efficiency in [H/s/USD] is calcu-
lated by dividing performance and themost recent price
of the component or the system as a whole in USD.

The results mostly conform with the theoretical
model, as the performance between different cost
parameter settings vary exponentially with the base 2.
Some discrepancy is observed for cost 5, communica-
tion overheads both in-network and on-chip between
the CPU and programmable logic being the most prob-
able cause. The total performance of the cluster is near-
sum of the performances of the individual nodes, as the
cluster scaled well with the addition of the nodes. The
workload was distributed in proportion to each node’s
speed and therefore maximum parallel efficiency was
achieved.

The cumulativemeasured performance of the cluster
for cost 12, which is approximately the sum of the per-
formances of the individual nodes, is 1481.4 H/s. For
a dictionary with 7 million password candidates, it is
easy to calculate that the cracking job takes at most 1 h
and 19min. Considering a realistic cracking scenario
with cracking the one bcrypt hash with cost parame-
ter 12, our setup took 1 h and 18min, which is in line
with the theoretical maximum time required to either
crack the password or search the complete dictionary.
Considering larger costs that are used in modern pro-
duction systems and are expected to be used in the
future in production-grade contemporary systems, i.e.
cost 16, and extrapolating the performance to that cost,
the cracking job would take about 21 h. This means
that our cluster can crack contemporary hashed pass-
words on a scale of tens of hours which is still within
the acceptable cost/time limits for real attacks.

Figure 8 shows the speedups achievedwhen compar-
ing the default implementation of John the Ripper with
the version containing our implementation of the work
distribution algorithm, both running on cCc. Each pair
of bars in the figure represents the speedup achieved
after adding yet another node to the cluster relative to
the performance of 1 ZedBoard for cost 12, for both the

AUTOMATIKA 411

Table 2. Performances, energy-efficiency, price-efficiency.

Cost 5 Cost 8 Cost 10 Cost 12

Price Perf. EE PE Perf. EE PE Perf. EE PE Perf. EE PE

ZedBoard 475 6967.0 1142.1 14.6 940.9 139.6 2.0 253.1 36.6 0.5 64.8 9.4 0.1
Pynq 260 7044.0 1903.8 27.1 939.9 223.7 3.6 253.1 59.5 1.0 64.8 15.1 0.2
ZC706 2800 22609.0 1440.1 8.0 3809.0 225.4 1.4 989.2 57.8 0.3 226.3 13.1 0.0
ZTEX 350 93250.0 2583.1 266.4 13338.0 369.5 38.1 3445.0 95.4 9.8 853.7 23.6 2.4
cCc 5400 157484.5 1892.8 29.1 23044.2 255.2 4.2 5916.4 65.0 1.0 1481.4 16.2 0.3

5

Figure 8. Relative speedup.

naive (default) work distribution and our novel pass-
word probability/node capability -dependent work dis-
tribution scheme. For the naive distribution, although
the added node may be more capable than the previ-
ous node or remaining nodes in the cluster, adding it to
the cluster always adds to the speedup in increments of
at most one, since the work distribution does not take
into account the heterogeneity of nodes’ performances.
In contrast, our work distribution, takes into account
the performance of each individual node in the cluster
together with the passwords probability-based sorting.
This leads to significantly better speedups of in total
19.3 compared to 3.8 for the complete cluster (last pair
of bars in Figure 8).

We also compared our cCc cluster against various
GPUs. Their performance for cost 5, cost 12, prices,
and TDPs used to calculate energy-efficiency and price-
efficiency are listed in Table 3. Cost 12 performances
are extrapolated from cost 5, and the TDPs in watts
are taken from the manufacturers’ official websites. For

Table 3. GPU performances, prices and TDPs.

Performance

GPU TDP Price Cost 5 Cost 12

GTX 970 148 560 7039 [38] 55
GTX 980 165 630 8465 [38] 66.13
TITAN X 250 1500 12,313 [38] 96.19
GTX 1080 Ti 250 800 21,827 [38] 170.52
Tesla V100 300 6100 54,277 [39] 424.04
RTX 3090 350 3500 96,662 [40] 755.17
Tesla A100 250 12,300 138,375 [41] 1081.05
RX 6800 XT 300 2000 58,156 [42] 454.34

GPU price, which is in USD, we used data from var-
ious retailers, taking medial price. As before, perfor-
mance is given in bcrypt hash computations per sec-
ond [H/s], energy-efficiency in performance per watt
[H/s/W], and price-efficiency in performance per USD
or [H/s/USD].

Figure 9 shows the comparison in terms of energy
efficiency. Although some of theGPUs seem to be obso-
lete, we still compared our cluster with them since

412 B. PERVAN ET AL.

Figure 9. Energy-efficiency: GPUs vs. cCc.

these GPUs are comparable to the newer GPUs in
terms of energy-efficiency and price-efficiency. Our
cluster outperforms any GPU by at least a factor of
3. This is mainly because our custom implementa-
tion in programmable logic has once again proven that
custom accelerators are the right choice for energy-
efficient heavy computational tasks. It is worth noting
that the energy efficiency of our cluster was calculated
using actual (measured) power consumption, while the
energy-efficiency of the GPUs was calculated using the
manufacturers’ TDPs. This actually favours the GPUs,
as their actual power consumption is larger due to the
need for other components to run cracking tasks on
these GPUs.

Figure 10 gives the price-efficiency or [H/s/USD] for
compared platforms.Our cCc cluster outperformsmost
GPUs, while being on par with RX 6800 XT, RTX 3090
and GTX 1080 Ti. It is worth noting that it is diffi-
cult to get market prices for the selected GPUs these
days, including the ones we compare our cluster to, as
cryptocurrency mining has caused their prices to sky-
rocket. The comparison is displayed for cost parameter
value of 5, the numbers for GPUs coming from outside
sources [38–42]. Some of them reported results for sys-
tems with multiple GPUs, but we did the comparison
with single units. If we were to compare our cluster to
systems with multiple GPUs, their prices would exceed
the price of our cluster by order of magnitude, with no

significant advantage in terms of energy-efficiency or
price-efficiency.

To further increase the energy-efficiency of dis-
tributed systems like our cluster, Pynq boards should
be preferred over ZedBoards as they consume less
energy (up to 46%), and cost 2.5 times less (increased
price-performance). Since it uses the same Zynq-7020
SoC and voltage rectifier, the significant energy savings
likely result from the fact that it has fewer periph-
erals and a much simpler design. However, we have
combined ZedBoards and Pynqs to demonstrate node-
level heterogeneity and how different boards with the
same SoCs deliver different performances and energy
results.

5.3. Overall operational evaluation

To contextualize the capabilities of our cluster, we per-
formed overall operational evaluation by combining
performance, energy and cost which includes both:
operational cost (i.e. electricity) and acquisition costs.
In the previous Section 5.2, we showed that the cluster
outperforms competing GPU solutions in both energy-
efficiency [H/s/W] and price-efficiency [H/s/USD].
While the previous statement is true, to see the whole
picture, we need to take into account the acquisition
costs of the equipment. Although our cluster consists
of reasonable priced nodes (at this time, even outdated

AUTOMATIKA 413

Figure 10. Price-efficiency: GPUs vs. cCc.

Figure 11. Total price vs. No. of passwords for Cost 5.

414 B. PERVAN ET AL.

Figure 12. Total price vs. No. of passwords for Cost 12.

and replaced by new boards, so with the decreasing
price tendency), it has a significantly higher initial
acquisition cost than some of compared GPUs (with
increasing price tendency due to high demand at the
moment). As we will show in this section, the differ-
ence in initial cost is mitigated by the price of electricity
used to run the cluster on real-world password crack-
ing jobs, making our cluster more effective in terms of
overall costs of operations.

The total operational cost of the aforementioned
GPUs and our cluster is composed of the acquisition
cost of the equipment and the electricity cost to run
them. We calculated this total cost using the data pre-
sented in Table 3 in terms of the number of pass-
words cracked. To translate the number of passwords
into time, we assumed that since we used the Rock-
You dictionary in our experiments, each password will
eventually be cracked after trying half of the dictio-
nary, which corresponds to 7 million password can-
didates. This assumption is not a drawback, as the
real number of attempts per hash tends to be even
larger, which ultimately can be more beneficial to our
cluster as it is more energy-efficient. For example, the
average number of characters in a single password is
8 [43], which means that for brute force attacks and
no restrictions on the password (any combination of
95 characters, including uppercase, lowercase, special

characters, digits) each password potentially requires
≈ 6.6 ∗ 1015 attempts, or at least millions of attempts
in the case of dictionary attacks. For the electricity
cost, we used the average electricity price of in Euro-
peanUnion, which is 0.2126 EUR/kWhprovided by the
Eurostat [44].

Figure 11 shows the analysis for cost 5. The X-axis
represents the total number of cracked passwords in
thousands, while the Y-axis represents the total price
in USD. In terms of total operational costs, our cluster
pays off relatively quickly, outperforming most GPUs
after approximately 16,000 passwords. The final break-
even point with the most energy-efficient GPU (RX
6800 XT) is 58,000 cracked passwords.

Figure 12 shows the analysis for cost 12. Our clus-
ter outperforms most of the GPUs in the range of
1000–2000 passwords. The break-even point with the
most energy-efficient GPU is 4500 passwords. It is
important to note that bcrypt with cost 12 is still used
in some current production systems. Eventually, the
break-even point would come at even lower levels as
the cost parameter increases, which best favours our
energy-efficient cluster, since nowadays the safe cost
parameter to consider for production systems is around
12, with a tendency to grow in the near future.

Both analyses of the total operational cost show that
our cluster can be favoured over GPUs and high-end

AUTOMATIKA 415

CPUs for real-world usage as it pays off even for
a relatively small number of passwords, since pass-
word leaks usually consist of millions of password
hashes.

6. Conclusion

In this paper, we presented cluster-level heterogeneous
system cCc (cool Cracker cluster) – a distributed system
for parallel and energy-efficient bcrypt hash computa-
tion. In contrast to the previous version [32], we added
a layer of heterogeneity, which includes nodes with
different performances expressed in hash computations
per second. On a single-node level, we also improved
our bcrypt accelerator implemented in programmable
logic for low-cost settings traditionally used in bench-
marking. We used the spare capacity in BRAM to pre-
store initial values of S-boxes, thus removing the need
to transfer them once the hash computation has started.
This optimization resulted in a significant improvement
in performance at cost 5 by a factor of 1.5. At a clus-
ter level, we proposed a novel approach in the sense
of implementation of an existing work distribution
algorithm that takes into account the different perfor-
mances of eachnode in the cluster and the probability of
the password candidate (the position in the dictionary
since passwords are sorted by their relevance), which to
our knowledge has not yet been tried in a similar con-
text. By using this algorithm, we managed to improve
the overall cluster performance compared to the previ-
ous naive algorithmwith equal work distributionwhich
assumes no heterogeneity at the cluster-level. Experi-
mental results on real-world cracking scenarios showed
that our cluster satisfies the theoreticalmodel and that it
scales linearly with the addition of new nodes and with
their performance capabilities.redJOSIPK: Ova zadnja
recenica mi nije jasna, ja bih to izbacio.

In terms of energy-efficiency and price-efficiency,
we achieve better results than current GPU solutions.
Although our cluster has the third to the highest ini-
tial cost, it soon pays off and becomes affordable after
58,000 cracked passwords for cost 5 and after 4500 pass-
words for cost 12. It is worth noting that bcrypt with
cost parameter 12 can be used in production-level sys-
tems and that leaks typically contain millions of pass-
word hashes, so there is more reason to favour our cCc
over GPUs and CPUs.

As for our future research, we intend to improve the
resilience and dynamic adaptation of the cluster. If a
node fails during the cracking job, it could cause the
whole job to restart, which is a significant threat to effi-
ciency since production-level hashes cracking can take
tens of hours or even days to complete. This could be
mitigated by moving inter-node communication to a
higher layer using the Actor model. We also intend to
investigate distributed incremental cracking methods
with accelerators implemented in programmable logic.

Acknowledgments

The authors would like to thank Mr. Eduard Strojan for
conducting the described experiments in a laboratory while
doing his Master thesis at the University of Zagreb. We also
thank Solar Designer from Openwall for his support and
valuable inputs he gave in discussions regarding John the Rip-
per with addition to FPGA and distributed password crack-
ing, and Ms. Katja Peričin from ReversingLabs for the initial
development and her work on bcrypt accelerator. We would
also like to thank Mr. Luka Macan from the University of
Zagreb for his assistance in laboratory work.

Data availability statement

The measurement data used to support the findings of
this study are available from the corresponding author
upon request.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

The research was conducted as part of the employment of the
authors, namely:
• Faculty of Electrical Engineering and Computing, Univer-
sity of Zagreb, Zagreb, Croatia (Branimir Pervan, Josip Kne-
zović, Emanuel Guberović).
• Green Light Technologies Ltd., Zagreb, Croatia (Emanuel
Guberović).
This work has been supported in part by the project
IZHRZ0_180625 Heterogeneous Computing Systems with
Customizable Accelerators, funded under Croatian-Swiss
Research Programme (CSRP) by the Croatian Science Foun-
dation (HRZZ).

ORCID

Branimir Pervan http://orcid.org/0000-0003-3803-0910
Josip Knezović http://orcid.org/0000-0001-6975-4511
EmanuelGuberović http://orcid.org/0000-0001-9285-6858

References

[1] Herley C, Van Oorschot PC, Patrick AS. Passwords: if
we’re so smart, why are we still using them? In: Din-
gledine R, Golle P, editors. International vonference
on Financial Cryptography and Data Security. Berlin:
Springer; 2009. p. 230–237.

[2] Forget A. A world with many authentication schemes
[PhD thesis]. Carleton University; 2013.

[3] Shay R, Komanduri S, Gage Kelley P, et al. Encoun-
tering stronger password requirements: user attitudes
and behaviors. In: Cranor LF, General Chairr. Proceed-
ings of the Sixth Symposium on Usable Privacy and
Security. New York (NY): Association for Computing
Machinery; 2010. p. 1–20.

[4] Klein DV. Foiling the cracker: a survey of, and improve-
ments to, password security. Program Comput Softw.
1992;17(3):3.

[5] The Password Meter. The password meter; 2021 Mar.
Available from: http://www.passwordmeter.com/

http://orcid.org/0000-0003-3803-0910
http://orcid.org/0000-0001-6975-4511
http://orcid.org/0000-0001-9285-6858
http://www.passwordmeter.com/

416 B. PERVAN ET AL.

[6] Security.org. How secure is my password? 2021 Mar.
Available from: https://www.security.org/how-secure-is
-my-password/

[7] Oechslin P. Making a faster cryptanalytic time-memory
trade-off. In: Boneh D, editor. Annual International
Cryptology Conference. Berlin: Springer; 2003. p.
617–630.

[8] Kaliski B. Pkcs #5: password-based cryptography spec-
ification version 2.0. RFC 2898. Internet Engineering
Task Force; 2000 Sept. Available from: https://www.ietf.
org/rfc/rfc2898.txt

[9] Provos N, Mazières D. A future-adaptable password
scheme. Proceedings of the FREENIX Track:1999
USENIXAnnual Technical Conference;Monterey (CA).
USENIX Association; 1999.

[10] Percival Tarsnap C, Josefsson S. The scrypt password-
based key derivation function. RFC 7914. Internet
Engineering Task Force; 2016 Aug. Available from:
https://www.ietf.org/rfc/rfc7914.txt

[11] OpenWeb Application Security Project. Password stor-
age cheat sheet. 2021Mar. Available from: https://cheats
heetseries.owasp.org/cheatsheets/Password_Storage_C
heat_Sheet.html

[12] Ed Moriarty K, Kaliski B, Rusch A. Pkcs #5: password-
based cryptography specification version 2.1. RFC 8018,
RFC Editor; 2017 Jan. Available from: https://www.rfc-
editor.org/rfc/rfc8018.txt

[13] Schneier B. Description of a new variable-length key,
64-bit block cipher (blowfish). In: Anderson R, editor.
International Workshop on fast Software Encryption.
Berlin: Springer; 1993. p. 191–204.

[14] Dell’Amico M, Michiardi P, Roudier Y. Password
strength: an empirical analysis. In: Mandyam G, West-
phal C, General chairs. 2010 Proceedings IEEE INFO-
COM; San Diego (CA). IEEE; 2010. p. 1–9.

[15] Castelluccia C, Dürmuth M, Perito D. Adaptive pass-
word-strength meters fromMarkov models. In: Hutton
T, St.Amour L, Steering Group and Organizing Com-
mittee Co-Chairs. NDSS; San Diego (CA); 2012.

[16] Schechter S, Herley C, Mitzenmacher M. Popularity is
everything: a new approach to protecting passwords
from statistical-guessing attacks. In: Venema W, Pro-
gram chair. Proceedings of the 5th USENIXConference
on Hot Topics in Security; Washington (DC). USENIX
Association; 2010; p. 1–8.

[17] Hunt T. ’;–have i been pwned? 2021Mar. Available from:
https://haveibeenpwned.com/

[18] DürmuthM,KranzT.Onpassword guessingwithGPUs
andFPGAs. In:Mjølsnes S, editor. InternationalConfer-
ence on Passwords. Cham: Springer; 2014. p. 19–38.

[19] Openwall. John the Ripper password cracker. 2021Mar.
Available from: https://www.openwall.com/john/

[20] hashcat. hashcat - advanced password recovery. 2021
Mar. Available from: https://hashcat.net/hashcat/

[21] Güneysu T, Kasper T, Novotnỳ M, et al. Crypt-
analysis with COPACOBANA. IEEE Trans Comput.
2008;57(11):1498–1513.

[22] Al-Odat ZA, Ali M, Abbas A, et al. Secure hash
algorithms and the corresponding FPGA optimization
techniques. ACM Comput Surv (CSUR). 2020;53(5):
1–36.

[23] Algredo-Badillo I, Feregrino-Uribe C, Cumplido R,
et al. FPGA-based implementation alternatives for the
inner loop of the secure hash algorithm sha-256.Micro-
process Microsyst. 2013;37(6–7):750–757.

[24] Rodríguez-Henríquez F, Abbas Saqib N, Díaz Pérez A,
et al. Cryptographic algorithms on reconfigurable hard-
ware. Boston (MA): Springer Science&BusinessMedia;
2007.

[25] Wiemer F, Zimmermann R. High-speed implementa-
tion of bcrypt password search using special-purpose
hardware. In: Wirthlin M, Huebner M, Cumplido R,
chairs. 2014 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig14); Cancun,
Mexico. IEEE; 2014. p. 1–6. doi:10.1109/ReConFig.2014.
7032529

[26] Cilardo A, Mazzocca N. Exploiting vulnerabilities
in cryptographic hash functions based on reconfig-
urable hardware. IEEE Trans Inf Forensics Secur.
2013;8(5):810–820.

[27] Cilardo A. The potential of reconfigurable hardware for
HPC cryptanalysis of SHA-1. In: Al-Hashimi BM, Gen-
eral chair. 2011 Design, Automation & Test in Europe;
Grenoble, France. IEEE; 2011. p. 1–6.

[28] Martino R, Cilardo A. Designing a SHA-256 processor
for blockchain-based IoT applications. Internet Things.
2020;11:100254.

[29] Martino R, Cilardo A. A flexible framework for explor-
ing, evaluating, and comparing SHA-2 designs. IEEE
Access. 2019;7:72443–72456.

[30] Martino R, Cilardo A. SHA-2 acceleration meeting the
needs of emerging applications: a comparative survey.
IEEE Access. 2020;8:28415–28436.

[31] Malvoni K, Designer S, Knezovic J. Are your passwords
safe: energy-efficient bcrypt cracking with low-cost par-
allel hardware. In: Bratus S, Lindner FX,workshop orga-
nizers. 8th USENIX Workshop on Offensive Technolo-
gies (WOOT 14); San Diego (CA); 2014.

[32] Pervan B, Knezovic J, Pericin K. Distributed pass-
word hash computation on commodity heterogeneous
programmable platforms. In: Gantman A, Maurice
C, workshop organizers. 13th USENIX Workshop on
Offensive Technologies (WOOT 19); Santa Clara (CA);
2019.

[33] AVNET. Zedboard; 2019 Mar. Available from: https://w
ww.zedboard.org

[34] Xilinx. Pynq: Python productivity for zynq; 2019 Mar.
Available from: https://www.pynq.io

[35] Xilinx. Xilinx Zynq-7000 SoC ZC706 evaluation kit;
2019Mar. Available from: https://www.xilinx.com/prod
ucts/boards-and-kits/ek-z7-zc706-g.html

[36] ZTEX. USB-FPGA module 1.15y; 2019 Mar. Available
from: https://www.ztex.de/usb-fpga-1/usb-fpga-1.15y.
e.html

[37] Solar Designer. bcrypt cracking on ztex 1.15y fpga
boards (bcrypt-ztex); 2017 Jun. Available from: https://
www.openwall.com/lists/john-users/2017/06/25/1

[38] Gosney JM. Maxwell/Pascal bcrypt benchmark; 2021
Mar. Available from: https://gist.github.com/epixoip/9d
9b943fd580ff6bfa80e48a0e77520d

[39] Mathiopoulos I.Hashcat v4.0.0. benchmark on theTesla
V100; 2021Mar. Available from: https://gist.github.com
/iam1980/808f696a14b0c42b26621a01f91a8b18

[40] Croley S. Hashcat v6.1.1 benchmark on the Nvidia RTX
3090; 2021 Mar. Available from: https://gist.github.com
/Chick3nman/e4fcee00cb6d82874dace72106d73fef

[41] Croley S. Hashcat v6.1.1 benchmark on the Nvidia Tesla
A100 PCIE variant GPU; 2021 Mar. Available from:
https://gist.github.com/Chick3nman/d65bcd5c137626
c0fcb05078bba9ca89

https://www.security.org/how-secure-is-my-password/
https://www.ietf.org/rfc/rfc2898.txt
https://www.ietf.org/rfc/rfc7914.txt
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://www.rfc-editor.org/rfc/rfc8018.txt
https://haveibeenpwned.com/
https://www.openwall.com/john/
https://hashcat.net/hashcat/
doi:10.1109/ReConFig.2014.7032529
https://www.zedboard.org
https://www.pynq.io
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.ztex.de/usb-fpga-1/usb-fpga-1.15y.e.html
https://www.openwall.com/lists/john-users/2017/06/25/1
https://gist.github.com/epixoip/9d9b943fd580ff6bfa80e48a0e77520d
https://gist.github.com/iam1980/808f696a14b0c42b26621a01f91a8b18
https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef
https://gist.github.com/Chick3nman/d65bcd5c137626c0fcb05078bba9ca89

AUTOMATIKA 417

[42] Gosney JM. RX 6800 XT Hashcat benchmarks; 2021
Mar. Available from: https://gist.github.com/epixoip/99
085955a1145ff61ec83512a50421a7

[43] Statista. Average number of characters of leaked user
passwords worldwide as of 2017; 2021 Mar. Available

from: https://www.statista.com/statistics/744216/world
wide-distribution-of-password-length/

[44] Eurostat. Electricity price statistics; 2021 Feb. Available
from: https://ec.europa.eu/eurostat/statistics-explained
/index.php/Electricity_price_statistics

https://gist.github.com/epixoip/99085955a1145ff61ec83512a50421a7
https://www.statista.com/statistics/744216/worldwide-distribution-of-password-length/
https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics

	1. Introduction
	2. Background
	2.1. bcrypt
	2.1.1. Cost extrapolation

	2.2. Related work

	3. Single node implementations
	3.1. Hardware implementation
	3.2. Single-node results

	4. Heterogeneous cluster architecture
	4.1. Architecture
	4.2. Work distribution

	5. Results
	5.1. Methodology
	5.2. Experimental results
	5.3. Overall operational evaluation

	6. Conclusion
	Acknowledgments
	Data availability statement
	Disclosure statement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

