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ABSTRACT
The traditional adaptive cruise system is responsible for delay in recognizing the cut-in/cut-out
behaviour of front vehicle, and there is significant longitudinal acceleration of the vehicle fluctu-
ation leading to reduced driver’s comfort level and even dangerous situation. In this paper, the
next generation simulation data set and back propagation (BP) neural network are used to train
the vehicle lane change recognition model to recognize the lane change behaviour of the pre-
ceding vehicle. The higher controller adopts variable weight linear quadratic optimal control to
adjust the weight parameters according to the recognition results of front vehicle to reduce the
fluctuation of vehicle acceleration. The lower layer adopts fuzzy proportional-integral-derivative
(PID) control to follow the expected acceleration and builds the vehicle inverse dynamic model.
Through CarSim/Simulink co-simulation, the results show that, under the cut-in or cut-out and
working conditions, the behaviour of the leading vehicle can be recognized, following target
can be switched in advance, weight parameters can be adjusted and the large fluctuation of
longitudinal acceleration can be reduced.
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1. Introduction

Adaptive cruise control (ACC) system is an advanced
auxiliary driving system developed with the foundation
of the steady speed cruise, which can obtain the infor-
mation of front vehicle speed and distance. With the
data available from sensors and based on the applica-
tion algorithm, the controlling behaviour of the vehicle
remains stable with front car by significantly reducing
the fatigue of the drivers [1]. In case of the adaptive
cruise system, the main task of target identification is
to select the main purpose of vehicle tracking and to
carry out the acceleration control of vehicle based on
themotion status information of themain target.When
the vehicle at the front cuts into or cuts out of the main
lane, an ACC system should have necessary or even
advance response capability [2]. In this process, ACC
vehicles may have challenges of late braking and exces-
sive braking [3]. Therefore, managing to identify and
respond to the behaviour of vehicles in front in advance
is of great significance to improve the performance of
the ACC system.

Many scholars have carried out in-depth research
on the ACC system. Gao et al. [4] designed an ACC
system that can identify driver online requirement to
meet the needs of different driving modes. Liu et al. [5]
proposed a new safe distance model based on the anal-
ysis of real driving test data to optimize the safety and
comfort economy of the ACC system. In terms of con-
trol algorithms, there are several methods such as PID

control, optimal control, model predictive control and

other commonly used control algorithms [6]. Yang et al.
[7] proposed ACC algorithm combining model predic-
tive control and active disturbance rejection control by
adopting hierarchical control algorithm. However, the
online optimization process ofmodel predictive control
algorithmneeds repeated optimization calculation, and
the calculation cost is high, so it is difficult to ensure the
real-time requirements of the system [8,9]. Xu et al. [10]
proposed a control strategy based on optimal control in
which adaptive cruise and lane keeping system can run
simultaneously. Due to the complexity of actual traf-
fic, linear quadratic optimal (LQR) control with fixed
weight coefficient is unable to meet the performance
requirements of the ACC system. Based on this, a vari-
able weight LQR control algorithm is proposed to solve
the expected follow acceleration in real time.

ACC system mostly adopts the hierarchical control
structure. The upper control algorithm produces the
desired acceleration required for safe follow according
to the current driving environment. The lower con-
troller switches control through throttle and brake, so
that the actual acceleration of the vehicle can track
the expected acceleration of the upper controller [11].
However, due to the vehicle’s own nonlinear and exter-
nal interference factors, the lower controller has poor
robustness and the control effect is difficult to achieve
the desired effect [12]. Therefore, fuzzy PID control is
used in the lower layer as described in this paper, so that
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the actual acceleration can quickly and stably follow the
expected acceleration.

Currently, most studies on the ACC system are only
able to control the vehicle target in the main lane,
and the following target can only be replaced when
the vehicle in the adjacent lane completely cuts into
or cuts out of the main lane [13]. This leads to the
phenomenon of lag in cutting recognition of the front
vehicle, increasing the driver’s sense of panic and exces-
sive braking reduces ride comfort. Therefore, the ACC
system based on cut-in vehicle recognition has impor-
tant practical significance. Moon et al. [14] calculated
the lane change probability of leading vehicle through
the fuzzy controller to perform the target fusion of
leading vehicle. Chen et al. [15] proposed a method to
identify and quantify the possibility of vehicle access.
Lane changing behaviour of vehicles has certain regu-
larity. In the recent years, many scholars use machine
learning methods to identify lane changing behaviour
of vehicles. Zeisler et al. [16] used the information col-
lected by sensors to predict the cut-in behaviour of
surrounding vehicles using Bayesian network. Díaz-
Álvarez et al. [17] used artificial neural network to
build the lane change decision model. Remmen et al.
[18] used machine learning algorithms such as sup-
port vector machines to identify the cutting vehicles.
Jin et al. [19] proposed a lane changing behaviour
decision-making model based on the Gauss mixture
hidden Markov model. In addition, Do et al. [20] pro-
posed different lane changing behaviour models based
on various scenarios.

Through analysis, it is found thatmost of the existing
studies have the following limitations. First, the predic-
tion time is delayed, the information source is single,
and the lane changing behaviour of drivers cannot be
fully characterized, and the prediction accuracy is low.
Second, most of the test data are obtained by driving
simulators, which are very different from the real envi-
ronment and the driver’s psychological state. Based on
this, in this paper, next generation simulation (NGSIM)
data set of American expressways is used to train the
lane change recognition model of the vehicle ahead
using BP neural network.

Aiming at the above problems, a variable weight
ACC strategy based on lane changing behaviour
recognition of the vehicle ahead is proposed in this
paper. The main contributions are summarized as
follows:

(1) The lane changing characteristics of vehicles are
extracted using NGSIM data set, and the vehi-
cle lane changing recognition model is obtained
using BP neural network offline training. Accord-
ing to the information collected by sensors, the
lane changing behaviour of the vehicle in front is
identified online. The results show that the trained
model can accurately identify the lane changing

condition of the vehicle in front, switch to follow
the main target in advance and reduce the driver’s
discomfort caused by the sudden jump of the main
target.

(2) According to different driving conditions of the
vehicle in front, the weight coefficient adjustment
strategy of the LQR control algorithm is designed.
Compared with the fixed weight algorithm, the
proposed control algorithm can adjust the objec-
tive function in real time and reduce the fluctua-
tion of acceleration. Thismakes ACC control more
in line with the driver’s decision-making process
and improves driving safety and riding comfort.

(3) The design details of the ACC system which is
provided in this paper adopt a hierarchical con-
trol structure, and the upper layer adopts LQR
control to obtain the expected acceleration con-
sidering relative velocity, relative distance and self-
acceleration. In order to avoid time-varying vehicle
parameters and external interference, fuzzy PID
control is adopted in the lower layer to make the
actual acceleration track the expected acceleration
quickly and accurately.

The rest of this paper is organized as follows. Section
2 introduces the overall design framework of the ACC
system. Section 3 introduces how to train the lane
changing recognition model based on BP neural net-
work using NGSIM data set. The ACC layered control
algorithm and weight adjustment strategy are intro-
duced in Section 4. In Section 5, details of the simula-
tion analysis and comparison experiments carried out
to verify the effectiveness of the control strategy are pro-
vided. Finally, the summary of the main conclusions is
provided in Section 6.

2. Overview of the ACC system

The overall design framework of the ACC system is
shown in Figure 1. The speed, acceleration, and posi-
tion information of the leading vehicle can be calculated
based on the relative distance and speed between the
main vehicle and the leading vehicle information col-
lected by the sensor. Based on the vehicle lane changing
data available from US highway data set NGSIM, the
vehicle lane changing recognition model was obtained
by offline training with BP neural network, in order
to identify the lane changing condition of the previ-
ous vehicle online. The ACC strategy adopts layered
control, and the upper layer adopts variable weight
LQR control algorithm, which adjusts weight param-
eters according to different driving conditions of the
vehicle in front. The lower layer adopts fuzzy PID
control to avoid the influence of external interference
and vehicle parameter consolidation which makes the
actual acceleration difficult to track the expected accel-
eration quickly and accurately. In order to avoid vehicle
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Figure 1. Overview of the ACC system.

accelerating and braking simultaneously, the braking
and driving switching logic is designed. In addition,
the corresponding throttle opening and braking mas-
ter cylinder pressure are obtained through the vehicle

inverse dynamicsmodel. After acting on themain vehi-
cle, the feedback adjustment is performed continuously
according to the vehicle state at the next moment, so as
to realize the function of the ACC system.
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3. Introduction to recognition of front vehicle
lane changing behaviour

Since there is no communication between the front and
rear vehicles, for the rear vehicles, the intention of front
vehicle’s behaviour cannot be directly known, but the
motion state parameters of the front vehicle can be cal-
culated through the relative motion relationship of the
surrounding vehicles detected by the sensor. The tradi-
tional adaptive cruise main target selection algorithm
only controls themain target vehicle in themain lane. In
order to accurately follow themain target and to reduce
the discomfort feeling of the driver, the NGSIM data
set is selected to extract the lane changing character-
istic parameter of driving vehicles. Driving behaviour
intention is divided into three types: lane change left,
lane change right, and lane keep. The lane changing
behaviour recognition was established based on the BP
neural network model.

3.1. Lane change feature selection

Figure 2 shows the analysis of driving behaviours such
as lane keeping and left-right lane changing when the
vehicle is driving on a straight road.When the vehicle is
in lane keeping state, its lateral movement will not have
a large range, instead only a small change, and it will
not appear a fixed movement state in a certain direc-
tion. In the process of lane change, the movement of
vehicles in the lateral direction has an obvious trend

Figure 2. Schematic diagram of vehicle lane change.

Figure 3. NGSIM dataset study area.
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of change. Therefore, the change rule of vehicles in
the lateral direction can well distinguish lane keeping
and lane change on the left and right, and the phys-
ical quantity related to the lateral movement can also
be used as the observation variable to characterize lane
change behaviour. Based on the above analysis, the dis-
tance between the vehicle in front and the left lane line
of original lane, the lateral velocity and the longitu-
dinal velocity of the vehicle in front were selected as
the observation variables, among which the distance
between the vehicle and the left lane line was the most
significant parameter. The three observation variables
of the model are respectively described as lateral veloc-
ity of the leading vehicleVx, the longitudinal velocity of
leading vehicle Vy, and the distance between the front
vehicle centre and the lane line on the left side of the
initial lane dl.

3.2. Data set selection and processing

In this paper, the vehicle trajectory data of US-101
provided by the NGSIM project of the Federal High-
way Administration of the United States is selected as
the research data [21]. This project uses the camera to
sample every 0.1 s and obtains the vehicle trajectory
data through video software processing, such as vehi-
cle acceleration, speed, lane, and so on. Therefore, this
data set is used in this paper to study the vehicle lane
change recognition model, and the NGSIM data set to
study the road section area as shown in Figure 3.

Table 1. Width of lanes in US-101.

Lane
number

Left lane line
position (m)

Position of right
lane line (m)

Lane width
range (m)

1 0 3.75 3.58–3.75
2 3.58 7.45 3.39–3.97
3 7.14 11.03 3.38–3.89
4 10.83 14.79 3.54–3.96
5 14.57 18.45 3.34–3.88

In this study, vehicles in the NGSIM data set were
selected as the research object to analyze their lane
change characteristics. In order to avoid the influence
of forced lane change behaviour and to obtain data on
vehicles on and off the ramp, the data of lanes 1–5 were
selected for this study. Table 1 shows the data on width
of lanes in US-101 [22]. According to the lane width
and the distance between the head centre and the left
edge of the section, the distance between the vehicle and
the lane line on the left side of the initial lane can be
obtained.

The original NGSIM data is not filtered and has cer-
tain measurement error and noise. In order to reduce
the influence of error, the Kalman filtering is adopted
to process the vehicle trajectory data. Since the vehicle
speed in the NGSIM data set is the speed in the driving
direction, the longitudinal and transverse velocity data
of vehicle cannot be obtained. Therefore, the chang-
ing rates of the horizontal and vertical coordinates of
the vehicle can be obtained. Figure 4(a) shows the
transverse displacement fitting curve of No. 543 vehi-
cle processed by Kalman filter, Figure 4(b) shows the

Figure 4. Kalman filtering results for vehicle no. 543.



560 X. LI ET AL.

transverse velocity fitting curve, and Figure 4(c) shows
the longitudinal velocity fitting curve. As it is evident
from these results, the transverse displacement data has
no obvious change after filtering, while the transverse
velocity and longitudinal velocity data smooth the fluc-
tuation of data change after filtering and still reflect
the driving behaviour characteristics of vehicles while
changing lanes. Therefore, the filtered data is replaced
with the original data.

After filtering the data, in order to train the lane
changing recognition model of the leading vehicle and
extract the lane changing data, it is necessary to retrieve
the ID of the lane changing vehicle. Combined with the
data screening method proposed by Yang et al. [23],
the vehicle movement trajectory data within 5 s before
and after the time when the vehicle centre crosses the
lane line is extracted for this research. It can guaran-
tee to cover the whole process of vehicle lane change.
To extract the characteristic parameters of vehicle lane
change trajectory, it is necessary to find the starting
point and end point of vehicle lane change. In this
paper, the time when the lateral velocity of vehicle is
greater than 0.2m/s proposed by Wang et al. [24] is
adopted as the beginning of vehicle lane change time.
Through data screening, some unconventional lane
changing data are excluded, such as continuous lane
changing data and data obtained from the lane chang-
ing to the target lane and then returning to the lane
immediately. Only a single lane changing scenario is
considered. A set of vehicle trajectory data includes lane
keeping and vehicle lane changing. The data sample in
the vehicle holding state is added with a digital label 0,
the data sample in the left lane changing state is added
with a digital label 1, and the data sample in the right
lane changing state is added with a digital label 2.

3.3. Lane change recognition of leading vehicle
based on BP neural network

The method of vehicle lane changing condition recog-
nition based on feature extraction combined with clas-
sification algorithm has been proved to have good fea-
sibility and practicability [25]. In this paper, BP neural
network is used to train lane changing intention rec-
ognizer based on vehicle lane changing data collected

from actual road, and it is used to recognize lane chang-
ing condition online. According to the surrounding
vehicle information obtained by the sensor, the spec-
ified characteristic parameters are extracted from the
data and input into the trained recognition algorithm to
output the real-time driving condition category. Con-
sidering the driving characteristics of vehicles, driving
intention is divided into three categories: left lane
changing, right lane changing, and lane keeping. Based
on the corresponding driving behaviour characteriza-
tion parameters, a lane changing intention recognition
model of the vehicle in front is established. The work-
ing process of lane changing recognition is shown in
Figure 5.

BP neural network usually includes input layer, hid-
den layer, and output layer, which is often used to
deal with classification and nonlinear prediction prob-
lems. This algorithmhas strong nonlinearmapping and
self-learning ability, which is conducive for improving
the identification accuracy [26]. The designed vehicle
lane changing condition recognition network structure
is shown in Figure 6. After the correlation analysis
between characteristic parameters and lane changing
conditions, the longitudinal velocity, lateral velocity,
and the distance between the head centre and the left

Figure 6. BP neural network structure for vehicle condition
recognition.

Figure 5. Lane change identification workflow.
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Figure 7. Lane change identification.

lane line of the original lane were selected as the input
parameters to the neural network, and the number
of neurons in the input layer was 6. Considering the
recognition accuracy and network complexity, one hid-
den layer is adopted, and the number of neurons is 6.
The output of the output layer is the matching type of
vehicle working condition, and the number of neurons
is one.

After data screening and processing, a total of 22,900
groups of sample data is obtained. There are 9449
groups of lane keeping status data, 7186 groups of
left lane change status data, and 6265 groups of right
lane change status data. The sample data were ran-
domly divided into training set and test set in a ratio of
5:1. The lane changing behaviour recognizer obtained
was tested using the test set. The lateral position of a
group of ID826 left lane changing vehicles was shown
in Figure 7(a), and the recognition results were shown
in Figure 7(b) when the vehicles approach the lane
changing point.

As shown in Figure 7, the leading car is in the right
lane at the beginning and moves towards the main lane
at 2 s and reaches the lane change point at 4.4 s. It can be
seen from the initial recognition results that although
the lane change results trained and recognized by BP
neural network can roughly reflect the lane change
situation of vehicles, there are many misidentification

Figure 8. Vehicle final recognition results.

results due to the limited representation of samples to
the actual driving behaviour. Therefore, the recognition
algorithm is set as follows: when the vehicle recognition
detection is 0, if there are 4 detection 1 or 2 in the last 5
close near the lane change recognitionmodel, the result
is set as 1 or 2.

As shown in Figure 8, for the final results, the recog-
nition accuracy is significantly increased, lane changing
vehicles based onBPneural network training behaviour
recognition model in 2.4 s decision after the beginning
of the adjacent lanes vehicles into the driveway, as main
target. This allows for earlier integration with the car in
front of the adjacent lane with the car in front of its own
lane.Although slight lag in identification results, but the
time lag in the lane changing process can be neglected.

4. Hierarchical control strategy of the variable
weight adaptive cruise system

4.1. Design of upper controller

The main purpose of the ACC system is to control
the workshop spacing of two vehicles to ensure the
safety of driving, and on this basis, it is optimized
to meet the requirements of comfort, economy, and
other multi-objectives [27]. In this paper, the upper
controller is designed using LQR algorithm, and the
longitudinal kinematic diagram of the two workshops
is shown in Figure 9. The relative distance between the
two vehicles is d, the expected distance of the following
vehicle is ddes, and the error of the expected distance
is �d.

In consideration of the complexity and practical
safety of the model, the calculationmethod provided in
Ref. [28] of the expected car-following distance using
the timing distance is applied. The calculation formula
for calculation is as follows:

ddes = τh ∗ vf + d0, (1)

where τ h is the time interval between vehicles, vf is the
vehicle speed, and d0 is the minimum safe distance.
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Figure 9. Vehicle spacing dynamics diagram.

The relationship between the actual acceleration
and the expected acceleration of the main vehicle is
regarded as the first-order inertial link:

af = 1
Tls + 1

ades. (2)

Taking�d,�v, and af as state variables, af as control
input, and ap as system disturbance, the state equation
can be obtained as follows:

x = Ax + Bu +G v,
y = Cx, (3)

where

x =
⎡
⎣ �d

�v
af

⎤
⎦ ; A =

⎡
⎣ 0 1 −τh

0 0 −1
0 0 −1/Tl

⎤
⎦ ;

B =
⎡
⎣ 0

0
K/Tl

⎤
⎦ ; G =

⎡
⎣ 0

1
0

⎤
⎦ ;

C =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ;

u = af ; v = ap; τh = 1.5; KL = 1; TL = 0.5.

For the car-following system, the controlling strategy
is to make the actual distance between the main vehicle
and the leading vehicle approach to the expected dis-
tance, and the speed of the main vehicle approach to
the speed of the leading vehicle. That is, the vehicle dis-
tance error �d and the relative speed �v are required
to approach zero.

A control index function considering vehicle dis-
tance, relative speed, and main vehicle acceleration is
established as shown in Equation (4):

J = 1
2

∫ ∞

0
[q1 · �d2 + q2 · �v2 + q3 · a2f + r · u2]dt,

(4)

where q1, q2, and q3 are theweight coefficients of vehicle
distance error, relative speed, and main vehicle acceler-
ation, respectively; r is the weight coefficient limiting
the jitter of the expected acceleration. Based on the
LQR control theory, the minimum expected vehicle
following acceleration of the index function J is sought.

Figure 10. Weight adjustment strategy.

4.2. Weight adjustment strategy

Compared with the traditional fixed weight coefficient
LQR algorithm, a variable weight coefficient LQR con-
troller for the driving condition of the vehicle in front
is designed in this paper, so as to reduce the influence
of large fluctuation of longitudinal acceleration caused
by following the main target switch. Weight adjust-
ment strategies are designed for different lane changing
conditions of the front vehicle, as shown in Figure 10.
Based on the coordinate information of the surround-
ing vehicles obtained by the sensor, the lane of leading
vehicle relative to the main vehicle was analysed, the
lane changing condition of the vehicle was identified by
using the BP neural network, and the weight parame-
ters were adjusted. The setting of parameter adjustment
rules is divided into three cases. The first is that the
leading vehicle cuts out of the lane, and the main car
switches to the vehicle farther down the lane. The sec-
ond is that the side car cuts into the lane, and the main
car recognizes the target and switches to the cutting
vehicle. The third is that the leading vehicle stays in
the main lane, and the main car recognizes the target
unchanged.

In the LQR algorithm, the larger the values of q1,
q2, and q3, the more significant the expected distance,
velocity difference, and acceleration are in the perfor-
mance function, and the larger the value of r, the more
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important the control constraints are. In this paper, the
values of q1, q2, and q3 are adjusted, and r is selected
as a fixed value. By analyzing the NGSIM data set and
in combination with the practical situation of the road,
it is found that cut into the main lane is usually due
to vehicles in front and the vehicle speed is low, and
lane changing the distance between car in left and the
new target vehicle is greater than the expected distance,
�d positive, both relative velocity decreases,�v is neg-
ative, should smooth deceleration. Therefore, q2 and

q3 should be larger, q1 is small, and the parameter is
adjusted for (q1−, q2+, q3+). When other lane to the
main lane is generally slow down in turn into the main
lane, lane changing the distance between the left in the
car and the new target vehicle is less than expected,
the relative velocity is smaller, �d and �v are negative,
should slow down as soon as possible. Therefore, q1 and
q2 should be larger, q3 is relatively low, to avoid colli-
sion, and the parameter adjustment for (q1+, q2+, q3−).
When the vehicle accelerates and cuts into the main

Figure 11. Fuzzy PID control principle.

Figure 12. Membership function diagram.
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lane, �v is positive. For the sake of driving safety, the
weighted value of q2+ is still adopted.

4.3. Lower controller design

Based on the strong nonlinear characteristics of the
vehicle dynamics model, the precision of lower con-
troller and the control performance are the precon-
dition of the upper controller control functions. The
actual road condition and of vehicles on the road are
complicated, and because the engine in the vehicle
dynamics and tyre model are showing strong nonlin-
ear characteristics of conventional PID, it is difficult to
achieve stable control effect. Fuzzy PID control, which
can adjust PID parameters in real time through fuzzy
rules, is suitable for nonlinear and time-varying control
systems [29].

In order to make the actual acceleration track, the
expected acceleration quickly and accurately, the lower
controller adopts the fuzzy PID control principle in this
study, and the fuzzy PID controller structure design
block diagram is shown in Figure 11.

Deviation e is the difference between the expected
acceleration ades and the actual acceleration af of the
vehicle; ec is the deviation change rate; kp, ki and kd
are the three parameters of the PID controller; E and
Ec are the input fuzzy values of the fuzzy controller,

respectively. To establish the inverse dynamic system
with PID controller module connection, the Simulink
is used, and CarSim for the joint simulation for vehicle
dynamics system. Under the simulation environment,
by trial and error method, PID parameters adjusted
repeatedly, parameters to get ideal value rule is ana-
lyzed, and fuzzy controller is used to adjust parameters
kp, ki and kd.

In this paper, two-dimensional fuzzy control is used
to realize real-time parameter tuning. Seven language
variables are set, namely PB (positive large), PM (mid-
dle), PS (positive small), ZO (medium), NS (nega-
tive small), NM (negative medium), and NB (negative
large). The output parameters are kp, ki and kd . Set the
input fuzzy set theory domain e as [−n, n], ec as [−m,
m], the output parameter acon as [−l, l], and the basic
theory domain of e, ec, and acon as [eh, el], [ech, ecl],
and [ecoh, ecol], respectively. According to the fuzzy con-
trol theory, the quantization factor and the proportional
factor can be worked out. The quantization factors ke
and kec are

ke = 2n
eh − el

, (5)

kec = 2m
ech − ecl

. (6)

Figure 13. kp, ki and kd output surface.
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Table 2. Fuzzy rule table.

PID

ec\e NB NM NS ZO PS PM PB

NB NB, PS, PS NB, ZO, PM NM, ZO, PM NM, NS, PB NM, NS, PB NM, NS, PB NM, NS, PB
NM NB, PM, PS NB, PS, PM NB, PS, PM NB, ZO, PB NB, ZO, PB NB, ZO, PB NM, ZO, PB
NS NB, PM, NM NB, PS, NS NB, ZO, NS NB, ZO, NS NM, ZO, ZO NM, NS, ZO NS, NS, PS
ZO NB, PS, NM NB, ZO, NS NB, ZO, NS NB, ZO, NS NB, ZO, ZO NM, NS, ZO NM, NM, PS
PS NM, PS, PB NM, PS, NB NM, PS, NB NS, PS, NB NS, PM, NM ZO, PM, NM ZO, PB, NS
PM PB, PS, PB PB, PS, PB PB, PS, PB PB, ZO, PB PB, ZO, PB PB, NS, PB PB, NM, PB
PB PB, NS, PB PB, NS, PB PB, NS, PB PB, NS, PB PB, NM, PB PB, NM, PB PB, NB, PB

The scaling factor kacon is

kacon = aconh − aconl
2l

. (7)

The fuzzy set of language variables is described by a
membership function. The input membership function
adopts Gaussian membership function, and the output
membership function adopts triangular membership
function, as shown in Figure 12.

The essence of fuzzy control rules is to summa-
rize the control experience obtained by experts in this
field according to a large number of experiments, and
then obtain the set of fuzzy conditional statements.
The fuzzy rule table is formulated by referring to the
summary of simulation experience of parameters at
different times, as shown in Table 2.

Figure 13 shows the output surface viewer, which
can intuitively show the corresponding relationship
between the input and output of the three parameters
kp, ki and kd.

The designed fuzzy PID controller was joined with
the vehicle inverse dynamics module, and the co-
simulation was conducted with the vehicle dynamics
system in Carsim to verify the control performance
of the designed controller. The simulation condition is
that the initial speed of the vehicle is set as 100 km/h,
and the expected acceleration signals of step variation
are set as −2m/s2 and −4m/s2. The simulation time is
10 s. After simulation verification, the obtained vehicle
acceleration curve is shown in Figure 14.

As can be seen from the simulation results, the con-
trol output of the actual acceleration in about 0.17 s to

Figure 14. Ideal acceleration and actual accelerationof vehicle.

Table 3. Vehicle simulation parameters.

Dynamic parameter Value Dynamic parameter Value

Vehicle quality (kg) 1374 Distance from the centre of
mass to front axis (m)

1.159

The main reduction ratio 4.1 Distance from the centre of
mass to rear axis (m)

1.678

Air density (kgm3) 1.206 Transmission efficiency 0.9
Rolling resistance

coefficient
0.02 Coefficient of ground

adhesion
0.85

Air resistance coefficient 0.342 Tyre rolling radius (m) 0.325
Height of the centre of

mass (m)
0.54 Windward area (m2) 1.8

Table 4. Main parameters of
LQR controller.

Parameter Value

q1, q2, q3 1, 3, 1
q1− , q2+ , q3+ 0.5, 5, 1.5
q1+ , q2+ , q3− 2.5, 5, 0.5
r 10

reach the desired acceleration has rapid response abil-
ity and is able to control the actual stable output to a
desired acceleration.Moreover, this can steadily control
the actual acceleration, and the simulation results show
that controller has strong robustness.

5. Comparative analysis simulation

In order to verify the correctness of the algorithm
proposed in this paper, the ACC system model and
layered control algorithm based on BP neural net-
work for lane change identification of leading vehi-
cle are built in the Matlab/Simulink environment. Key
parameters of LQR controller are obtained accord-
ing to the methods mentioned in Refs. [30,31] and
simulation test results were obtained. The simulation
parameters of Carsim are shown in Table 3, and the
key parameter settings of LQR controller are shown
in Table 4.

In this study, two different scenarios are simulated,
in which the main vehicle is always on road, but due
to the different behaviours of the vehicle in front, the
autonomous vehicle is adjusted accordingly to meet the
control requirements. In order to better conform to the
actual road scenario, the vehicle simulation environ-
ment is set according to the US-101 road environment.
Trad-LQR is a LQR control method based on tradi-
tional target recognition, Pre-LQR is a LQR control
method with fixed weight combined with BP neural
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Figure 15. Schematic of the front car cut-out of the lane.

network, and Pre-VM-LQR is a LQR control method
with variable weight (VM) combined with BP neural
network.

(1) The front vehicle cuts out of the lane

Figure 15 shows the schematic diagram of the lead-
ing car cutting out of the lane. The main car runs in
the main lane, and the leading car changes lane to
the right or left in the current lane for the cutting

out condition of the leading car. Two different cut-
out conditions are designed to verify the lane change
behaviour recognition and the control strategy is
proposed.

Condition 1:When the main car A at the initial time
with speed 25m/s followed the vehicle B′ 40m ahead
of the main lane at A with constant speed of 25m/s, it
began to change lane to the adjacent lane on the left at
about 1.85 s and reached the lane change point at 3.64 s.
Car C at the front keeps a constant speed of 20m/s, and
the initial distance is 65m from the car. The test results
are shown below:

It can be seen from Figure 16 that the lane chang-
ing behaviour recognition model of the leading vehi-
cle trained by BP neural network recognized the
lane changing behaviour of the leading vehicle at
2.52 and 1.36 s earlier than the traditional adaptive
cruise algorithm, and ACC could be switched to fol-
low the target in advance. When the target switches
to C, the expected spacing error �d = 13.6m and

Figure 16. Comparison of the left cut-out simulation results of leading vehicle.
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Figure 17. Comparison of the right cut-out simulation results of leading vehicle.

the relative velocity �v = −5m/s. The fixed weight
will cause a large fluctuation of acceleration. In this
case, a steady deceleration is required, and the weight
parameter should be adjusted as (q1−, q2+, q3+), as
shown in Figure 16(d). From the simulation results,
the maximum deceleration speed of Pre-VM-LQR is
−0.94m/s2, which is about 29.85% lower than that
of Trad-LQR and 22.31% lower than that of Pre-
LQR. Results show that the vehicle lane changing
intention recognition based on BP neural network as
the main target selection method can benefit from
a faster lane adjacent lane changing conditions to
respond. Both fixed weight ACC and variable weight
ACC can finally achieve the control effect, but vari-
able weight ACC deviation value smaller, speed change
more smoothly, can improve the riding comfort.

Condition 2: At the initial moment, main vehicle
A follows vehicle B 35m ahead of the main lane with
speed of A being 20m/s and keeps 22m/s as the con-
stant speed of A. At about 1.46 s, it starts to change lane
to the right adjacent lane and arrives at the lane change

point at 4.25 s. Car C at the front keeps a constant speed
of 18m/s, and the initial distance is 70m from the car.
The test results are shown in Figure 17.

As can be seen from Figure 17, Pre-LQR recog-
nizes the entry of a vehicle in an adjacent lane 1.68 s
before the lane change point, and the deceleration
peak is about −1.44m/s2, while Trad-LQR decelera-
tion peak is −1.69m/s2. As shown in Figure 17(c),
although Pre-LQR can operate the actuator in advance,
the fixed weight coefficient LQR acceleration fluctuates
significantly. When the target switches to C, the
expected spacing error �d = 18m, the relative speed
�v = −4m/s and the adjustment of variable weight
coefficient is shown in Figure 17(d). The results show
that the peak deceleration of Pre-VM-LQR is about
−0.89m/s2, which is 47.33% lower than that of Trad-
LQR, and the acceleration change is smoother and the
overshoot is smaller. ACC vehicles can slow down in
advance and reduce braking strength.

(2) Sidecar cuts into lane
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Figure 18. Diagram of side vehicle cut-in.

Figure 18 shows the schematic diagram of sidecar
lane entry. The main car is driving in the main lane.
When the car in front of the adjacent left lane changes
lane to the right or the car in front of the adjacent
right lane changes lane to the left, it is the sidecar lane
entry condition. Two different cutting conditions are
designed to verify the lane change behaviour recognizer
and control strategy is proposed.

Condition 1: The main vehicle E at the initial
moment with a speed of 22m/s follows the vehicle G

40m in front of the main lane, which keeps a con-
stant speed of 22m/s. F′ car in the adjacent left lane
runs at a constant speed of 18m/s. The initial dis-
tance is 45m from the car. It starts to change lane
to the right at about 4.05 s and arrives at the lane
changing point at 5.35 s. The test results are shown in
Figure 19.

As it can be seen from Figure 19, the lane
changing behaviour recognition model based on BP
neural network training recognized the lane chang-
ing behaviour recognition model based on BP neu-
ral network training at 4.48 and 0.87 s earlier than
the traditional adaptive cruise algorithm. When the
target switches to F′, the expected spacing error
�d = −12.5m and the relative speed�v = −4m/s. In
this case, it is necessary to slow down as soon as possi-
ble, adjust the value of the weighting parameter to (q1+,
q2+, q3−), and the weight coefficient change curve is
shown in Figure 19(d). According to Figure 19(c), the
maximumdeceleration rate of Trad-LQR is−2.96m/s2,
the maximum deceleration rate of Pre-VM-LQR is

Figure 19. Comparison of right cut-in simulation results of side cars.
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Figure 20. Comparison of left cut-in simulation results of side cars.

−2.85m/s2 and the maximum deceleration rate of Pre-
VM-LQR is −2.66m/s2. By the time the leading car
reached the lane change point, the Pre-VM-LQR vehi-
cle had slowed down by about 5.45%. The results show
that the BP neural network variable weight control
strategy has less time in deceleration mode and can
makeACCvehicle switch to follow the target earlier and
avoid the phenomenon of forced movement of vehi-
cles and reduce the fluctuation of acceleration. It cannot
only reduce the impact on the comfort of the driver
and passenger of the main vehicle but also improve
the driving safety of the main vehicle and reduce
the discomfort caused by the late switch of the main
target.

Condition 2: The main vehicle E at the initial
moment with the speed of 20m/s follows the vehicle
G which is located 30m in front of the main lane and
keeps 24m/s uniform speed. Car F in the adjacent right
lane ran at a constant speed of 20m/s, and the ini-
tial distance was 40m from the car. It began to change
lanes to the right at about 3.18 s and arrived at the lane

changing point at 5.98 s. The test results are shown in
Figure 20.

As can be seen from Figure 20, the Pre-LQR
recognizes the entry of the vehicle in the adja-
cent lane 1.52 s before the lane change point, and
the peak deceleration is about −2.18m/s2, with
gentle acceleration change and small overshoot. As
shown in Figure 20(c), the peak value of Trad-
LQR deceleration is −2.88m/s2, and the peak value
of Pre-LQR deceleration is −2.58m/s2. When the
target switches to C, the expected spacing error
�d = −7.1m and the relative speed �v = −3.6m/s.
The adjustment of variable weight coefficient is shown
in Figure 20(d). The results show that the peak decel-
eration of Pre-VM-LQR is 24.31% lower than that
of Tard-LQR and 15.50% lower than that of Trad-
LQR. The control strategy proposed in this paper
can identify the cutting condition of the vehicle
ahead earlier, avoid the phenomenon of forced move-
ment of the vehicle and reduce the fluctuation of
acceleration.
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6. Conclusion

In this paper, a variable weight ACC control strategy
based on BP neural network to identify the lane chang-
ing behaviour of the vehicle in front is proposed. The
main purpose is to solve the problems of the ACC sys-
tem being insensitive to the lane changing behaviour of
the vehicle in front, braking too late or too fast. The lane
changing characteristics of vehicleswere extracted from
NGSIM data set, and BP neural network was used to
train the lane changing behaviour recognitionmodel of
the vehicle ahead offline. The lane changing behaviour
recognition of the vehicle in front is integrated into
ACC control strategy, and ACC vehicle is controlled
before the vehicle arrives at the lane changing point.
According to different working conditions of the vehi-
cle in front, the weight coefficient adjustment strategy
is designed to improve the LQR control algorithm.
ACC system adopts hierarchical control strategy, and
the lower controller adopts fuzzy PID control, so that
the actual acceleration of the vehicle can follow the
expected acceleration stably. In this paper, CarSim and
Matlab/Simulink are used for co-simulation, and differ-
ent experimental conditions are established to analyze
and compare the proposed control strategy.

The simulation results show that under different
lane changing conditions, lane changing recognizer can
identify different lane changing behaviours in advance,
and ACC vehicles can switch to follow the main tar-
get in advance. The variable weight LQR controller
can adjust the weight coefficient according to different
working conditions to avoid the occurrence of strength
braking and even danger. This not only ensures the
driving safety of driver but also ensures the riding com-
fort, and reduces the fear caused by the late switching of
following the target.

Due to the limited experimental conditions, only
simulation analysis is carried out in this study. If the
subsequent conditions allow, further hardware-in-the-
loop or real vehicle tests will be carried out to verify
the control algorithm and to make the control strategy
more accurate. The ACC system proposed in this paper
only considers the longitudinal control of the vehicle,
but for the actual driving process of the vehicle, such as
turning, the lateral and longitudinal movement of the
vehicle is inseparable. Therefore, in future studies, the
influence of main target identification and lateral con-
trol of the ACC system on the system under curves will
be comprehensively considered.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] Kim H, Min K, Sunwoo M. Driver characteris-
tics oriented autonomous longitudinal driving system

in car-following situation. Sensors. 2020;20(21):6376,
https://doi.org/10.3390/s20216376.

[2] Zhang T, Zou Y, Zhang X, et al. A cruise control method
for connected vehicle systems considering side vehicles
merging behavior. IEEE Access. 2019;7:6922–6936.

[3] Makridis M, Mattas K, Borio D, et al. Estimat-
ing empirically the response time of commercially
available ACC controllers under urban and free-
way conditions. 2019 6th international conference
on models and technologies for intelligent trans-
portation systems (MT-ITS); IEEE; 2019. p. 1–7.
https:doi.org/10.1109/MTITS.2019.8883341.

[4] Gao B, Cai K, Qu T, et al. Personalized adaptive cruise
control based on online driving style recognition tech-
nology and model predictive control. IEEE Trans Veh
Technol. 2020;69(11):12482–12496.

[5] Liu Z, Yuan Q, Nie G, et al. A multi-objective model
predictive control for vehicle adaptive cruise control
system based on a new safe distance model. Int J Autom
Technol. 2021;22(2):475–487.

[6] Guo N, Zhang X, Zou Y, et al. Real-time predictive
energy management of plug-in hybrid electric vehicles
for coordination of fuel economy and battery degrada-
tion. Energy. 2021;214 119070.

[7] Yang Z, Wang Z, Yan M. An optimization design of
adaptive cruise control system based on MPC and
ADRC. Actuators. 2021;10(6):110.

[8] Falcone P, Borrelli F, Tseng HE, et al. Linear time-
varying model predictive control and its application
to active steering systems: stability analysis and exper-
imental validation. Int J Robust Nonlinear Control:
IFAC-Affiliated J. 2008;18(8):862–875.

[9] Mayne DQ. Model predictive control: recent develop-
ments and future promise. Automatica. 2014;50(12):
2967–2986.

[10] Xu X, Grizzle JW, Tabuada P, et al. Correctness
guarantees for the composition of lane keeping and
adaptive cruise control. IEEE Trans Autom Sci Eng.
2017;15(3):1216–1229.

[11] Li SE, Guo Q, Xin L, et al. Fuel-saving servo-loop
control for an adaptive cruise control system of road
vehicles with step-gear transmission. IEEE Trans Veh
Technol. 2016;66(3):2033–2043.

[12] Zhang Z, Luo D, Rasim Y, et al. A vehicle active safety
model: vehicle speed control based on driver vigilance
detection using wearable EEG and sparse representa-
tion. Sensors. 2016;16(2):242.

[13] Jacobsen SET, Gustafsson A, Vu N, et al. Predictive
cruise control behind a stationary or slow moving
object. 2019 IEEE intelligent vehicles symposium (IV);
IEEE; 2019. p. 2099–2105. https://doi.org/10.1109/IVS.
2019.8814014

[14] Moon S, Kang HJ, Yi K. Multi-vehicle target selection
for adaptive cruise control. Veh Syst Dyn. 2010;48(11):
1325–1343.

[15] Chen C, Guo J, Guo C, et al. Adaptive cruise control
for cut-in scenarios based on model predictive control
algorithm. Appl Sci. 2021;11(11):5293.

[16] Zeisler J, Cherepanov J, Haltakov V. A driving path
based target object prediction. 2015 IEEE intelligent
vehicles symposium (IV); IEEE; 2015. p. 316–321.
https://doi.org/10.1109/IVS.2015.7225705.

[17] Díaz-Álvarez A, Clavijo M, Jiménez F, et al. Mod-
elling the human lane-change execution behaviour
through multilayer perceptrons and convolutional neu-
ral networks. Transp Res Part F: Traffic Psychol Behav.
2018;56:134–148.

https://doi.org/10.3390/s20216376
https:doi.org/10.1109/MTITS.2019.8883341
https://doi.org/10.1109/IVS.2019.8814014
https://doi.org/10.1109/IVS.2015.7225705


AUTOMATIKA 571

[18] Remmen F, Cara I, De Gelder E, et al. Cut-in scenario
prediction for automated vehicles. 2018 IEEE interna-
tional conference on vehicular electronics and safety
(ICVES); IEEE; 2018. p. 1–7. https://doi.org/10.1109/
ICVES.2018.8519594.

[19] Jin H, Duan C, Liu Y, et al. Gauss mixture hidden
Markov model to characterise and model discretionary
lane-change behaviours for autonomous vehicles. IET
Intel Transp Syst. 2020;14(5):401–411.

[20] Do QH, Tehrani H, Mita S, et al. Human drivers based
active-passive model for automated lane change. IEEE
Intell Transp Syst Mag. 2017;9(1):42–56.

[21] FHWA. NGSIM: next generation simulation [EB/OL].
Department of Transportation. http://ops.fhwa.dot.
gov/trafficanalysistools/ngsim.htm

[22] Dong C, Dolan JM, Litkouhi B. Intention estima-
tion for ramp merging control in autonomous driving.
2017 IEEE intelligent vehicles symposium (IV); IEEE;
2017. p. 1584–1589. https://doi.org/10.1109/IVS.2017.
7995935.

[23] Yang D, Zhu L, Ran B, et al. Modeling and analysis of
the lane-changing execution in longitudinal direction.
IEEE Trans Intell Transp Syst. 2016;17(10):2984–2992.

[24] WangQI, Li Z, Li LI. Investigation of discretionary lane-
change characteristics using next-generation simulation
data sets. J Intell Transp Syst. 2014;18(3):246–253.

[25] Jia S, Hui F, Wei C, et al. Lane-changing behavior pre-
diction based on game theory and deep learning. J Adv

Transp; 2021;2021:12. https://doi.org/10.1155/2021/
6634960.

[26] Zheng J, Suzuki K, Fujita M. Car-following behav-
ior with instantaneous driver–vehicle reaction delay:
a neural-network-based methodology. Transp Res C
Emerg Technol. 2013;36:339–351.

[27] Kyongsu Y, Kwon YD. Vehicle-to-vehicle distance and
speed control using an electronic-vacuumbooster. JSAE
Rev. 2001;22(4):403–412.

[28] Naus GJL, Ploeg J, Van deMolengraftMJG, et al. Design
and implementation of parameterized adaptive cruise
control: an explicit model predictive control approach.
Control Eng Pract. 2010;18(8):882–892.

[29] Ren T, Dimirovski GM, Jing Y. ABR traffic con-
trol over ATM network using fuzzy immune-PID
controller. 2006 American control conference; IEEE;
2006. p. 14–16. https://doi.org/10.1109/ACC.2006.1657
493.

[30] Dongbin Z, Zhongpu X. Adaptive optimal control for
the uncertain driving habit problem in adaptive cruise
control system. Proceedings of 2013 IEEE international
conference on vehicular electronics and safety; IEEE;
2013. p. 159–164. https://doi.org/10.1109/ICVES.2013.
6619622.

[31] Möbus R, Baotic M, Morari M. Multi-object adaptive
cruise control. International workshop on hybrid sys-
tems: computation and control. Berlin: Springer; 2003.
p. 359–374.

https://doi.org/10.1109/ICVES.2018.8519594
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://doi.org/10.1109/IVS.2017.7995935
https://doi.org/10.1155/2021/6634960
https://doi.org/10.1109/ACC.2006.1657493
https://doi.org/10.1109/ICVES.2013.6619622

	1. Introduction
	2. Overview of the ACC system
	3. Introduction to recognition of front vehicle lane changing behaviour
	3.1. Lane change feature selection
	3.2. Data set selection and processing
	3.3. Lane change recognition of leading vehicle based on BP neural network

	4. Hierarchical control strategy of the variable weight adaptive cruise system
	4.1. Design of upper controller
	4.2. Weight adjustment strategy
	4.3. Lower controller design

	5. Comparative analysis simulation
	6. Conclusion
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


