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ABSTRACT

This paper studies the modelling of a class of nonlinear plants with known structures but
unknown parameters and proposes a general nonlinear U-model expression. The particle swarm
optimization algorithm is used to identify the time-varying parameters of the nonlinear U-model
online, which solves the identification problem of the nonlinear U-model system. Newton itera-
tive algorithm is used for nonlinear model transformation. Extended Kalman filter (EKF) is used
as the learning algorithm of radial basis function (RBF) neural network to solve the interference

ARTICLE HISTORY
Received 21 August 2021
Accepted 7 March 2022

KEYWORDS

U-model; particle swarm
identification; extended
Kalman filtering; neural

problem in a nonlinear system. After determining the number of network nodes in the neural network control
network, EKF can simultaneously determine the network threshold and weight matrix, use the
online learning ability of the neural network, adjust the network parameters, make the system
output track the ideal output, and improve the convergence speed and anti-noise capability of
the system. Finally, simulation examples are used to verify the identification effect of the parti-
cle swarm identification algorithm based on the U-model and the effectiveness of the extended
Kalman filtering neural network control system based on particle swarm identification.
Nomenclature Vv the threshold parameters of the neural net-
work
t the actual output of the nonlinear controlled . .
) plant P l the number of hidden nodes in the neural
. network
M the order of the nonlinear controlled plant .
ai(t) the time-varying coefficient of the con Al the control interference
J Ying . g6(1) the actual output of the RBF network
trolled plant of the nonlinear system
u(t-1) the control input of the nonlinear controlled
plant . 1. Introduction
e(t) the error caused by uncertainty factors of
nonlinear system In the actual production process, nonlinear character-
Xi the position vector of the i-th particle istics are ubiquitous, especially with the rapid develop-
Vi the velocity vector of the i-th particle ment of large machinery informatization, intelligence,
pi the individual extreme value of the popula- and integration; the research of nonlinear systems has
tion become particularly important. With the deepening of
Pe the global extreme value of the population the study on the nonlinear theory, researchers have
® the search step of the population achieved good results, and many nonlinear research
c1/c2 the learning rates of the population results have been applied to actual production. At the
r/r mutually opposite pseudo-random numbers ~ same time, due to the continuous improvement of the
m Number of particle swarm populations production process and the higher precision of the pro-
n Search dimensions for each particle cess demands, the nonlinear characteristics also show
k the number of iterations an increasingly complex trend. However, the design
U(t) the controller output of the nonlinear U-  of a nonlinear control system with good performance
model system and is also the input of newton ~ requires a precise nonlinear model. The nonlinear sys-
iterative algorithm tem’s increasing complexity limits the production pro-
0 the state parameter cess’s precision to a certain extent, which prompts more
w the weight parameters parameters of the  researchers to study the model and control problems of

neural network

the nonlinear system. Due to the ubiquity of nonlinear
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characteristics and the inherent complexity of nonlin-
ear time-varying systems, it isn’t easy to establish a
general and high-precision mathematical model, which
is also the premise and foundation for designing a non-
linear control system. A nonlinear U-model is proposed
based on the nonlinear autoregressive moving average
model [1,2]. In [3], a dynamic inversion algorithm of
the U model was designed based on the U model of
continuous-time (CT) system described by polynomi-
als and state space. When using U-model to represent
the nonlinear model, there is no loss of model accu-
racy, which improves the accuracy of nonlinear plant
modelling. For complex nonlinear systems, there are
many factors that affect the modelling, which leads to a
large difference between the ideal model of the system
and the actual model. Therefore, model identification
becomes a method to improve the modelling accuracy.
In [4], the least square method was used to identify
the U-model coeflicients of stochastic nonlinear plant,
and the radial basis neural network was used as the
controller. Considering that the number of U-model
coefficients of random plant is known, a minimum
performance index was proposed, and a variable learn-
ing operator was constructed by using the least mean
square deviation method to update the coefficients of
U-model and the weights of radial basis neural net-
work. Assuming that all parameters of the U-model
were completely unknown, the unknown plant was
identified by the weighted iterative least square method
using the U-model framework, the time-varying coeffi-
cients of the proposed U-model expression were iden-
tified, and the convergence of online identification of
time-varying parameters was proved [5]. In [6], the
U-model was used to express the unknown MIMO
bilinear system model, and the radial basis function
neural network was used to identify the MIMO bilin-
ear plant model online. In [7], a coupling multivari-
able underactuated nonlinear adaptive U-model con-
trol method is designed. In [8-17], for the nonlinear
plant with an unknown model structure, the neural
network model was used to approximate the nonlinear
plant, and the structure of the plant is identified online
using the adaptive filter. In [18], a U-model-based two-
DOF internal model control (UTDEF-IMC) structure is
proposed to accommodate modelling errors and dis-
turbances while eliminating linearization techniques
widely used in nonlinear models. Other identification
methods of nonlinear plant based on U model are still
worth exploring.

The neural network has good generalization ability,
and the network structure is simple, which can avoid
complex mathematical calculations. Research on the
function approximation capability of RBF neural net-
works shows that RBF neural networks can approach
any nonlinear function with any precision. Therefore,
RBF neural network has attracted much attention in
nonlinear control research, and some research results

have been obtained. With the known order of nonlinear
U-model plant, Chang et al. [19] used the least-squares
algorithm to identify unknown parameters of nonlin-
ear U-model plant and designed a radial basis function
neural network (RBFNN) online controller. In [20],
based on a pole placement PID controller designed, a
composite control method of RBF and PD was pro-
posed for the tracking control of nonlinear dynamic
systems. The proposed scheme combined the stability
of PD and the ability of the RBF to approximate any
function with any precision and combined the control-
oriented nature of the U-model to achieve accurate
tracking of nonlinear plants. In order to control the
pitch angle of wind turbine blades in the rated power
area, the controller of the RBF network was proposed
n [21]. Aiming at the stability problem of nonlin-
ear systems, a neural fuzzy hybrid controller based on
radial basis function network (HNFRBFN) was pro-
posed in [22]. The paper [23] proposed a model ref-
erence adaptive speed controller based on an artificial
neural network for induction motor drives, where RBF
is utilized to compensate for the unknown nonlinear-
ity in the control system adaptively. In [24], an adaptive
algorithm of radial basis function neural network is
designed. By automatically updating the weights and
network parameters and adjusting the adaptive con-
troller, the output of the controlled nonlinear object can
be completely tracked to the ideal output. These control
methods used traditional gradient descent backprop-
agation learning algorithms for network training. In
the learning algorithm based on the gradient descent
method, the neural network weights were updated in
the negative gradient of the error cost function to
achieve the global minimum. Although the design pro-
cess of this method was simple, it made the network
easy to fall into local minimum value and slow conver-
gence speed [25]. In order to solve this problem, some
improved methods were proposed, including modified
learning rates and momentum factors [26]. In [27], a
universal U neural network structure is proposed to
facilitate the design and control of all dynamic sys-
tems modelled by nonlinear polynomial equations. But
in many cases, these improved methods add computa-
tional complexity. When there is noise interference in
the control system, it will reduce the network’s learn-
ing ability. Therefore, this paper uses the extended
Kalman filtering algorithm to improve the neural net-
work learning algorithm.

In the case of slow time variation, due to the
multi-objective optimization ability of particle swarm
optimization algorithm and its fast convergence abil-
ity, for the nonlinear plants with known structure
and unknown parameters, this paper uses the particle
swarm identification algorithm to identify the time-
varying parameters of the U-model online and solve the
identification problem of nonlinear U-model system.
Considering the influence of control interference on the



system, in order to improve the learning ability of the
neural network, an extended Kalman filter neural net-
work control system is proposed. The extended Kalman
filtering algorithm is used as the learning algorithm of
the RBF neural network, and the weights and parame-
ters of the neural network algorithm are adjusted online
to complete the design of the nonlinear control system.

The rest of this article is organized as follows. The
second section mainly discusses the establishment of
the nonlinear U model and the basic knowledge of par-
ticle swarm optimization algorithm. In Section 3, the
overall structure of the nonlinear U model control sys-
tem is studied. In Section 4, the online identification of
time-varying parameters of the U model is presented.
In Section 5, the U model is transformed. In Section
6, we discuss using EKFRBF to deal with models that
do not match Newtonian iterations. In Section 7, we
simulate the optimized U model. Finally, the thesis is
summarized.

2. Basic knowledge
2.1. Nonlinear U-model

In 2002, the concept of nonlinear U-model was pro-
posed in [2]. It establishes a general mapping, which can
represent a large class of nonlinear controlled plants. Its
expression is as follows:

M
y(t) =) oty (t — 1) + e(t) (1)
j=0
In Eqaution (1), y(t) represents the actual output of
the nonlinear controlled plant, M represents the order
of the nonlinear controlled plant, c;(t) represents the
time-varying coefficient of the controlled plant of the
nonlinear system, which is a function of y(t — 1),
y(t—2), -yt —n), u(t —2), - -,u(t —n) and e(t —
1), e(t — 2),---, e(t — n). u(t — 1) represents the con-
trol input of the nonlinear controlled plant. e(t) repre-
sents the error caused by uncertainty factors of non-
linear system, such as modelling error and external
interference.

2.2, Particle swarm optimization algorithm

Particle swarm optimization is a swarm intelligence
optimization algorithm based on biological popula-
tion simulation. It has the characteristics of sim-
ple structure and easy implementation. The particle
swarm optimization algorithm expresses each possi-
ble solution as a particle in the population. Each par-
ticle has a corresponding position vector and veloc-
ity vector. The fitness of each particle is determined
according to the plantive function. The optimal global
value is found by updating the current optimal value.
Assume in an n-dimensional search space. In a pop-
ulation of m particles of an n-dimensional search
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Figure 1. Schematic of the particle positions updated.

space, where the position vector of the i-th parti-
cle is xj = (xi1, Xi2, - - - Xin), its velocity vector is v; =
(vi1, Uiz, - * *» Uin), the individual extreme value of the
population is p; = (pi1,pi2,- - - Pin)» and the global
extreme value is pe = (Pg1, Pg2, - - - Pgn)> the updated
formula of the individual position vector and velocity
vector of the population is as follows:

k+1 _ k k k
vy = v+ an (pf — xy)

k k —
+czr2(pgd—xid) ,d=1,..

k1 _ k k
Xig =Xjgt+ Uy

Ln (2)

where, w represents the search step of the population, ¢;
and ¢; represent the learning rates of the population, r;
and r, are mutually opposite pseudo-random numbers,
subject to the uniform distribution on the interval [0,1],
U € [—Umaxs Umax)> and Upay is the normal number.

The initial position vector xf.‘d and velocity vector
U!fi of each particle is updated according to the cur-
rent individual velocity, memory, and population influ-
ence of each particle, the current optimal position and
global optimal position of each particle, and the posi-
tion vector and velocity vector of each particle at the
next moment are updated.

In summary, the updating method of particle posi-
tion is shown in Figure 1.

3. Control structure of nonlinear U-model

The nonlinear control system based on U-model is
designed. Particle swarm optimization algorithm is
used to identify time varying parameters of nonlinear
U-model. The model transformation is completed by
newton iteration algorithm. The neural network is used
as the controller of the nonlinear U-model system. The
extended Kalman filtering algorithm is used to optimize
the neural network controller to ensure the stability of
the system and improve the disturbance rejection per-
formance of the system. The extended Kalman filtering
neural network control system based on particle swarm
identification is shown in Figure 2.

When the input error exists due to various fac-
tors, a particle swarm optimization algorithm is used
to find the optimal time-varying parameters to reduce
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Figure 2. Diagram of extended Kalman filtering neural network control system based on particle swarm identification.

u(tfl)

»  Nonlinear U- model

Particle swarm 77N\
| optimization \__/

Figure 3. Structure diagram of identification of U-model by
particle swarm optimization algorithm.

the error. The particle swarm optimization algorithm
needs to update the nonlinear object model to com-
plete the system control, so it has certain limitations
on the tracking speed of the nonlinear system based
on the U-model, which leads to a certain tracking error
of the system. Therefore, Newton iterative algorithm is
used to transform the nonlinear U-model. There may
be a deviation between U-model and Newton iterative
algorithm. The output of the controlled object is adap-
tively tracked to the expected output of the nonlinear
U-model by EKFRBF neural network.

4, Particle swarm algorithm identification

Since the particle swarm optimization algorithm has
multi-plantive optimization and fast convergence, the
particle swarm optimization algorithm can be used to
identify the time-varying parameters of the nonlinear
U-model, and the i-th time-varying parameter in the U-
model is regarded as the i-th particle in the population.
The structure is shown in Figure 3.

The specific steps of identifying the time-varying
parameters of U-model by particle swarm optimization
algorithm are as follows:

(1) Establish a population of m particles, initialize the
position vector and velocity vector of each particle;

(2) The position vector of each particle is taken as
the time-varying parameter of the U-model, and
then the fitness value of each particle is calculated
according to the fitness formula fitness = %ez ();

(3) Update the current optimal position p; and global
optimal position p, of each particle;

(4) Update the position vector and velocity vector of
each particle according to (2);

(5) Determine whether the number of iterations
reaches the set value, and if the termination condi-
tion is met, the algorithm is terminated; Otherwise,
return step (2).

In summary, the process of using the particle swarm
optimization algorithm to identify the time-varying
parameters of the U-model is shown in Figure 4.

5. Nonlinear model transformation

Newton iterative algorithm can be used to solve
the polynomial (1), which provides a transformation
method for the nonlinear U-model, and can improve
the response speed and control accuracy of the non-
linear system. The output of the newton iteration for-
mula is u(t — 1). The newton iteration formula can be
described as:

Upp1(t—1) = u(t — 1)

M .
;)aj(t)dk(t - 1) -U®
j:

M .
d [Z aj(Hu (t — 1)] Jdu(t — 1)
j=0 W(t—1)=u (t-1)

3)

In Equation (3), k is the number of iterations, the itera-
tion of k 4 1 times is obtained from k iterations, k > 0.
U(t) represents the controller output of the nonlinear
U-model system and is also the input of newton itera-
tive algorithm. The input of nonlinear U-model plant
can be calculated by newton iterative algorithm (3).
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Figure 5. Diagram of nonlinear model transformation.

Newton iterative algorithm is used to transform the
nonlinear U-model, and its transformation structure is
shown in Figure 5.

It can be seen from Equations (1) and (3) that the
newton iteration formula and the U-model are inverse
functions of each other. When the iterative algorithm
is completely inversed with the U-model, the model
transformation of system is matched, which is equiv-
alent to cancelling the nonlinear part, y(t) = U(¢), and
the system output can completely track the input; When
the iterative algorithm is not completely inversed with
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the U-model or the calculation order of the iterative
algorithm is limited, the system model transformation
has deviation. In the actual nonlinear system, the U-
model cannot completely describe the nonlinear plant
completely. And it is difficult to completely match the
U-model with the newton iteration formula. Therefore,
it is necessary to design the controller to complete the
control requirements.

6. Design of EKFRBF network control system

The extended Kalman filtering algorithm is used as
the learning algorithm of neural network to optimize
the neural weights and threshold parameters. The state
space equation obtained by combining RBF neural net-
work with extended Kalman filtering expression is as
follows:

O(t+1) =6()
U(t) =g ®) + A (4)

In Equation (4), 0 = [W V]T is the state parame-
ter, W and V are the weight parameters and threshold
parameters of the neural network, respectively. W =
(wi wa - wil, V=[w@® - v® - w®)]. Lis
the number of hidden nodes in the neural network.
A(t) is the control interference, which is white noise
with constant variance. g(6(¢)) is the actual output of
the RBF network. U(¢) is the output of the RBF neu-
ral network controller with disturbance, and is also the
input of newton iterative algorithm.

The hidden layer output of the RBF network is:

hi®) = [lym(® — viOI> + 217 (5)
In Equation (5), y and p are constants, H =
G) hi(t) h(b)]-
The output of the RBF neural network controller, ie
the input of the newton iteration algorithm, is:

Ut) = W H' + A®b) (6)

The partial derivative of U(t) is:

U@ | U@ [GW] )
Taw) v |Gy
Gw = [m(® o) m®]"

T
where, o _ —Zl"%pwl(t)hj(ym(t) —vi(®)---
v —Z%Wl(t)hl(ym(t) —vi(1)
The Kalman gain is:

K=PxGx (G «P%xG)~! (8)
The error covariance matrix:

P=P—-KxG «P+Q 9)
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The update algorithm of neural network weights and
threshold parameters is:

0 =0+ Kx* (yu(t) — U®)) (10)

The neural network is trained by the extended
Kalman filtering algorithm, and the network parame-
ters are adjusted. The controlled plant output is adap-
tively tracked on the desired output of the nonlinear
U-model system.

7. Simulation

Through two nonlinear plants, the identification effect
of particle swarm identification algorithm on nonlinear
U-model plants is verified first, and then the validity
of extended Kalman filtering neural network control
system based on particle swarm identification is veri-
fied when the nonlinear U-model system has control
interference.

7.1. Simulation of particle swarm identification

The laboratory liquid level system and continuous
stirred tank reactor were selected as nonlinear plants to
verify the effectiveness of particle swarm optimization
algorithm in identifying nonlinear U-model.

Particle swarm optimization algorithm parameters
[28]:m =20,n=1,w = 0.5, ¢c; = ¢c; = 1, The initial-
ization values of position vector and velocity vector
are random numbers, both of which follow normal
distribution, and the maximum number of cycles is 30.

Simulation 1: the U-model of the laboratory level
system is as follows:

y() = ap(t) + ar(Hu(t — 1)
where,

ao(t) = 0.9722y(t — 1) — 0.04288y*(t — 2)
+ 0.1663y(t — 2)u(t — 2)
+0.2573y(t — 2)e(t — 1)
— 0.03259)%(t — 1)y(t — 2)
—0.3513y%(t — Du(t — 2)
+ 0.3084y(t — D)y(t — 2)u(t — 2)
+0.2939y%(t — 2)e(t — 1) — 0.1295u(t — 2)
+0.6389u%(t — 2)e(t — 1)

) (t) = 0.3578 — 0.3103y(t — 1)
+ 0.1087y(t — 2)u(t — 2)
+ 0.4770y(t — 2)e(t — 1)

The triangular and sinusoidal waves are selected as

input signals for simulation, and the simulation results
of identifying unknown nonlinear U-model plant using

1.5 T T T T T
Nonlinear controlled plant output
1= mrm——— Particle swarm identification output H
0.5+ A
0] -
-~ 05 4
3
o
=
[SI i
1.5 N
2 1 d
2.5~ 4
_3 r r r r r
0 1 2 3 4 5 6

time

Figure 6. Output graph of particle group identification.
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Figure 7. Error graph of particle swarm identification.
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- Particle swarm identification output |

1

0.5

0

-0.5
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0

time

Figure 8. Output graph of particle group identification.
particle swarm optimization algorithm are shown in
Figures 6-9.

Simulation 2: the U-model of the continuous stirred
tank reactor can be expressed as:

y(t) = ao(t) + a1 (Hu(t — 1)
+ar (O (t— 1) + az(Hu’(t — 1)
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Figure 9. Error graph of particle swarm identification.
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Figure 10. Output graph of particle group identification.

where,

ap(t) = 0.8606y(t — 1) — 0.0401y*(t — 1)
+0.0017y°(t — 1) — 0.000125y*(t — 1)
a1 (t) = 0.0464 — 0.045y(t — 1)
+0.0034y*(t — 1) — 0.00025y°(t — 1)
ay(t) = —0.0012 + 0.0013y(t — 1)
— 0.0001458y*(t — 1)
a3(t) = 0.00002083 — 0.00002083y(t — 1)

The triangular and sinusoidal waves are selected as
input signals for simulation, and the simulation results
of identifying unknown nonlinear U-model plant using
particle swarm optimization algorithm are shown in
Figures 10-13.

The relation between the iterative relation of particle
swarm and fitness function is shown in Figure 14:

It can be seen from the output graph of particle group
identification that when the triangular wave and the
sinusoidal wave are used as inputs, the output of particle
swarm identification algorithm can track the output of
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Figure 11. Error graph of particle swarm identification.
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Figure 12. Output graph of particle group identification.

the nonlinear U-model plant well; As can be seen from
the error graph of particle swarm identification, particle
swarm algorithm has little error in identifying nonlin-
ear U model objects, and the identification accuracy is
relatively high.

7.2. Simulation of neural network control system

Laboratory level system and continuous stirred tank
reactor are used as nonlinear controlled plants to ver-
ity the effectiveness of extended Kalman filtering neu-
ral network control system based on particle swarm
identification.

The structure of RBF neural network adopts 1-7-1,
90% of the dataset as a training set, 10% as a test set
and the initial values of neural network weights and
threshold parameters are all 0. Q=0.1, y =1, p=
3[26]. Particle swarm optimization algorithm parame-
ters:m =20,n =1, w = 0.5, c; = ¢ = 1, The initial-
ization values of position vector and velocity vector are
random Numbers, both of which follow normal dis-
tribution, and the maximum number of cycles is 30.
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Figure 13. Error graph of particle swarm identification.
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Figure 14. Particle swarm fitness.

The control interference A(t) is a random interference
signal with an amplitude of 0.01.

Simulation 1: The U-model expression of the labo-
ratory level system is:

y() = op(t) + a1 (Hu(t — 1)
where,

ao(t) = 0.9722y(t — 1) — 0.04288y*(t — 2)
4 0.1663y(t — 2)u(t — 2) + 0.2573y(t — 2)
s e(t — 1) — 0.03259y*(t — D)y(t — 2)
—0.3513y%(t — Du(t — 2) + 0.3084y
* (t— Dyt —2)u(t —2)
4 0.2939y2(t — 2)e(t — 1) — 0.1295u(t — 2)
+ 0.6389u%(t — 2)e(t — 1)

a1 (t) = 0.3578 — 0.3103y(t — 1) 4 0.1087y
* (t = 2)u(t — 2) + 0.4770y(t — 2)e(t — 1)
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Figure 15. System output response under triangular wave
input.
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Figure 16. System response error under triangular wave input.

Under the influence of disturbance, the input signal
selects the triangle wave and the sine wave respectively
for simulation. The simulation results of the system out-
put and system response error are shown in Figures
15-18. Figures 15 and 17 are system output responses,
and Figures 16 and 18 are system response errors.

Simulation 2: the U-model of the continuous stirred
tank reactor can be expressed as:

y(#) = ao(t) + ar(Hu(t — 1)
+aaud(t— 1) +asu’(t— 1)

where,

ap(t) = 0.8606y(t — 1) — 0.0401y*(t — 1)

4 0.0017y>(t — 1) — 0.000125y*(t — 1)
a1 (t) = 0.0464 — 0.045y(t — 1)

+ 0.0034y*(t — 1) — 0.00025y° (¢ — 1)
ay(t) = —0.0012 + 0.0013y(t — 1)

— 0.0001458y*(t — 1)



1.5 T T T T T T

Extended Kalman filter

--------- Gradient descent method

0.5

T

15 1 L 1 1 1 I 1 1 1
0 20 40 60 80 100 120 140 160 180 200

time

Figure 17. System output response under sinusoidal input.
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Figure 18. System response error under sinusoidal input.

a3(t) = 0.00002083 — 0.00002083y(t — 1)

Under the influence of disturbance, the input signal
selects the triangle wave and the sine wave respectively
for simulation. The simulation results of the system out-
put and system response error are shown in Figures
19-22. Figures 19 and 21 are system output responses,
and Figures 20 and 22 are system response errors.

It can be seen from the simulation results that
the extended Kalman filtering neural network con-
trol system based on particle swarm identification can
track the expected output well in the presence of con-
trol interference. Compared with the gradient descent
method, the extended Kalman filtering algorithm is
used as the learning algorithm of the RBF neural net-
work, which makes the system have a better control
effect, faster response speed, smaller response error,
and smoother output. In addition, when the system
starts to respond, the response error has no obvi-
ous jump change, which can reduce the unnecessary
wear and tear of the controlled device and prolong
the device’s service life. The simulation results show
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Figure 19. System output response under triangular wave
input.
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Figure 20. System response error under triangular wave input.
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Figure 21. System output response under sinusoidal input.

that the proposed algorithm improves the convergence
speed and anti-noise capability compared with the gra-
dient descent method.
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Figure 22. System response error under sinusoidal input.

8. Conclusions

In this paper, the U model framework is directly used
to establish the nonlinear model through online iden-
tification under slow time variation. For the nonlinear
U-model plant with known structures but unknown
parameters, a particle swarm optimization algorithm
is used to identify the time-varying parameters of the
nonlinear U-model, and a better identification result
is obtained. The identification error is small, and the
accuracy is high. The newton iterative algorithm is
introduced to transform the nonlinear plant model.
The extended Kalman filtering neural network control
based on particle swarm identification is proposed as
the control scheme of the nonlinear U-model system.
Considering that the interference in the nonlinear sys-
tem will lead to the decline of network learning ability,
the extended Kalman filtering algorithm is introduced
in the learning of RBF neural network to reduce the
influence of the disturbance on the stability and accu-
racy of the system, improve the control effect and the
anti-interference of the system, and realize the accurate
control of the complex nonlinear system.
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