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ABSTRACT

We consider a problem of minimizing the maritime cargo delivery route length to reduce the 
delivery cost. In our model, the cost is equivalent to the sum of tour lengths of feeders used for 
the delivery to cover the route. Formulated as a multiple traveling salesman problem, we solve it 
with a genetic algorithm. The algorithm performance is dramatically influenced by the stream of 
pseudorandom numbers used for randomly generating the starting population and accomplishing 
random mutations. As the number of ports increases from 10 to 80, the route length variation 
intensifies from 3.5% to 22.5% on average. However, we increase the route length minimization 
accuracy by re-running the algorithm to solve the same problem until closely the best solution is 
obtained. The number of reruns is about 3 to 6 for up to 20 ports. For more than 20 ports the 
required number of algorithm reruns abruptly increases from 28 reruns for 30 ports to about 51 
reruns within the range of 40 to 80 ports.

1	 Introduction
In a rough estimation, only about one fifth of all goods 

are not transported by water. The amount of maritime car-
go has been dramatically growing since early 1980s, and 
the maritime transportation is the basis of the world trad-
ing and commerce. Whereas it was only 0.1 billion metric 
tons in 1980, about 1.85 billion metric tons were shipped 
all over the world in 2020 [1].

The world fleet of containers has significantly expand-
ed. The deadweight tonnage of container carriers since 
1980 has increased from 11 up to 275 million metric tons 
[1]. In 2020, the global commercial shipping fleet grew by 
3%, reaching 99800 ships of 100 gross tons and above [2]. 
By January 2021, the capacity was equivalent to 2.13 bil-
lion deadweight tons [2]. The ships delivered were mostly 
bulk carriers (42.77% or 913032 deadweight tons), fol-
lowed by oil tankers (29.00% or 619148 deadweight tons) 
and container ships (13.20% or 281784 deadweight tons) 
[2]. Other types of ships – gas carriers, chemical tankers, 
offshore supplies, ferries and passenger ships delivered 

about 243922 deadweight tons or 11.43% of total deliver-
ies [2].

Compared to other types of transportation, the mari-
time transportation is environmentally friendly [3]. Be-
sides, it has lesser expenses and a higher reliability 
allowing transporting any cargo, without limitations and 
restrictions. Typically the maritime transportation service 
prices 4 – 5 times less than of road freight and 12 – 16 
times less than of air freight [4].

Ship cargo containers provide faultless protection to 
goods. As a result, once departed, it is a physical barrier 
against atmospheric conditions, temperature variations, 
fire, theft, and other negative impacts throughout han-
dling. As for greenhouse effect, shipping represents 2.6% 
of overall emissions [5]. Comparing to airplanes, which 
emit 500 grams of CO2 per metric ton of freight per kilo-
meter of transportation, container ships emit only 10 to 
40 grams of CO2 per kilometer [6]. With much larger and 
heavier shiploads, shipping by sea tends to be the more 
cost-efficient route [7].
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Despite the maritime cargo delivery is slower than oth-
er transportation types and it depends on weather condi-
tions, the delivery speed can be increased by routing the 
most efficient tours for ship feeders accomplishing the de-
livery. The efficient tour implies its minimally possible 
length for a scheduled delivery. The length is expressed in 
units of either distance or time. The length of a delivery 
route consisting of efficient tours is minimized as well. 
The route length minimization is a transportation optimi-
zation problem equivalent to the traveling salesman prob-
lem [8, 9]. In the case of maritime cargo delivery, the 
traveling salesman problem solves the task of routing effi-
cient tours of feeders. Those tours optimize the delivery 
cost.

The traveling salesman problem is an NP-hard prob-
lem in combinatorial optimization, whose exact solution 
usually takes too long to be obtained because exact algo-
rithm perform reasonably fast only for small-sized prob-
lems [10]. Speaking formally, the exact algorithm has N! 
permutations (as versions of the route) that need to be 
checked and see which one is the shortest. It is a brute-
force search, and its time complexity is O(N!) [11]. 
Because of the factorial of the number of ports, this exact 
algorithm becomes impractical even for only 12 ports (as 
12! = 479001600, it is difficult to run through nearly half 
a billion possible routes in a reasonable computational 
time). There are many improvements for it achieving 
computational times which are less than O(N!) – branch 
and bound, linear programming, and dynamic program-
ming techniques [12]. However, it has not been deter-
mined yet whether an exact algorithm exists that could 
run in time O(1.9999N) [12].

In order to achieve lower computational complexity, 
heuristic algorithms are widely used. Heuristic algo-
rithms perform far much faster producing approximated 
solutions and saving computational resources [13, 14]. 
This is equivalent to saving time and budget. Depending 
on the heuristic algorithm, its complexity can be repre-
sented as O(N3), O(N2), O(NlnN) or even O(N) [15]. One of 
the best heuristics is the genetic algorithm allowing to 
quickly find a delivery route with the minimal number of 
feeders tours, by which the route length is practically 
close to the minimum or just coincides with it [16, 17, 
18]. To minimize the maritime cargo delivery route 
length, where multiple feeders are used, the genetic algo-
rithm mainly requires such input parameters as follows: 
a map of ports to be visited en route, a number of feed-
ers, a population size, and a set of rules to accomplish 
mutations. In detail, the map of ports is a set of two-coor-
dinate port positions. The number of feeders defines the 
maximal number of separate tours by which the cargo 
can be delivered. The population size is the number of 
randomly generated tours to be processed by the 
algorithm. 

2	 Motivation and goal

An important part in the genetic algorithm is the 
pseudorandom number generator. Most genetic algo-
rithm steps require random numbers to generate an ini-
tial population, to break a population into tours, and to 
perform genetic operations in order to create new tours 
[19]. Various pseudorandom number generators can 
show different results depending on the domain [20].  
Minor experiments show no direct correlation between 
improved quality of the generator and improved per-
formance of the algorithm [21]. In fact, higher-quality 
pseudorandom number generators (in terms of computa-
tional and statistical performance) in some cases worsen 
the genetic algorithm performance [20, 22]. This means 
that certain statistical conclusions on how the pseudor-
andom number generator influences the genetic algo-
rithm performance are possible only after a long series of 
experiments. For instance, consider breaking a popula-
tion into tours that is supposed to be random. If this ran-
domness changes, does it lead to the change of the 
solution, or the way the algorithm converges? As of  
August 2022, it is an open question.

Issuing from the fact that tours of feeders are randomly 
generated by breaking the set of non-hub ports, the prima-
ry goal is to ascertain whether the respective pseudoran-
dom number generator influences the genetic algorithm 
performance. If it does influence, the eventual goal is to in-
crease the genetic algorithm performance by using the 
generator in the best way. The performance increment is 
implied as a further minimization of the route length. For 
achieving the goal, the following eight tasks are to be 
fulfilled:
1. 	 To denote variables in a maritime cargo delivery mod-

el. The main assumptions used in the model are to be 
mentioned.

2. 	 To formalize constraints in minimizing the maritime 
cargo delivery route length by a multiple traveling 
salesman problem.

3.	 To formalize an objective to be minimized. 

4. 	 To explain the place of the pseudorandom number gen-
erator in the genetic algorithm used to efficiently mini-
mize the maritime cargo delivery route length.

5. 	 To obtain statistics on how the algorithm performance 
depends on the pseudorandom number generator.

6. 	 Based on the statistics, to make a decision on increas-
ing the genetic algorithm performance.

7. 	 To discuss the practical applicability and significance 
of the suggested decision.

8. 	 Based on the results obtained and impartially dis-
cussed, to conclude on the contribution to the field of 
genetic algorithms used, in particular, to optimize mar-
itime cargo delivery. A way of possible extension of the 
research and a spin-off will be outlined.
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3	 Variables in a maritime cargo delivery model

The following variables are used in a simplified mari-
time cargo delivery model: N is a number of ports, pk1 and 
pk2  are the horizontal and vertical components of the posi-
tion of port k, and Mmax is a number of feeders available to 
accomplish the delivery. Every feeder starts its tour off 
port 1 and ends up by returning to that port. The port is 
called the hub. 

We assume that if a feeder must go from port k to port 
j, without additional stops, then the feeder accomplishes it 
by a straight line with some constant speed. Due to port 
positions are naturally flat (no ship ascends or descends), 
the distance covered by the feeder from port k directly to 
port j (or in the opposite direction) is

( ) ( ) ( ) ( )2 2
1 1 2 2, ,k j k jk j p p p p j kρ = − + − = ρ

 

by  k = 1, N  and j = k + 1, N.	
(1)

It is clear that these 
( )1

2
N N −

 distances 

( ){ }{ }1 1
,

NN

k j k
k j

= = +
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are nonzero. We assume that distances (2) are linearly 
mapped into durations of the maritime cargo delivery. The 
durations can be subsequently mapped into the respective 
delivery costs that should be minimized.

If feeder m visits either port j after port k or port k after 
port j (the direction here does not matter), then this fact is 
flagged as xkjm = 1. To avoid surplus flagging, xjkm = 0 if xkjm = 1 
and xkjm = 0 if xjkm = 1 for non-two-port tours (a two-port 
tour is when a feeder departs from the hub towards a port 
and then returns back to the hub). In other words, xkjm = 1 
if feeder m departs from port k and then directly arrives to 
port j; otherwise xkjm = 0. If feeder m does not visit port j 
after port k nor port k after port j, then xkjm = 0. This, how-
ever, does not imply that ports k and j are not included 
into the tour of feeder m. Note that for a two-port tour, 
when feeder m departs from the hub towards port k and 
then returns back to the hub, we have x1km = xk1m = 1.

4	 Constraints 

Usually, there are at least two available feeders. Hence, 
Mmax ∈ ℕ ⃥{1}. An additional aim is to enable as less feeders 
as possible. We denote a current number of feeders by M, 
so 

M ⩽ Mmax.	 (3)

Each flag

xkjm ∈ {0, 1} by k = 1, N and j = 1, N and m = 1, M.	 (4)

Each of M feeders only once departs from the hub that is 
controlled with an equality

1
2 1

N M

jm
j m

x M.
= =

=∑∑
	

(5)

Each of M feeders only once arrives at the hub that is con-
trolled with a symmetric equality

1
2 1

N M

k m
k m

x M.
= =

=∑∑
	

(6)

Another two constraints control the similar depart-
and-arrive logic. Only one feeder can depart from port k, 
being not the hub, towards only one following port (which 
can be the hub) that is controlled with an equality

1 1

1
N M

kjm
j m

x
= =

=∑∑ 2,k N.∀ =
 	

(7)

Symmetrically, only one feeder can arrive at port j, being 
not the hub, from only one port (which can be the hub) 
that is controlled with an equality

1 1

1
N M

kjm
k m

x
= =

=∑∑ 2,j N.∀ =
 	

(8)

We eliminate any subtour of a feeder by imposing the 
following requirement: for every tour

{ }{ } { }( )
2

1, 1,mAm
m l l

T q N
=

= ⊂
	

(9)

of feeder m we require that

{ }1,m mQ T N∀ ⊂ ⊂

  

by 2 ⩽ |Qm| < Am and ∀m = 1, M.	
(10)

Constraint (10) for (9) ensures that every feeder has a 
tour as a closed loop: it departs from the hub and arrives 
at it. Owing to this constraint, a feasible route of delivering 
maritime cargo is of closed loops only, where every loop is 
a feeder tour starting off the hub and ending up by return-
ing to the hub.

Obviously, every feeder has a limit of distance it can 
cover without fuel refill. We denote this limit by dmax. Be-
sides, enabling a feeder into delivery is also expensive. 
Therefore, a lower limit of the distance the feeder should 
cover must exist. We denote this lower limit by dmin. So, in 
addition to constraints (3) – (10), inequalities

  
∀m = 1, M	 (11)

and

  
∀m = 1, M	 (12)

constrain the tour of every feeder. Thus, a feasible feeder 
tour length lies between dmin and dmax.
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5	 Objective to be minimized

To optimize the maritime cargo delivery, the sum of all 
the tours of the feeders is to be minimized. The respective 
objective function

{ }{ }{ } min max1 1 1
, , , ,

MNN
kjm k j m

N M x d dΣ = = =

 
ρ =  

 

( )
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= = =
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(13)

is to be minimized subject to flags (4) and constraints (3), 
(5) – (12) by (1) and ρ (k, k) = 0  ∀k = 1, N. The minimiza-
tion is implied to be done over binary variables (4) along 
with trying to minimize the total number of feeders used 
in the tours. That is, the minimization goal is to find such

{ }*
max1,M M∈ 	 (14)

and

x*
kjm ∈ {0, 1} for k = 1, N and j = 1, N by m = 1, M*	 (15)
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The solution given formally as 

{ }{ }
*

*
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MNN
kjm k j m

x
= = =

 
 
  	

(17)

allows to build a set of M* the most rational tours of M* 
feeders. Sum (16) of these tours is the length of the short-
est route to deliver maritime cargo and return to the hub. 
For simplicity, we presume this length to be equivalent to 
the delivery costs. 

The solution to problem (16) may be not unique. 
There may be two shortest routes whose lengths are 
equal. Besides, one of those routes can be covered with a 
lesser number of feeders. Then the route covered by the 
lesser number of feeders is accepted as the unique solu-
tion. If both the shortest routes are covered by the same 
number of feeders, an additional criterion to select a 
route should be formulated. Usually, it is a criterion of 
maximizing the minimal tour length. This is done to 
equalize the lengths of feeders tours. In this way, as the 
minimal tour length is maximized, the maximal tour 
length is minimized.

6	 Genetic algorithm and pseudorandom number 
generator

One of the best genetic algorithms presented in [18] 
solves problem (16) subject to constraints (3) – (8), (10) – 
(12) in reasonable computational time. It takes roughly 
2.7 to 3.9 seconds to find the approximately shortest route 
for 20 ports on a 3 MHz processor core. A problem with 50 
ports is solved in 9 to 22 seconds. Amazingly enough, the 
same problem is solved in various time spans after re-run-
ning the algorithm. Moreover, the resulting outcome as the 
route and its length vary as well.

Denote by Hm the number of ports which feeder m 
should visit after starting off the hub before returning to 
the hub (the hub is not counted in this number). The suc-
cession of non-hub ports which feeder m should visit is a 
vector 

( )
1 m

m
m h H

f
×

 =  F
	

(18)

where

{ }( ) 2,m
hf N∈

 
∀h = 1, Hm and ∀m = 1, M.

Vector (18) is a tour of feeder m (by convention, the hub 
can be not counted). The set of all non-hub ports is

{2, M}.	 (19)

Tours 

{ } 1
M

m m=
F

	
(20)

of all feeders constitute a route of the delivery (the hub is 
conventionally not mentioned but is factually kept). This 
means that

{ } { }( )
1

1

2,m

M
Hm

h h
m

f N
=

=

=U .
	

(21)

Before the genetic algorithm runs into the very first it-
eration, tours (20) are randomly generated by breaking 
the set of non-hub ports (19). This random generation de-
pends on the pseudorandom number generator state. In 
particular, a stream of pseudorandom numbers are initial-
ized with a seed which is an integer between 0 and 232 – 1. 
We are using the Mersenne Twister generator hencefor-
ward [23].

Each feeder has a series of pseudorandom tours called 
chromosomes. Altogether M series of all the feeders con-
stitute a population. Each element of the population is a 
route of the delivery using M feeders represented as M re-
spective chromosomes. For every route of the population, 
the following routine is executed during an iteration of the 
algorithm. First, the distance to the port following the hub 
is calculated as

( )( )
11, m

md f= ρ .	 (22)
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Then, the remaining distances except the last one are ac-
cumulated into dm:

(obs)
m md d= , 

( )(obs) ( ) ( )
1,m m

m m k kd d f f += + ρ
 
for

 
1, 1mk H= − .

	

(23)

Finally, the distance of returning to the hub is:

(obs)
m md d   ,= ( )(obs) ( ) , 1

m

m
m m Hd d f= +ρ .

	
(24)

To improve selectivity of the best feeder tours, tours which 
violate conditions (11) or (12) are expunged. Thus, if  
dm > dmax then a current accumulated distance dm after (24) 
is increased exactly by the excess:

(obs)
m md d= , 

(obs) (obs) (obs)
max max2m m m md d d d d d= + − = − .	

(25)

If dm < dmin then a current accumulated distance dm after 
(24) is increased exactly by the shortage:

(obs)
m md d= , 

(obs) (obs)
min minm m md d d d d= + − = .	 (26)

Finally, sum

	

(27)

is calculated and minimized over the population.
A new population is generated based on four forms of 

chromosome mutations: flip, swap, slide, and crossover 
[16, 17, 18]. The flip operator swaps a random sequence  
of ports inside a chromosome. Going into details, a 
chromosome

( )
1 r

r
r h H

f
×

 =  F
 
by r ∈ {1, M} 	 (28)

is taken, within which the sequence 
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is extracted and flipped:
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r
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r
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and

 

2 1

( ) ( )(obs)
1

r r
h h h hf f + − +=

 1 21,h h h∀ = +  and 

( ) ( )(obs)r r
h hf f=  2 1, rh h H∀ = + .	

(30)

The flip operator returns then an updated vector (28) af-
ter (30). Indices h1 and h2 are pseudorandom integers pro-
duced by the same pseudorandom number generator that 
breaks the set of non-hub ports (19).

The swap operator randomly chooses the same-index-
and-length sequence of ports from two chromosomes and 
interchange them. The pseudorandom number generator 
produces pseudorandom integers h3 and h4, whereupon 
within two chromosomes (28) and

( )
1 q

q
q h H

f
×

 =  F
 
by

 
{ }1,q M∈

	
(31)

for r � q sequences 

{ } { }4

3

( ) ( )
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and
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h hh h h
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are interchanged:
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r
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r
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(34)

and
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q
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1 q

q
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(35)

The swap operator returns then updated vectors (28) and 
(31) after (34) and (35), respectively.

The slide operator moves the last port from each chro-
mosome to the beginning of another one. This is the only 
mutation operator that does not invoke the pseudoran-
dom number generator. The crossover operator takes two 
chromosomes (28) and (31) for r � q, whereupon they are 
either interchanged or merged. This is done with using a 
merging probability Pmerge given at the input of the genetic 
algorithm. If θ ⩽ Pmerge, where θ is a random value drawn 
(produced by the generator) from the standard uniform 
distribution on the open interval (0; 1), then chromo-
somes (28) and (31) as tours of two different feeders r and 
q are merged into a single tour: 

{ } { } { }* ( ) ( )
1 1

2,r qH Hr q
r q h hh h

f f N
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= ⊆F U U .
	

(36)
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This allows to decrease the number of feeders used to de-
liver maritime cargo. Otherwise, if θ > Pmerge then each 
chromosome is cut in two random parts. For this, integers 
hr and hq are produced by the pseudorandom number gen-
erator to leave hr first ports in chromosome (28) and to 
leave hq first ports in chromosome (31). Then the remain-
ing parts are interchanged:

( ) { } { }{ }* ( )* ( ) ( )
1 11

,r q

qr q q

h Hr r q
r h h hh h hh H h

f f f
= = +× + −
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and
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(38)

If M = 2 then 

{ }* *
1 2 2,r q N= =F FU U

and so the merged two chromosomes constitute a route of 
the delivery (apart from the hub). If the merging is done 
by M ⩾ 3 then

{ }* 2,r q N⊂F U  and { }* 2,r q N≠F U

and single tour (36) is a part of the route.

7	 Pseudorandom number generator influence

It is quite obvious that as generating the starting popu-
lation and accomplishing the flip, swap, crossover muta-
tions depend on the pseudorandom number generator 
state, the genetic algorithm iterations depend on the state. 
Nevertheless, it does not mean that the algorithm output, 
i. e. the approximately shortest route and its length after 
the last iteration, depends as deeply on the state as the 
first iteration does. While the algorithm is initialized with 
different states, its convergence might be so strong that 
the final result would be the same, whichever the state is. 
In such a case, the influence of the pseudorandom number 
generator on the genetic algorithm performance might be 
only in the convergence speed.

To ascertain whether the pseudorandom number gen-
erator state influences the route returned by the algorithm 
and its convergence speed, we denote by

( ) { }( )** *
min max1; , , , , , ; ,M

m mN s u N M d d s uΣ Σ =
ρ = ρ F
̰ ̰

	
(39)

the shortest route length found by state s and stream u of 
pseudorandom numbers in I*(N; s, u) iterations. Integer s 
is not a seed (an integer between 0 and 232 – 1) but is a se-
quential number of the state initializing a stream of pseu-
dorandom numbers to be used for randomly generating 
the starting population and accomplishing the random 
flip, swap, crossover mutations. Integer u is a sequential 

number of a sub-stream taken sequentially from the 
stream. Thus, we run the algorithm for every

{ }{ }7
110, 15, 10 10 nN n

=
∈ +

	
(40)

and s = 1, 200 (i. e., it is 10 to 80 ports). The test for pair 
{N, s} is repeated for 100 times (u = 1, 100) to obtain relia-
ble and stable statistical data. This means that, once ini-
tialized with state s, the algorithm is run for 100 times, 
where every next run is initialized and supported by con-
tinuing the stream of pseudorandom numbers (by state s). 
The percentage 
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ρ
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(41)

will show how badly the algorithm output varies at a given 
number of ports and state. We study such statistics of (41) 
as its minimal, maximal, average, and standard deviation 
values, respectively:
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will show how badly the algorithm convergence speed 
varies at a given number of ports and state. We similarly 
study minimal, maximal, average, and standard deviation 
values of (46), respectively:
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At a given N and s every port position components 
{pk1, pk2} are produced by the pseudorandom number 
generator:

pk1 = 100 · θ1 and pk2 = 100 · θ2, k = 1, N	 (51)

where θ1 and θ2 are pseudorandom numbers independ-
ently drawn from the standard uniform distribution on the 
open interval (0; 1). The maximal number of iterations is 
5000, whereas the algorithm early stop condition is used, 
by which (a run of) the algorithm is stopped if the current-
ly found shortest route length does not change for 500 it-
erations (a one 10-th of the maximal number of iterations). 
The remaining parameters are: the tour length should lie 
between

dmin = 250 and dmax = 500 	 (52)

the merging probability is Pmerge = 0.05, and the (maximal) 
number of available feeders is

( )
( )max

1 1
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N N

k j k
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N N
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(53)

where function ζ(x) rounds number x to the nearest inte-
ger towards infinity. The difference between constraints 
(11) and (12) by (52) is particularly tight, where number 
(53) is the mean distance multiplied by the number of 
ports and divided by the minimal tour length (which is 
250). This is intentionally done to study nearly the worst-
case scenario. According to (53), the number of available 
feeders is between 2 and 5 when the number of ports is 
between 10 and 20. As the number of ports increases, Mmax 
is increased as well. It is 16 to 18 feeders for 80 ports.

The statistical data of how the algorithm output varies 
versus the pseudorandom number generator state are pre-
sented in Table 1. The minimum of the length variation per-
centage is 0 for up to 20 ports. As the number of ports 

increases, the minimum increases. The maximum of the 
length variation percentage is increasing also, but it seem-
ingly has peaks at 30 to 40 ports. The average has the same 
pattern. The standard deviation does not have a distinct 
pattern. Its minimum is at 80 ports, and maximum is at 40 
ports. The plots of percentage (41) versus the pseudoran-
dom number generator state in Table 1, where the horizon-
tal line is the average by (44), show that the percentage 
stochasticity resembles a noise. The statistical data are reli-
able and stable: the overall averages in Table 1 does not 
change much as we narrow the number of pseudorandom 
number generator states (from 200) down to 100.

The statistical data of how the algorithm convergence 
speed varies versus the pseudorandom number genera-
tor state are presented in Table 2. The minimum of the 
convergence speed variation percentage is at 10 ports. 
As the number of ports increases, the minimum abruptly 
increases reaching its maximum at 70 to 80 ports. The 
maximum of the convergence speed variation percentage 
does not have the same pattern, but it is huge enough not 
dropping below 200% within the range of 30 to 80 ports. 
The average of the convergence speed variation percent-
age is increasing less abruptly, and it has a peak at 40 
ports. Nevertheless, the average is huge enough also: it 
does not drop below 100% within the range of 30 to 80 
ports, and it is more than 135% within the range of 40 to 
80 ports. The standard deviation does not have a distinct 
pattern except for a non-stable trend to decrease. Its 
minimum is at 80 ports, and maximum is at 10 to 30 
ports. The plots of percentage (46) versus the pseudor-
andom number generator state in Table 2, where the hor-
izontal line is the average by (49), show that the 
percentage stochasticity resembles a noise similar to that 
in the plots in Table 1. The only peculiarity is that the 
noise-like plot for 10 ports is cut from below at some 
pseudorandom number generator states. Amazingly 
enough, the algorithm convergence speed statistical data 
are reliable and stable as well: the overall averages in Ta-
ble 2 does not change much as we narrow the number of 
pseudorandom number generator states (from 200) 
down to 100 or even less.



256 V. V. Romanuke et al. / Scientific Journal of Maritime Research 36 (2022) 249-262

Table 1 Statistics of the algorithm output variation by percentage (41)

Statistics of (41)
Plot of percentage (41) versus the pseudorandom number  

generator stateMinimum 
by (42)

Maximum 
by (43)

Average 
by (44)

Standard 
deviation 

by (45)

N

10 0 21.2568 3.3866 4.1971

15 0 22.1689 9.8544 5.332

20 0 25.9913 13.4554 4.1506

30 10.1196 36.2552 21.9453 6.0325

40 9.5097 36.4187 21.6446 6.2765

50 9.0205 31.1044 15.7445 4.3032

60 10.3096 30.8677 17.4724 4.6683

70 11.1106 30.4186 20.0754 4.4597

80 13.1976 31.4215 22.3306 3.3899

Overall 
average 7.0297 29.5448 16.2121 4.7567

Source: Authors
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Table 2 Statistics of the algorithm convergence speed variation by percentage (46)

Statistics of (46)
Plot of percentage (46) versus the pseudorandom number  

generator stateMinimum 
by (47)

Maximum 
by (48)

Average 
by (49)

Standard 
deviation 

by (50)

N

10 2.1956 126.1297 48.7671 41.7183

15 9.1954 154.2146 61.4868 37.0163

20 13.7112 128.5714 59.8877 30.0487

30 33.28 232.5321 104.3324 40.9385

40 92.2194 282.684 162.6262 32.1158

50 91.967 209.9783 144.8646 23.9795

60 91.965 234.1051 137.0457 29.3096

70 98.8651 203.0236 142.8845 23.5172

80 101.2514 202.1148 143.11 22.6291

Overall 
average 59.4056 197.0393 111.6672 31.2526

Source: Authors
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As we see, the algorithm performance does deeply de-
pend on the pseudorandom number generator. The algo-
rithm convergence speed is influenced far deeper than the 
factual output (the shortest route length). However, the 
minimum of the shortest route length equal to

( ) ( )** *

1, 100
; min ; ,

u
N s N s uΣ Σ

=
ρ = ρ
̰ ̰

	
(54)

for each pair {N, s} is unlikely to be reached fast, after a 
few starting reruns of the algorithm. This is shown as fol-
lows. For each pair {N, s} we calculate the average number 
of algorithm reruns taken to make inequality 

	
(55)

true (checked over u = 1, 100) for the first time for a factor

μ ∈ {0, 1, 3, 4, 5, 7.5, 10}.	 (56)

Factor μ = 0 implies the average number of algorithm re-
runs to reach minimum (54) itself. Factor μ = 1 implies the 
average number for reaching the shortest route length 
within 1% tolerance with respect to minimum (54) (i. e., 
the length will not exceed 1% over the minimum). Factor  
μ = 10 implies the average number by which the length 
will not exceed 10% over the minimum. The distribution 
of the average number versus the number of ports and fac-
tor (56) is presented in Table 3. Obviously, it takes less al-
gorithm reruns to reach the shortest route length differing 
from minimum (54) by a greater deviation. Besides, it 
takes a greater number of reruns as the number of ports 
increases. To reach minimum ρ͂**

Σ(10; s) (in other words, to 
solve a route length minimization problem for 10 ports in 
the best way), the algorithm should be re-run for 3 times 
(the average number ceiling). Roughly the same concerns 
the problem with 15 ports. To reach minimum ρ͂**

Σ(20; s), it 
expectedly will take 5-6 reruns. For more than 20 ports 
the required number of algorithm reruns abruptly in-
creases: it is about 28 reruns for 30 ports and 42 to 51 re-
runs within the range of 40 to 80 ports. The minimum 
with 1% tolerance is reached faster – it is approximately 

twice as faster for 50 to 70 ports, although it still takes 
over 30 reruns to reach length 1.01 · ρ͂**

Σ(80; s). Meanwhile, 
we notice that the statistics for 40 ports apparently has a 
computational artifact – the average number of algorithm 
reruns remains too big even at 4% to 10% tolerance. The 
artifact is noticeable at μ = 3, though. It must be clear that 
the peak at 40 ports mentioned above for both Tables 1 
and 2 is related to this artifact.

The genetic algorithm performance is indeed increased 
by re-running the genetic algorithm in accordance with Ta-
ble 3. For 10 to 20 ports, the algorithm reruns can be easily 
parallelized. Ignoring this recommendation leads to losses 
in the accuracy – see the average percentage by (44) in Ta-
ble 1. An example of the potential loss for 10 ports, where a 
single feeder is used, is presented in Figure 1, where the dif-
ference between the best and worst solutions is 21.2568% 
(this is the maximum seen in Table 1). In maritime cargo 
delivery, this is a huge loss (because the delivery cost unrea-
sonably increases by more than one fifth).

A far more demonstrative example, for 30 ports, is pre-
sented in Figure 2. The same problem is solved by the 
same algorithm by two different pseudorandom number 
generator states, and the difference between two solutions 
is 36.2552% (this is the maximum seen in Table 1). This is 
an extremely huge loss – the delivery cost unreasonably 
increases by more than one third. Moreover, the worst 
route is covered by two feeders, whereas the best route is 
covered by a single feeder. An interesting fact is that the 
worst route is found in 835 iterations, and the best route 
can be found in either 1056 or 740 iterations. Consequent-
ly, a pseudorandom number generator state may exist (ini-
tializing a stream of pseudorandom numbers) such by 
which both the algorithm accuracy and its convergence 
speed are better than for other states.

The statistical data also have shown that in most cases 
the worst route is not obtained by the worst convergence 
speed (the maximal number of iterations), and the best 
route is not obtained by the best convergence speed (the 
minimal number of iterations). Admittedly, a few exclu-
sions from this experience exist. Thus, an instance with 20 

Table 3 The average number of algorithm reruns to make inequality (55) true

μ 0 1 2 3 4 5 7.5 10

N

10 2.315 2.195 2.02 1.945 1.935 1.46 1.005 1
15 2.035 1.56 1.37 1.19 1.145 1.07 1.02 1
20 5.265 3.235 2.475 2.105 1.81 1.72 1.215 1.045
30 27.42 10.265 5.4 3.88 2.59 2.215 1.66 1.18
40 42.185 25.595 18.97 13.195 11.415 9.475 7.01 5.195
50 44.605 20.505 11.01 7.23 5.98 4.975 3.665 1.515
60 49.54 24.92 11.945 5.7 4.465 3.63 2.99 2.54
70 50.445 25.58 13.745 7.35 5.27 3.52 1.65 1.26
80 47.485 32.09 16.45 9.065 5.09 3.495 1.845 1.205

Source: Authors
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ports (in a rerun out of 100 reruns) and an instance with 
50 ports (in a rerun out of 100 reruns) have been solved 
the worst (out of 200 instances each) by the worst conver-
gence speed. The best route has been obtained the fastest 
in 11 instances: 2 ones with 10 ports, 3 ones with 15 ports, 

and 6 instances with 30 ports. The pattern “the best route 
converges the longest” is slightly more likely than the pre-
vious two patterns: 5 instances with 20 ports, 16 instanc-
es with 50 ports, 2 instances with 60 ports, and 8 instances 
with 70 ports have had the shortest routes obtained in the 
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Figure 1 The best (on the left, the route length is 292.2456) and worst (on the right, the route length is 354.3676) solutions 
(out of 100 solutions) of an instance with 10 ports
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638.5203 covered by two feeders whose tour lengths are 266.6763 and 371.844) solutions (out of 100 solutions) of an instance with 
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maximal number of iterations. Finally, the pattern “the 
worst route converges the fastest” is significantly likely 
than the previous one: there are 8, 12, 11, 10, 9, 8, 12, 13 
instances (4% to 6.5% of 200 instances) with 15 to 80 
ports whose longest routes have been obtained in the min-
imal number of iterations.

8	 Practical applicability and significance

Our approach justified above consists in solving the 
same route length minimization problem for a definite 
number of times and then selecting the solution whose 
route length is minimal. The number of algorithm reruns 
can be taken from Table 3 as the average number ceiling 
depending on the desired accuracy. Our recommendation 
for the accuracy is factor μ ∈ [0; 3]. The solving can be ei-
ther parallelized or fulfilled sequentially. Therefore, it is an 
easy-applicable procedure. 

This approach is very significant for maritime cargo 
delivery. In addition to the examples in Figures 1 and 2 
showing the potential loss if the algorithm is not re-run, 
Figure 3 presents another staggering example for an in-
stance with 80 ports. The best route, whose length is 
757.2124, is covered by two feeders whose tour lengths 
are 266.6763 and 371.844. The worst route, whose length 
is 995.1403, is covered by three feeders whose tour 
lengths are 373.6182, 371.7376, and 249.7845. So, one of 
those three feeders will not cover the minimal tour length 
(which is 250). The best route, that obviously can be found 
only by re-running the algorithm, thus spares here a feed-

er and reduces expenses for maritime cargo delivery by 
31.4215%. This is a tremendously significant saving. It is 
worth noting that the best route has been found in 2687 
iterations, whereas the worst one has taken 2179 itera-
tions. The patterns “the best route converges the longest” 
and “the worst route converges the fastest” are true here.

Some variation may exist inside the algorithm itself. Its 
inner parameters are adjustable. In expunging tours with 
conditions (11) or (12), much higher penalties might have 
been used. For instance, it is

(obs)
m md d= , 

(obs)
m md d= +

( )(obs) (obs)
max max100 101 100m md d d d+ ⋅ − = −

	
(57)

instead of (25), and it is

(obs)
m md d= , 

(obs)
m md d= +

( )(obs) (obs)
min min100 100 99m md d d d+ ⋅ − = −

	
(58)

instead of (26). However, the higher penalty does not im-
ply the better selectivity. The respective counterexample is 
presented in Figure 4, where the port position compo-
nents are generated as 

pk1 = 50 · θ1 and pk2 = 50 · θ2, k = 1, 15.

Even this almost trivial route length minimization problem 
clearly confirms that re-running the genetic algorithm, 
whichever its inner and input parameters are, is necessary 
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Figure 3 The best route (left) covered by two feeders and the worst route (right) covered by three feeders, where one of the three 
tours violates the lower limit constraint (11)
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for assuredly obtaining the route length practically close 
to the minimal length of the delivery route.

The algorithm does converge but the convergence re-
sult is not a single route or routes of the same length. Some 
variation of the convergence result exists. It depends on 
the stream of pseudorandom numbers. Re-running the al-
gorithm reveals the core of the variation by trying a series 
of different streams.

It is necessary to remind that we have tested the pseu-
dorandom number generator influence by studying nearly 
the worst-case scenario. In our scenario, the feeder tour 
length is tightly constrained from 250 to 500. In other sce-
narios, where the tour length constraints are looser, the 
algorithm performance is instable also and requires re-
running to obtain an acceptable solution. Despite our 
model of delivering cargo is very simple, the constraints 
make it practically applicable.

9	 Conclusion

We have ascertained that the pseudorandom number 
generator dramatically influences the genetic algorithm 
performance. Both the algorithm accuracy and its conver-
gence speed are influenced deeply depending on the 
stream of pseudorandom numbers used for randomly gen-
erating the starting population and accomplishing random 
mutations. As the number of ports increases from 10 to 

80, the route length variation intensifies from 3.5% to 
22.5% on average. The algorithm accuracy is increased by 
re-running the algorithm to solve the same problem until 
closely the best solution is obtained. The number of reruns 
is taken from Table 3 as the average number ceiling. As the 
number of ports increases, the number of reruns should 
be taken greater depending on the desired accuracy. For 
instance, to definitely increase the genetic algorithm per-
formance in solving route length minimization problems 
with 40 ports and more, the algorithm should be re-run 
for no less than 51 times, whereupon the solution whose 
route length is minimal is selected (out of those 51 solu-
tions or more). Expenses for maritime cargo delivery are 
thus dramatically reduced. Therefore, our approach is a 
substantial scientific and valuable practical contribution 
to the field of genetic algorithms used, in particular, to op-
timize maritime cargo delivery.

In our set-up of testing the pseudorandom number gen-
erator influence, we generated port position components by 
the standard normal distribution. This made the set of ports 
look like it is a center-based cluster rather than, e. g., a cres-
cent or curvilinear coast stretched in one direction. A way of 
possible extension of our research is to consider other mod-
els of generating port position components and study 
whether the pseudorandom number generator influence 
remains the same. Although we suppose that the influence 
does not depend on the pattern of how ports are scattered 
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Σ(15; s, 1) = 183.4649 returned by penalties in (25), (26), 

and the route (right) of length ρ͂**
Σ(15; s, 2) = 187.5093 returned by penalties in (57), (58)
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with respect to the hub, such a study would be a generaliza-
tion of the presented study. The latter may have a spin-off 
research of selecting the best pseudorandom number gen-
erator type: along with the Mersenne Twister generator we 
used in the presented study, other generators may be used 
[24, 25, 26] differing in the pseudoindependence level of 
their stream numbers [22, 23].
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