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ABSTRACT
A new linear observer-free output-feedback controller with five adjustable parameters is pro-
posed to stabilize the cart-inverted-pendulum system (CIP) at the unstable equilibrium point.
The controller architecture is deduced from a trivial conversion of the linear state-feedback con-
troller that is obtained using a two-step method. First, based on a set of cart change variables,
a slightly modified state-feedback controller is developed. Then, the output-feedback controller
is obtained through the judicious combination of the cart step reference input internal model
and a convenient open-loop state estimator with the above modified state-feedback controller.
The local stability of the output-based control system is conducted using the signature formu-
las method to get simplified conditions. A partial single parameter tuning method and optimal
global single parameter tuning method are proposed for adjusting the controller gains to max-
imize a new efficiency-based objective function. Numerical simulations are first conducted to
reveal the simplicity of output-feedback controller design using the partial tuning method,
where the state-feedback gains are assumed to be known. Then, an optimal output-feedback
controller is designedusing theglobal tuningmethod. Theproposedoutput-feedback controller
is equivalent in terms of performance efficiency to the best five-parameter output-feedback two
PID controller.
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1. Introduction

Being an under-actuatedmechanical system and inher-
ently open-loop unstable with non-minimum phase
and fourth-order highly nonlinear dynamics, the cart-
inverted-pendulum (CIP) system provides many chal-
lenging control problems to standard and modern con-
trol techniques [1], especially in the absence of velocity
measurements and in the presence of system uncertain-
ties, measurement noises, and external disturbances. In
the context of the CIP system stabilization, driving the
cart from an initial position to a final destination while
keeping the pendulum erected in the upright posi-
tion during such movement is a well-studied problem,
and many linear [2–6] and nonlinear [10–14,20,21]
controllers, including state-feedback controllers (SFC),
observer-based output-feedback controllers (OBC) and
observer-free output-feedback controllers (OFC), have
been proposed to solve it. However, achieving this task
efficiently with reduced smooth control effort and sim-
ple parameter-tuning output-feedback control schemes
is a subject that still needs more investigation.

Based on the linearized system dynamics using
the standard pendulum small-angle approximations:
sin x1 ≈ x1 and cos x1 ≈ 1, the fact that the obtained
linear model is controllable, and the assumption of
accessibility of the state vector, many linear SFC,

including Two Proportional and Derivative (TPD)
[2–4] andTwoProportional–Integral–Derivative (TPID)
[4–6] controllers, have been proposed to stabilize the
equilibrium. The under-actuating property of the CIP
system and the interaction that exists between the pen-
dulum and cart dynamics make it useful, if not neces-
sary, to combine at least two structures in the same con-
troller to solve the stabilization problem [5,6]. Such a
combination leads to an increase in the control param-
eters and consequently complicates the tuning param-
eter problem. The exigent control system requirements
have led to the application of different controller tun-
ing methods, such as the pole placement design [4], the
Linear Quadratic Regulator (LQR) [4], and the opti-
mization methods [7,8]. The comparison of the full-
state-feedback controllers has been conducted in [9]
and themain issues when using the above tuningmeth-
ods are respectively: how to choose the optimal pole
locations in the s-plane, the LQR criterionmatrix gains,
and the form of the objective function to be optimized?

Considering that the CIP system velocities are not
(accurately) measured and the system, which is also
subject to uncertainties, disturbances, and measure-
ment noises, is observable with the set of position out-
puts, several (nonlinear) OBC and OFC have been pro-
posed to stabilize theCIP systemwhile addressing these
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difficulties to some extent. In [10], an extended high-
gain OBC with dynamic inversion and multi-time-
scale structure was proposed to deal with uncertainties
and parameter tuning difficulties. The stability analy-
sis for the multi-time-scale structure was carried out
using singular perturbation methods. The conducted
numerical simulations showed that the above proposed
nonlinear OBC recovers the performance of its asso-
ciated nonlinear SFC when using some small enough
time-scale control parameters and demonstrated a large
region of attraction of the equilibrium. Practical exper-
iments have also been conducted but with initial pen-
dulum angles in the neighbourhood of the upright con-
figuration to prevent the exceeding of the cart bounded
tracks and the physical limitations of the motor torque.
In [11], a nonlinear OBC was proposed to deal with
the pendulum input disturbance rejection and the CIP
state velocity variable estimations. To achieve the non-
linear controller design, a simplified CIP model was
considered, in which the pendulum and cart second-
order dynamics are only coupled with the input con-
trol. The velocity estimation was done by the extended
Kalman filter. Local asymptotic stability of the closed-
loop CIP systemwas verified through the application of
the eigenvalue analysis on the linearized CIP system. In
[12], the author introduced a nonlinear state observer
in a static linear SFC loop to design an OBC. As such
introduction may adversely affect the stability robust-
ness of the system, i.e. the gain and phase margins, LTR
(Loop Transfer Recovery) technique has been used to
redesign the observer in such a way as to shape the loop
gain properties to approximate, to some extent, those
of LQR. The feasibility of the observer-based method
was demonstrated in [11] through practical experi-
mentation and in [12] through numerical simulations.
Other OBC applied to the CIP system can be found
in [13,14].

With the introduction of observers that have their
tuning parameters, the (multi-structure) controller
design problem becomes again harder. Of course, a
reduced-order observer can be used to estimate the
unavailable velocities and the set of tuning parame-
ters will be reduced; but if the CIP system position
measurements are contaminated by noise, sensitivity to
measurement noise becomes an issue that cannot be
ignored. To stabilize the CIP system, OFC that pro-
cesses directly the accessible CIP system positions, i.e.
the pendulum angle and the cart position, without the
(explicit) estimation of the state variable, is a promising
approach. The progress in solving (linear and nonlin-
ear) output-feedback regulation problems, has made
it possible to design such an OFC for a wide class of
systems to ensure, in addition to closed-loop stabil-
ity, asymptotic tracking, and disturbance rejection for a
class of reference inputs and disturbances. Some of the
seminal works on the subject are given in [15] and [16].
The book [17] that addresses this general topic gives a

rigorous formulation of the problem with its solvabil-
ity conditions in terms of the existence of a solution to
a set of algebraic equations when the system dynamics
are linear and to a mixed algebraic partial differen-
tial equation when the system dynamics are nonlinear.
These equations, known as the regulator equations, are
in practice simple to solve for the linear dynamic situa-
tion but very difficult (if not impossible) to solve for the
nonlinear dynamical situation. Methods for finding an
approximate solution to the last case, such as the Taylor
series expansion, were also investigated and applied to
the linear and rotary CIP systems in [18] and [19,20],
respectively. Notice that the above theory can help in
specifying the architecture of either the SFC or OFC.
Notice also that the controller tuning parameter issue
is common to all design methods; but with an OFC, a
reduced set of control parameters renders this approach
more attractive from the implementation point of view.

Regarding the facts that (i) there exists a linear SFC
with an appropriate fourth gain vector (i.e. a TPD)
that can successfully stabilize the system to its unstable
equilibrium position for the considered set-point sta-
bilization problem (due to linearized CIP system con-
trollability, see Assumption 2.4 in section 2), and that
(ii) an appropriate OFC (with fewer parameters in com-
parison to an OBC) can handle efficiently the classical
SFC drawbacks, we propose in this paper the conver-
sion of the above linear static SFC into a new linear
dynamic OFC, having only five tuning parameters. The
controller is derived using a two-step method. First, a
slightly modified SFC is derived with the introduction
of a set of cart change variables [3]. Then, the proposed
OFC is obtained through the introduction of a conve-
nient parameter tuning-free open-loop state estimator
and the cart step reference input internal model in
the modified SFC loop. The classical drawbacks of the
linear SFC, namely its initial-time high control effort
demand, sensitivity to sensor noises, output transient
response peaking phenomenon, and implementation
difficulties due to the absence of (accurate) velocity
measurements, can now be handled efficiently with the
proposed control scheme conversion if an appropri-
ate parameter tuning method is used. On the other
hand, concerning the motivations for using the output-
feedback linear controller instead of commonly used
nonlinear OBC [10–14] and sliding mode controllers
[21,22], they come from: i) the stabilization task itself
that can be also well conducted using robust linear
controllers (see Theorem 4.4 in [24] and the simula-
tion results of section 4) when the conditions on the
size of the uncertainties and the size of the required
domain of attraction are not critical; ii) from the desir-
able smooth input control (i.e. absence of chattering
effect) that helps in extending the life of the CIP sys-
tem; iii) from the possibility to convert easily an already
defined SFC to an OFC with the proposed method; and
finally, iv) from the simplicity to conduct efficient OFC
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parameter tuning with the proposed partial or global
single parameter tuning methods (see sections 3.3 and
4). In contrast to the existing linear control methods
to stabilize the CIP system, this work has the following
main distinguishing features:

• From the theoretical point of view, i) our method
proposes a simple new linear OFC derived from a
comprehensive conversion of linear SFC in the hope
to stabilize the CIP system; ii) The existence of the
proposed OFC is confirmed by the explicit condi-
tions of Theorem 3.2; Thus, there is no need to solve
a set of (algebraic) equations as in the linear output-
feedback regulation approach to check the solvabil-
ity of the problem and/or to derive the controller
architecture; Finally, iii) concerning the controlled
CIP system stability, and assuming that linearized
CIP system around the considered upper unsta-
ble equilibrium controllable (see Assumption 2.4 in
section 2), we have only conducted a local stability
analysis based on the Lyapunov indirect method by
applying a new emergence method, i.e. the signature
formulas method [23], on the obtained closed-loop
linearized CIP system. The above-adopted method
is intentionally used to get easily exploitable condi-
tions, as it is stated in Theorem 3.2.

• From the practical point of view, i) the proposed
OFC has only five parameters (i.e. the conversion
task increases by only one parameter the four SFC
gains) that can be reduced to a single indepen-
dent parameter when the SFC gains are assumed
to be known or when the closed-loop coincident
real pole configuration is adopted; ii) The proposed
global (single parameter) tuning method, which is
associated with the closed-loop coincident real pole
configuration, is adopted as an alternative to the
proposed partial (single parameter) tuning method,
which is associated with the situation of known
SFC gains, if the above tuning method shows lim-
ited performance (low speed efficiency, for example);
The adopted single parameter tuning method ren-
ders our design, from the difficulty point of view,
no more demanding than the design of a propor-
tional controller; In addition to that, the optimality
of the obtained solution for a given criterion can eas-
ily be checked; Finally, iii) the proposed definitions
for the speed and peak efficiencies allow performing
not only concrete control method comparison but
also help in building simple and valuable efficiency-
based objective function for controller parameter
tuning.

The paper is organized as follows. The problem
under consideration is stated in section 2. The design
of the OFC is presented in section 3. Section 4 provides
simulation results, and finally, section 5 summarizes the
paper’s conclusions.

2. Problem formulation

Consider the underactuated CIP system depicted in
Figure 1. This system is described by the model [5]:⎡

⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎣

x2
+f1x1
x4

−f2x1

⎤
⎥⎥⎦

︸ ︷︷ ︸
f

+

⎡
⎢⎢⎣

0
−h1
0

+h2

⎤
⎥⎥⎦

︸ ︷︷ ︸
h

u (1)

with the cart control input force u(t) and the nonlinear
functions f1, f2, h1, and h2 defined hereafter

f1 = (M + m)gL−1 − mx22 cos x1
M + m − mcos2x1

sin x1
x1

;

h1 = L−1 cos x1
M + m − mcos2x1

f2 = mg cos x1 − mLx22
M + m − mcos2x1

sin x1
x1

;

h2 = 1
M + m − mcos2x1

(2)

where g is the gravity acceleration, x1 is the angular
position of the pendulum with the origin at the upright
position, x2 is the pendulum angular velocity, x3 and
x4 are the cart position and velocity. The inverted pen-
dulum is characterized by a mass-less pole of length
L and a ball of mass m. The cart has a mass M and
moves under the action of u(t) left or right on a one-
dimensional horizontal bounded track.

The following assumptions are considered:

Assumption 2.1: The nonlinear functions f1, f2, h1, and
h2 satisfy the bounded conditions:

0 < f1 < a1; 0 < f2 < a2
0 < h1 < b1; 0 < h2 < b2

(3)

x22 + x24 + (a1 − f1)2 + (a2 − f2)2 < γ 2
f

(b1 − h1)2 + (b2 − h2)2 < γ 2
h

(4)

where a1, a2, b1, b2, γf , and γh are known positive
numbers.

In system equations (1), we consider a space domain
D ⊂ R4 in which the x1, x2 and x4 variable’ domains
are implicitly defined using the bounded conditions (3)
and (4) while the x3variable’ domain is explicitly defined
using |x3| < w3, where 2w3 is the track length. From (3),

Figure 1. The inverted pendulum system.
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it is observed that h1 > 0 implies that |x1| < π/2 while
f2 > 0implies f1 > 0 and |x2| <

√
gL−1 cos x1. With an

appropriate choice of a1, a2, b1, b2, γf , and γh, the
bounded conditions in (3) and (4) consider the pendulum
in the neighbourhood of its top unstable equilibrium posi-
tion and specify the considered range of nonlinear model
uncertainties.

Assumption 2.2: The CIP physical parameters M, m
and L are known from direct measurements.

In Assumption 2, we have considered that the CIP
physical parameters are known to allow the problem of
conversion to be solved easily without considering param-
eter uncertainties. Even if this assumption appears unrea-
sonable to some extent, it is used in some recent papers,
including [2] and [6] that are used in section 4. In addi-
tion to that experimental results conducted in [2] shows
to support such a hypothesis to some extent for an SFC.
On the other hand, Theorem 2.1 stated below shows some
potential to take the CIP parameter uncertainties into
account through the bounded conditions (4) but till now
it is not clear to us how to conduct the trivial conversion
in such a situation, so this issue is not yet undertaken in
the present paper.

Assumption 2.3: Small-angle approximations, i.e.
sin x1 ≈ x1 and cos x1 ≈ 1, and the small-angle velocity
approximation, i.e. x22 << gL−1 are considered.

Assumptions 2 and 3 are used to derive the following
approximate CIP linear model:⎡

⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎣

0 1 0 0
+a1 0 0 0
0 0 0 1

−a2 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

×

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦

︸ ︷︷ ︸
x

+

⎡
⎢⎢⎣

0
−b1
0

+b2

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

u (5)

with the upper bounds of the nonlinear functions in (3),
i.e. a1, a2, b1, and b2, defined hereafter:

a1 =
(
1 + m

M

)
gL−1; a2 = m

M
g;

b1 = 1
LM

; b2 = 1
M

(6)

Assumption 2.4: Suppose that A − BK0 is asymptoti-
cally stable for a gain vector K0.

Assumption 2.5: Suppose that γh < 1 and αf < λmin
(Q)/λmax(P) where P = PT > 0 is the solution of the
Lyapunov matrix equation (A − BK0)

TP+P(A−BK0)

= −2Q for some Q = QT > 0.

The existence of a class of linear state-feedback con-
trollers that can stabilize the nonlinear model (1) in a
portion of the domain D is crucial. Otherwise, there
is no meaning that can be attributed to the con-
version process from a state-feedback to an output-
feedback controller. Assumption 2.4 considers the lin-
earized model (5) controllable and it is effectively the
case since det

([
B AB A2B A3B

]) �= 0. There-
fore, there exist linear state-feedback control laws with
appropriate gain vectors that can successfully stabilize the
system (1) to its unstable equilibrium position. Assump-
tion 2.5 states supplementary conditions concerning the
approximate region of attraction where the considered
controller can effectively achieve the stabilization task.
The justification for using linear state-feedback con-
trollers to stabilize the nonlinear system (1) is stated in
the following theorem, which is a simple adaptation of
Theorem 4.4 in [24].

Theorem 2.1: Under Assumptions 2.4 and 2.5, and
the constraint γ > 0, the linear state-feedback u =
−(K0 + γBTP)x stabilizes the nonlinear system (1) for
arbitrary nonlinear functions f1, f2, h1, and h2 that satisfy
the norm bounds (4).

Proof: The proof of theorem 2.1 is quite similar to that
presented for Theorem 4.4 in [24], and it is based on the
Lyapunov method. �

Assumption 2.6: Absence of (accurate) velocity mea-
surements.

Assumption 2.7: The pendulum angle is contaminated
by an additive high-frequency band noise e1 while the
cart position is measured without any errors (or at least
the errors are so small so that they can be neglected).

The nonlinear model (1) is completed by themeasured
outputs:

x1m = x1 + e1
x3m = x3

(7)

For the CIP system stabilization, the goal is to drive the
cart as quickly as possible from an initial position x3(0) to
a constant final destination x3d without significant over-
shoot, undershoot, and control input effort while keeping
the pendulum erected in the upright position, during such
movement. To achieve this task, Theorem 2.1 states that
under full-state availability, one possible solution is to
use a linear SFC with an appropriate gain vector N =
(N1,N2,N3,N4). In this case, the control law of the SFC,
which is mathematically equivalent to a TPD, takes the
form:

lu(t) = −Nx(t) + N3x3d
= −N1x1(t) − N2x2(t) − N3[x3(t) − x3d]

− N4x4(t) (8)
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where x = (x1, x2, x3, x4)T is the state variable vector.
The SFC gains of (8) can be adjusted to ensure several

interesting steady and transient response behaviour for
the CIP control system around the unstable equilibrium
point [2–6]. However, there are several practical issues to
deal with to make it more efficient. The first one is the
high control input demand that appears at the beginning
of the stabilization, i.e. u(0) = −N3[x3(0) − x3d], which
is proportional to the distance between the cart’s ini-
tial position and its destination. The second one emerges
with the absence of (accurate) velocity measurements
(Assumption 2.6). The third one results from the high
sensitivity of the state-feedback control input to the pen-
dulum angle sensor noise (see Equations (7) and (8) and
Assumption 2.7). The last one is related to the tuning
parameter problem that must be solved to meet the stabi-
lization requirements. Given the importance of SFC in the
CIP stabilization (see Theorem 2.1) and the importance
of the observer-free OFC in overcoming their drawbacks,
it appears interesting to investigate the feedback design
as an output regulation problem with a class of con-
trollers that has some relationwith the SFC. To apply such
an idea, we may thus formulate the feedback controller
design in two successive steps as follows.

In the first step, we consider the following class of
(error) output-feedback controllers:

u = [
1 0

]
z

ż = H1z + H2
[
0 − x1m x3d − x3m

]T
z(0) = [

0 0
]T (9)

where zis a state vector and H1 with H2 are two con-
stant matrices. Under the above-mentioned assumptions,
design a control law of the form (9), or equivalently find
z, H1 and H2, such that the following properties are
satisfied:

Property 2.1: The control law (9) must be interpreted
as a conversion of the state-feedback control law (8).

Property 2.2: The equilibriumpoint of the closed-loop
nonlinear CIP system must be asymptotically stable, or
equivalently, the closed-loop linearized CIP system is
stable.

Remark 2.2: Property 1 allows converting any SFC to
an OFC of the form (9). With such a conversion, the
first three above-mentioned SFC drawbacks can be effi-
ciently addressed. Indeed, the controller in (9) receives
only the errors in the pendulum angle and cart posi-
tions that are filtered from the noise before reaching
its output. In addition, the force applied at the begin-
ning of stabilization is now null due to the zero initial
conditions used in the controller state variables.

In the second step, the goal is to set the parame-
ters ϕ of the proposed OFC to ensure a set of possible
transient response requirements like fast cart response

(reduced cart settling time), good stability (reduced cart
overshoot, cart undershoot, and pendulum overshoot),
and minimum control effort (reduced maximum con-
trol input effort). To solve such a problem, two issues
must be addressed. The first one concerns the crite-
rion choice while the second one concerns the adopted
method to optimize it. Although there are several com-
monly used objective functions, we have found it use-
ful from the comparison and the optimization point
of view to build our own objective function J(ϕ) as
the minimum between two new sound performance
indices. These indices are the speed efficiency SE(ϕ) and
the average peak efficiency SE(ϕ), and are defined for a
given standard (reference) state-feedbackmethod (SSF)
and a given control method (CM), as follows:

SE(ϕ) = 100
P4,SSF

P4,CM + P4,SSF

GE(ϕ) = 100
3

3∑
i=1

Pi,SSF
Pi,CM + Pi,SSF

(10)

where P1,CM is the maximum absolute value Px1 of the
pendulum angle response, P2,CM is themaximum abso-
lute value between the overshoot Vx3 and undershoot
Dx3 of the cart position response, P3,CM is the maxi-
mum absolute value Pu of the control input signal, and
P4,CM is the cart settling time tcs at 5%. The index Pi,SSF
has the same interpretation as the index Pi,CM , with the
control method CM replaced by SSF.

The adopted definitions of speed and peak efficien-
cies allow not only concrete control method compari-
son but also help in building simple and efficient criteria
for parameter tuning. Indeed, using such definitions,
one can directly interpret the control method perfor-
mance and indicate clearly if a method outperforms
another one or not. For example, method CM out-
performs completely the reference method SSF if both
efficiencies are greater than 50%. The method CM is
bad compared to SSF if both efficiencies are lower than
50%. In the remaining two cases, it is possible to identify
the advantage the drawback of the CM over the SSF in
terms of speed andpeak efficiencies.With such an inter-
pretation, we may formulate the CM setting problem as
a maximin optimization model as follows:

ϕopt = arg
ϕ

max
ϕ

J(ϕ)

J(ϕ) = min(SE(ϕ),GE(ϕ))

(11)

It should be noted that (11) is a continuous nonlinear
optimization model with a highly nonlinear (possibly
discontinuous) objective function J(ϕ) and it is diffi-
cult to know a priori whether such a function is uni-
modal or multimodal before starting the optimization.
To avoid erroneous solutions, problem (11) has to be
solved to global optimality in the considered parame-
ter space domain. However, the direct search over all
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the stabilizing controllers is cumbersome, and, given
the complexity of the objective function, there is no
guarantee to obtain the optimal solution with standard
global search techniques, especially when the number
of tuning parameters is large. To reduce the challenge
of this problem, we look for reducing the space search
to develop a simple tuning method that gives subopti-
mal guarantee solutions but can be successfully applied
to parameter tuning of other types of CIP system con-
trollers, especially the TPD, the TPID, and the proposed
OFC.

3. Controller design

To solve the above problems, we proceed construc-
tively and simply. In the first step, we propose a mod-
ified version of the given SFC based on an appropriate
cart change variable, which is initially proposed in [3].
Then, we convert the obtainedmodified SFC to anOFC
and determine the conditions under which the final
obtained linearized closed-loop system is stabilized.
The conversion needs the development of a standard
controller (state-feedback, state estimator, and internal
model) as an intermediate step. In the second step, we
propose two efficient methods to solve the parameter
tuning problem.

3.1. Modified state-feedback controller

Tomake the analysis and processing of the approximate
linear model (5) more general, let us reveal the link that
exists between the parameters a1 and a2 as follows:

a2 = α1 a1 − β1; α1 = b2
b1

= L ;

β1 = a1b2 − a2b1
b1

= g (12)

where α1 and β1 are two well-known positive parame-
ters. Now, let us define the following change of variables
[3]

y3 = x3 + α1 x1
y4 = x4 + α1 x2

(13)

Combining (5), (12), and (13), we obtain the follow-
ing simplified linear model:

ẋ1 = x2
ẋ2 = +a1 x1 − b1 u
ẏ3 = y4
ẏ4 = β1 x1

(14)

The above model has only three parameters that are
summarized for convenience as follows:

a1 =
(
1 + m

M

)
gL−1; b1 = 1

LM
; β1 = g (15)

Applying the Laplace transform to (14) yields a
modified open-loop CIP system composed of two sub-
systemsH1(s) andH3(s) in cascade. These sub-systems
are unstable and are characterized by the transfer func-
tions:

H1(s) = X1(s)
U(s)

= −b1
s2 − a1

(16)

H3(s) = Y3(s)
X1(s)

= β1

s2
(17)

At this stage we modify slightly (8) to get the follow-
ing new state-feedback control law:

u(t) = −N1x1(t) − N2x2(t) − N3[y3(t) − x3d]

− N4y4(t) (18)

Combining the Laplace transform of (18) with (16)
and (17) yields the following closed-loop transfer func-
tions:

F1MSF(s) = X1(s)
X3d(s)

= −b1N3s2

s4 − b1N2 s3 − (b1N1 + a1) s2
−β1b1N4 s − β1b1N3

F3MSF(s) = Y3(s)
X3d(s)

= −β1b1N3

s4 − b1N2 s3 − (b1N1 + a1) s2
−β1b1N4 s − β1b1N3

(19)

The obtained closed-loop linearized CIP system is of
the fourth order and has the basic configuration shown
in Figure 2, where the real cart position x3 is substituted
by the modified position y3. Notice that according to
the necessary condition of stability of the system (19),
the SFC gains N = (N1,N2,N3,N4) must be real and
negative.

Remark 3.1: Regarding the transformation (13), the
modified control law (18) can be viewed as a conven-
tional state-feedback law (8), in which the gain vec-
tor N = (N1,N2,N3,N4) is substituted with Nnew =
(N1 + α1N3,N2 + α1N4,N3,N4). This means that the
first two gains are increased by the amounts α1N3 and
α1N4, respectively. The well-known zeros of the cart
transfer function (see Eq. B.1 in appendix B) associated

Figure 2. Configuration of the modified state-feedback
control.
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with the original cart position variable x3 are cancelled
when using the new cart position variable y3, as indi-
cated in (19). As shown in the next section, the control
law modification contributes to making the conversion
from the SFC to an OFC a feasible task.

3.2. Proposed output-feedback controller

Now, we assume that the pendulum and the cart veloc-
ities are not measurable and that the pendulum angle is
measuredwith noise as indicated by (7). AnOFC can be
obtained by combining the modified SFC (18), with an
internal model T3(s) and a state estimator R, as shown
in Figure 3. The parts of the proposed servo system are
described in the following.

To improve tracking for the step reference input
x3d an internal model T3(s), in the form of a simple
integrator, is employed in the control system. This inte-
grator is associated with a positive gain K. The new
reference input r resulting from such internal model
incorporation satisfies:

ṙ = K(x3d − x3m) (20)

In view of the approximate linear model (14), a reason-
able proposed structure for the state estimatorR is given
by the following open-loop state estimator:

˙̂x1 = x̂2
˙̂x2 = a1 x1m − b1 u
˙̂y3 = ŷ4
˙̂y4 = β1 x1m

(21)

where (x̂1, x̂2, ŷ3, ŷ4)T is the state estimate of (x1, x2,
y3, y4)T . The state estimator (21) introduces in (14)
one modification, which consists in substituting on the
right-hand side of (14) the unmeasured state x1 by the
noisy measured signal x1m.

Now, let us introduce the state vector z = [
z1 z2

]T
with:

z1 = u
z2 = N1x̂2(t) + N3ŷ4

(22)

According to Figure 3, the control signal is given by:

u = z1 = −N1x̂1(t) − N2x̂2(t)

Figure 3. CIP servo system with internal model and state
estimator.

Figure 4. Configuration of the proposed output-feedback-
based CIP servo system.

− N3ŷ3(t) − N4ŷ4(t) + N3r (23)

Taking the time-derivative of (23) and combining it
with (20), (21) and (22) yields the control law (9) with:

H1 =
[−K1 −1
+K2 0

]
, H2 =

[−K3 +K5
+K4 0

]
(24)

where the parameters of the above matrices are defined
by the following simple canonical conversion:

K1 = −b1N2; K2 = −b1N1
K3 = a1N2 + β1N4; K4 = a1N1 + β1N3
K5 = KN3

(25)

Notice thatK1 andK2 are real and positive whileK3,K4
and K5 are real and negative. The obtained CIP closed-
loop systemhas the basic configuration shown in Figure
4, where the proposed OFC is defined by (9), (24), and
(25).

With the transformation (25), Property 1 is satisfied
and it remains to fulfil the local stability in Property 2.
To this end, let us evaluate the closed-loop linearized
CIP system transfer functions. In the noiseless situa-
tion, combining (16), (17) and (24) with the Laplace
transformof (9) gives the following closed-loop transfer
functions:

F1OF(s) = X1(s)
X3d(s)

= −b1K5s2

s5 + K1s4 + (K2 − a1) s3
−(b1K3 + a1K1 − α1b1K5) s2
−(b1K4 + a1K2) s − β1b1K5

F3OF(s) = Y3(s)
X3d(s)

= −β1b1K5

s5 + K1s4 + (K2 − a1) s3
−(b1K3 + a1K1 − α1b1K5) s2
−(b1K4 + a1K2) s − β1b1K5

(26)

Assuming that the gains Ni, 1 ≤ i ≤ 4, of the state-
feedback controller are known, it is possible to evaluate
directly four of the five parameters of the proposed
OFC via the transformation (25). In this situation, there
is only a single tuning parameter K, or equivalently
K5, that is adjusted to ensure the stability of the sys-
tems F1OF(s) and F3OF(s), i.e Property 2. The stability
conditions are given in the following theorem.

Theorem3.2: Suppose that the state-feedback controller
gains Ni, 1 ≤ i ≤ 4, are negative. Under the assumption
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� = (K2 − a1)2 + 4(b1K4 + a1K2) > 0, the closed-
loop systems defined by (26) are stable if the next con-
dition holds

Kmin < K < Kmax
Kmin = N−1

3 min
ω2∈{0,ω2

2}
R(ω2)

Kmax = N−1
3 R(ω2

1)

(27)

with

R(ω2) = K1ω
2 + a1K1 + b1K3

α1b1ω2 + β1b1
ω2

ω2
1 = 0.5(K2 − a1)

− 0.5
√

(K2 − a1)2 + 4(b1K4 + a1K2)

ω2
2 = 0.5(K2 − a1)

+ 0.5
√

(K2 − a1)2 + 4(b1K4 + a1K2)

(28)

Proof: This theorem results directly from the applica-
tion of the signature formulas to (26). The complete
proof is given in Appendix A. �

Remark 3.3: For the stability analysis of the fifth-order
closed-loop systems (26), in contrast to the signature
formulas, the classical Routh criterion leads to an intri-
cate set of highly nonlinear conditions that are difficult
to exploit.

To performwell, the control system should at least be
able to reject the effect of the measurement noise. Such
effect on the control input can be described by using the
Laplace transform of (9), which yields:

U(s) = C1OF(s)(0 − X1m(s))

+ C3OF(s)(X3d(s) − X3m(s)) (29)

C1OF(s) = K3s + K4

s2 + K1s + K2

C3OF(s) = K5s
s2 + K1s + K2

(30)

The measurement noise e1(t) is injected into the con-
trol input through the filter C1OF(s). This filter exhibits
a roll-off of high-frequency measurement noise with a
slope of −20 dB per decade. The roll-off begins at the
peak frequency:

fP = 1
2π

√√√√√√√
−

(
K4
K3

)2
+

√((
K4
K3

)2 + K2

)2
− K2

1

(
K4
K3

)2 (31)

Usually, the measurement noise e1(t) is of a high fre-
quency; and if its bandwidth is located well above fP,
the filter will be effective in reducing this noise.

Remark 3.4: In the development of the proposedOFC,
we have considered that the CIP physical parameters

are known (Assumption 2.2) to allow the problem
of conversion to be solved easily without considering
parameter uncertainties. When the parameter uncer-
tainties are of major concern, the proposed method is
still able to define a control schemewith five parameters
(see Figure 4) that can be used to tackle directly the sta-
bilization problem. In such a situation, the major con-
cernmay be how to tune the control scheme parameters
without using the exact knowledge of the physical CIP
parameters. Therefore, robust or adaptive controllers
may be envisaged to solve such an issue.

Remark 3.5: In the development of the proposedOFC,
we have considered the open-loop state estimator (21)
instead of a closed-loop state estimator. This rise some
questions about its usefulness. Indeed, the cart integral
controller and this estimator are only a tool to develop
the OFC architecture without the addition of exces-
sive tuning parameters. The estimator is not intended
to achieve some perfect state estimations like the high-
gain observers. However, regarding the fact that all the
adjusted parts (internal model and state-feedback con-
troller) and non-adjustable parts (state estimator and
CIP system) in Figure 3 contribute together to give
the control CIP system a final overall performance, the
good parameter tuning of the adjusted parts will try to
compensate to some extent the deficiencies of the pro-
posed open-loop state estimator. This is addressed in
the next sections.

3.3. Partial and global parameter tuningmethods

To specify the gains of the proposed OFC there are two
main approaches. The first one relies on the use of the
transformation (25) and assumes that the gainsN of the
SFC are given. In this case, we have a single parame-
ter to tune ϕ = K to maximize the objective function
J(ϕ) that appears in the optimization model (11). This
method is referred to as the partial parameter tuning
method.

The alternative global parameter tuning method
aims in adjusting simultaneously all the five output-
feedback controller parameters. In such a situation,
we have ϕ = (K1,K2,K3,K4,K5) or ϕ = (N1,N2,N3,
N4,K) according to (25). To reduce the complexity of
the above tuning problem while guaranteeing the opti-
mality of the obtained solution, i.e avoid the repeata-
bility problem associated with the use of optimization
search methods [7], we shall only consider a coincident
real negative pole configuration for all the obtained
linearized control CIP systems. The coincident pole is
denoted by p. With such a constraint, the controller
gains can be analytically expressed with one single
parameter ϕ = p, which renders the tuning parame-
ter an easy task. Applying this pole placement design
directly on the closed-loop transfer functions (26)
yields the following analytical gains for the proposed
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OFC:

K1 = −5p

K2 = 10p2 + a1

K3 = α1β1
−1b−1

1 p5 + 10b−1
1 p3 + 5b−1

1 a1p

K4 = −5b−1
1 p4 − 10b−1

1 a1p2 − b−1
1 a21

K5 = β1
−1b−1

1 p5

(32)

Since the gains (32) of the OFC depend only on the
chosen real negative pole p, solving the optimization
problem (11) that tries to maximize J(ϕ) = J(p) with
standard optimization technique becomes an easy task.
Also, from the optimality point of view, it is clear that
the global parameter tuning method (32) outperforms
is in most cases the partial parameter tuning method.

4. Numerical simulations

Consider the nonlinear CIP system (1) and (2) with a
set of physical parametersM = 2.4kg,m = 0.23kg, L =
0.36m, g = 9.81m/s2, and a cart track length limited
between ±0.5m [5]. Numerical simulations are con-
ducted in two separate sections to show the advantage
of the proposed OFC with the partial and global tuning
methods. In both sections, we adopt the SFC of [2] as a
reference control method and symbolize it by SSF. The
first main reason for this reference choice is linked to its
best performance, as is claimed by its authors, especially
in terms of speed efficiency. The second main reason is
related to the fact that the gains of such a method are
described analytically and there is no free parameter to
tune, as is indicated hereafter for the considered CIP
model:

N1SSF = −3Mg; N2SSF = −3Mgz−1

N3SSF = −0.2Mz2; N4SSF = −1.2Mz (33)

where z = √
gL−1.

In the first section, we are interested in using the par-
tial parameter tuning method to design the proposed
OFC. To this end, we shall study the impact of the pro-
posed conversion (25) on the performances of the TPD
and LQR state-feedback methods, which are presented
in [5] for the same CIP system, and on the perfor-
mances of the SSF method. Notice that the choice of
the gains for the TPD and LQR methods are done in
[5] using a trial and error method while the analytical
gains (33) of the SSF method are derived from the opti-
mization of a convenient criterion [2]. The parameters
of the above-cited state-feedback controllers are listed
in Table 1. The goal of this section is to highlight the
potential applicability of our conversion method (25)
with a rudimentary partial parameter tuning method
and the need to modify the initial SFC if the controlled
CIP system shows limited performance.

In the second section, we are interested in compar-
ing the OFC, SFC, and TPID that are designed using

Table 1. Gains of the state-feedback controllers.

N1 N2 N3 N4

SSF − 70.63 −13.53 −13.08 −15.03
TPD − 40.00 − 8.00 − 1.00 − 3.00
LQR −137.79 −25.98 −22.36 −27.58

the global tuning method within the context of coin-
cident real pole configuration. This approach allows us
to obtain rapidly a guaranteed optimality result for the
tuned controller and avoid the repeatability problem
that may occur when using advanced optimizing tun-
ing methods [7] in conjunction with non constrained
pole configuration. The structure of the TPID is cho-
sen to allow output-feedback processing and to have
exactly five tuning parameters as in the proposed OFC.
The set of obtained TPID controllers that have these
properties [6] are the PID-P and PI-PD controllers.
Since the PI-PD with the coincident pole configura-
tion shows very limited performance, we thus retain
only the PID-P controller and refer to it hereafter as the
PID controller. The derivation of the analytical expres-
sions for the gains of the SFC and the considered PID
controllers are given in Appendix B.

4.1. Partial tuningmethod design

To compare the performance of the SSF, LQR, and TPD
controllers, the reference cart position x3d is set to0m,
and all the initial state values are set to zeros except
the initial cart position which is set tox3(0) = −0.1m.
The simulation results for the pendulum angle, cart
position, and control input, without considering noise,
are shown in Figures 5 and 6, and Table 2. Regard-
ing the fact that we are concerned with a stabilization
problemwith null references, the cart position, the pen-
dulum angle, and the control effort in Figures 5 and 6
become effectively error signals and the used perfor-
mance indices (Px1,Vx3,Dx3,Pu) can therefore naturally
be interpreted as error indices. Now, it is observed that
the TPDmethod exhibits the bestGE of about 88%, due
to its relatively low peak values, at the price of a bad SE
of 24%. The LQR method exhibits a slightly better GE
than the SSF method and has a nice and smooth cart
response at the price of an increase in the control input
effort and a slight degradation in SE.

From the above-obtained results, it is clear that the
state-feedback controllers are prone to high control
effort demand that appears at the beginning of the
pendulum regulation (Figure 6) and to cart transient
response (undershoot) peaking phenomenon (Figure
5); and in the absence of velocity measurements,
they cannot be applied directly to stabilize the CIP
system. To overcome these difficulties the proposed
OFC, defined by (9) and (25), is applied to all con-
sidered state-feedback controllers to get the output-
feedback controllers SOF (standard output-feedback),
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Figure 5. Pendulum angle and cart position responses using SSF, LQR, and TPDmethods.

Figure 6. Control input responses using SSF, LQR, and TPD methods.

MPD (modified TPD), andMLQ (modified LQR) asso-
ciated to the state-feedback controllers SSF, TPD, and
LQR, respectively. To apply our conversion technique,
we need to tune the single parameter K in such a way
as to ensure closed-loop system stability and acceptable
performance. To this end, a numerical investigation of
stability conditions (27–28) for the above methods is
performed and the obtained results are summarized in
Table 3. A common zeros lower bounds Kmin = 0 and
distinct uppers bounds are noticed.

The effect of varying the parameter K between 0.01
and 1 on SE and GE is shown in Figure 7. A clear
decreasing trend for the average efficiency index GE
with the increase of K is observed for all considered
CMs. The SOF and MLQ methods exhibit a similar
GE trend. They perform better than the MPD method
in the range 0.12 < K < 0.6. Concerning the efficiency
index SE, an interesting increasing trend is observed for

Table 2. Performance comparison of the control methods.

Px1 (deg) Vx3 (%) Dx3 (%) Pu (N) tcs (sec) SE (%) GE (%)

SSF 1.40 0.00 5.51 1.31 2.55 50.00 50.00
SOF 0.22 2.51 0.40 0.12 4.81 34.65 82.26
TPD 0.26 0.00 0.63 0.14 8.01 24.15 88.10
MPD 0.09 25.75 0.07 0.04 19.37 11.63 69.46
LQR 0.97 0.00 4.47 2.24 2.63 49.23 50.34
MLQ 0.17 3.85 0.31 0.09 4.57 35.81 80.59

Table 3. Lower and upper bounds of K for SOF, MPD, and
MLQmethods.

SOF MPD MLQ

Kmin 0.00 0.00 0.00
Kmax 2.27 1.70 1.85

the low-value side of K. The value of K at which this
increasing trend stop is a CM dependent. The MPD
method presents the shortest interval and the SOF
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Figure 7. Effect of K on the speed and average peak efficiencies for SOF, MLQ, and MPDmethods.

present the largest one. The SOF and MLQ methods
exhibit similar SE trend in the interval 0.01 ≤ K ≤ 0.4.

As a general remark, it is noted that the introduc-
tion of our partial tuning-based conversion technique
to the SSF and LQR methods leads to a substantial
improvement ofGE at the price of an eventual degrada-
tion of SE. Among the studied CMs, the MPD method
appears to be the worst one in term of SE and can-
not achieve more than 18% (Figure 7). The SOF and
MLQmethods show interesting SE performances; and if
the parameter K is appropriately adjusted, these meth-
ods can achieve the highest SE with a value of 37%
at the price of a relatively slightly low value of GE of
76% (Figure 7). Compared with the state-feedback con-
trollers, the proposed output-feedback controllers have
always betterGE performance and relatively low SE per-
formance. Thismeans that the state-feedback SE perfor-
mance can only be recovered to some extent with the
proposed partial tuning-based output-feedback con-
version technique when it is applied to the consid-
ered state-feedback controllers. The improvement of
the speed of response of the CIP can be obtained using
the global parameter tuning as discussed below in the
next section.

The simulation results with K = 0.4 for the pen-
dulum angle, cart position, and control input, without
considering noise, for the studied partial tuning-based
output-feedback controllers are shown in Figures 8 and
9 and Table 2. It is observed that the SOF and MLQ
methods exhibit similar SE in the vicinity of 34.5%,
which is relatively large in comparison to 11.63% of
the MPD method. The introduction of the proposed
OFC on the original SFC leads on the first hand to
the decrease of the pendulum angle overshoot, the cart
undershoot, and the control input overshoot, and on
the other hand to the increase of the cart position
overshoot and the cart settling time.

4.2. Global tuningmethod design

Table 4 shows the effect of the pole p on the per-
formance of the SFC, OFC, and PID controllers. It is
observed that the increase of p leads for the above con-
trollers to a decrease in the pendulum angle overshoot,
the cart position overshoot, the cart position under-
shoot, and in the control input effort in addition to an
increase in the cart settling time. The OFC and PID
controller show quite similar performance. The SFC
outperforms the other controllers in the cart position
overshoot and the cart settling time but shows less inter-
esting behaviours in the remaining transient control
CIP system response characteristics. The obtained opti-
mal gains for the above three controllers are listed in
Table 5, where it is observed that the gains associated
with the proposed OFC controllers appear to be some-
what higher than the other controller gains. Figure 10
presents the effect of varying p on the peak frequency
fP of the filter C1OF(s) and on the efficiency perfor-
mance index J(p) = min(SE,GE) of the SFC and OFC
controllers. The results associated with the PIDmethod
are not shown in Figure 10 since there are very close to
those of the OFC method. For a given pole p > −3.73,
the OCF can recover at least 92% of the SFC efficiency
while for a given pole p < −3.73, the OCF becomes
more efficient than theOSCmethod. The best efficiency
record for the SFC is about 55% at p = −3.55 and the
best efficiency record for the OFC is about 57.4% at p =
−4.59. The OFC needs a somewhat higher bandwidth
to recover the performance of the SFC as is indicated by
the OFC peak frequency curve, which tends to increase
with the decrease of the real negative pole p. The OFC
peak frequency is 1.8Hz at p = −3.55 and 2.3Hz at
p = −4.59.

To check the ability of the SSF controller and the
optimal SFC, OFC, and PID controllers to reject noise,
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Figure 8. Pendulum angle and cart position responses using SOF, MLQ, and MPDmethods.

Figure 9. Control input responses using SOF, MLQ, and MPDmethods.

Table 4. Performance comparison of the SFC, OFC, and PID methods.

Px1 (deg) Vx3 (%) − Dx3 (%) Pu (N) tCS (sec)

p SFC OFC PID SFC OFC PID SFC OFC PID SFC OFC PID

−1 0.08 0.05 0.05 0 − 0.09 0 − 0.02 0 − 0.03 0.04 0.02 0.03 7.71 9.12 8.90
−2 0.31 0.21 0.21 0 − 0.82 0 − 0.33 0 − 0.37 0.17 0.11 0.11 3.82 4.53 4.42
−3 0.69 0.47 0.48 0 − 2.57 0.02 − 1.24 0 − 1.35 0.71 0.28 0.29 2.51 2.98 2.91
−4 1.22 0.84 0.86 0 − 5.42 0.03 − 2.90 0.01 − 3.09 2.25 0.59 0.61 1.83 2.20 2.14
−5 1.91 1.32 1.34 0 − 9.35 0.07 − 5.34 0.02 − 5.62 5.50 1.11 1.15 1.42 1.71 1.67

a uniform random noise e1(t)with the values restricted
to the interval |e1(t)| < A, with A = 10−3, and sam-
pling time 0.01 sec is added to the pendulum angle
state over a time interval of 120 sec. Table 6 summa-
rizes the obtained maximum absolute value for the CIP

input and outputs over the last 100 sec for each consid-
ered CM. It is observed that the SSF and optimal SFC
methods tend to perform similarly. It is also observed
that the optimal OFC outperforms the optimal PID in
the performance of the control input while the optimal

Table 5. Optimal gains for the SFC, OFC, and PID methods.

SFC N1 = −96.17 N2 = −17.94 N3 = −13.99 N4 = −15.76
OFC K1 = 22.95 K2 = 240.54 K3 = −1492.2 K4 = −8123.6 K5 = −179.43
PID K11 = −65.02 K12 = −80.21 K13 = −9.18 K31 = −7.82 T1 = 0.0436
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Figure 10. Effect of p on the peak frequency and on efficiency indices for SFC and OFC methods.

Table 6. Performance comparison in noisy situation.

SSF SFC OFC PID

max(|x1|) (deg) 0.624 0.459 0.622 0.546
max(|x3|) (m) 0.016 0.018 0.023 0.008
max(|u|) (N) 0.541 0.480 0.472 0.863

PID outperforms to some extent the optimal OFC in
the performance of the CIP outputs. All the considered
controllers give acceptable stabilization performance in
the considered noisy situation. Figures 11–13 illustrate
graphically the impact of noise on the performance of
the control system input and outputs for the above-
considered controllers. The carried simulation results
show the effectiveness of the proposed OFC in com-
parison to the SSF and its competitiveness with the best
five-parameter PID controllers.

5. Conclusion

Conventional CIP state-feedback controllers are prone
to several difficulties. To deal with the high control
effort demand that appears at the beginning of the pen-
dulum regulation, the cart transient response peaking
phenomenon, and implementation difficulties due to
the absence of (accurate) velocity measurements, the
given static state-feedback controller was converted to
a second-order output-feedback controller by introduc-
ing a comprehensive transformation. Local system sta-
bility analysis is conducted using the signature formulas
method to get simple conditions. The control scheme
parameters were tuned using partial and global param-
eter tuning methods and compared with several well-
known state and output-feedback controllers. Future
work will be devoted to conducting a more rigorous

Figure 11. Pendulum angle responses in a noisy situation.
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Figure 12. Cart position responses in a noisy situation.

Figure 13. Control input responses in a noisy situation.

stability analysis for the controlled nonlinear system;
improving the performance of the developed output-
feedback controller by optimizing its gains in the con-
text of more efficient pole configurations; and relaxing
certain assumptions used in the development of the
proposed method. For taking the physical CIP param-
eter uncertainties into account, it may be interesting
to exploit directly the obtained controller structure to
build robust and/or adaptive controllers. It may be also
useful to examine if the above-cited structure allows
defining a more convenient sliding surface to reduce
the impact of chattering when using a standard slid-
ing mode controller to stabilize the CIP system. Finally,
how to adapt the proposed method directly to the non-
linear CIP or other robotic systems without using a
linearization step is also an interesting axis of research.
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Appendices

Appendix A: Proof of Theorem 3.2

The proof of Theorem 3.2 is conducted using the signature
formulas method that is described in [23, p.40-53]. To this
end, let us consider the characteristic polynomial of (26),
which is without zeros on the imaginary axis and has a single
tuning parameter. Then, write it in the following form:

δ(s,K5) = δeven(s2) + sδodd(s2)

δeven(s2) = K1s4 − (b1K3 + a1K1 − α1b1K5) s2 − β1b1K5

δodd(s2) = s4 + (K2 − a1) s2 − (b1K4 + a1K2)

(A1)

so that

δ(jω) = δr(ω) + jδi(ω)

δr(ω) = δeven(−ω2) = K1ω
4 + (b1K3 + a1K1

− α1b1K5) ω2 − β1b1K5

δi(ω) = ωδodd(−ω2) = ω[ω4 − (K2 − a1) ω2

− (b1K4 + a1K2)]

(A2)

It is clear from (A1) that only the even part of δ(s,K5)
depends on K5. Under the following condition:

� = (K2 − a1)2 + 4(b1K4 + a1K2) > 0 (A3)

The real nonnegative zeros of δi(ω) with odd multiplici-
ties, i.e. ω1and ω2, with ω0 = 0 are given by:

ω0 = 0

ω2
1 = K2 − a1 −

√
(K2 − a1)2 + 4(b1K4 + a1K2)

2

ω2
2 = K2 − a1 +

√
(K2 − a1)2 + 4(b1K4 + a1K2)

2

(A4)

According to Lemma 2.1 and Theorem 2.1 of [23], the
Hurwitz signature of the five-order polynomial δ(s,K5) is
given by:

σ(δ) = l − r = sgn[δi(0+)](sgn[δr(0)] − 2sgn[δr(ω1)]

+ 2sgn[δr(ω2)])

δi(0+) = 0+

δr(0) = −β1b1K5

δr(ω1) = K1ω
4
1 + (b1K3 + a1K1 − α1b1K5) ω2

1 − β1b1K5

δr(ω2) = K1ω
4
2 + (b1K3 + a1K1 − α1b1K5) ω2

2 − β1b1K5
(A5)

where l is the number of stable poles, r is the number of unsta-
ble poles, and sgn[·] is the signum function that is defined as
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follows:

sgn[x] =
⎧⎨
⎩

−1 if x < 0
0 if x = 0
+1 if x > 0

(A6)

From (A5) it is obvious that for the five-order polynomial
δ(s,K5) to be Hurwitz, it is necessary and sufficient to have:

δr(0) = −β1b1K5 > 0

δr(ω1) = K1ω
4
1 + (b1K3 + a1K1 − α1b1K5) ω2

1

− β1b1K5 < 0

δr(ω2) = K1ω
4
2 + (b1K3 + a1K1 − α1b1K5) ω2

2

− β1b1K5 > 0

(A7)

After some obvious independent algebraic manipulations,
the inequalities of (A7) can be further reduced to:

K5 < 0

K5 >
K1ω

4
1 + (b1K3 + a1K1) ω2

1
α1b1ω2

1 + β1b1

K5 <
K1ω

4
2 + (b1K3 + a1K1) ω2

2
α1b1ω2

2 + β1b1

(A8)

From (A8) and K5 = KN3 in eq (25), we get finally:

Kmin < K < Kmax
Kmin = N−1

3 min
ω2∈{0,ω2

2}
R(ω2)

Kmax = N−1
3 R(ω2

1)

(A9)

with

R(ω2) = K1ω
2 + a1K1 + b1K3

α1b1ω2 + β1b1
ω2 (A10)

Appendix B: SFC and PID pole
coincident-based gains

Let us first begin with the tuning of the SFC controller (8).
Applying the Laplace transform to (5) and (8) yields the
following closed-loop transfer functions:

F1SF(s) = X1(s)
X3d(s)

= −b1N3s2

s4 − (b1N2 − b2N4) s3
−(b1N1 − b2N3 + a1) s2 − b1N4β1 s

−b1N3β1

F3SF(s) = X3(s)
X3d(s)

= b1N3α1(s2 − α−1
1 β1)

s4 − (b1N2 − b2N4) s3
−(b1N1 − b2N3 + a1) s2 − b1N4β1 s

−b1N3β1
(B1)

For these sub-systems, the transfer function F1SF(s) has
a fixed double zero at the origin and the transfer function

F3SF(s) has two fixed zeros at ±
√

α−1
1 β1. Thus, whatever the

method used to specify the state-feedback controller gains,
it is always interpreted as a kind of pole placement. In addi-
tion, the presence of a positive zero makes the CIP system
a nonminimum phase. Now, taking into account the useful-
ness of driving the cart system with little or no oscillation
(under and overshoot) to x3d, we propose to specify the gains
(N1,N2,N3,N4) to obtain a coincident real negative pole p

structure for the targeted closed-loop system F3SF(s). In this
situation, we get:

N1 = −α1β
−1
1 b−1

1 p4 − 6b−1
1 p2 − b−1

1 a1

N2 = +4α1β
−1
1 b−1

1 p3 + 4b−1
1 p

N3 = −β−1b−1
1 p4

N4 = +4β−1b−1
1 p3

(B2)

The structure of the output-feedback TPID controller can
be defined by [6]:

U(s) = C1PID(s)(0 − X1m(s)) + C3PID(s)

× (X3d(s) − X3m(s)) (B3)

C1PID(s) = K13s2 + K11s + K12

s(1 + T1s)

C3PID(s) = K33s2 + K31s + K32

s(1 + T3s)

(B4)

where K1PID = (K11,K12,K13,T1) are the gains associated
with the pendulum sub-system and K3PID = (K31,K32,
K33,T3) are the gains associated with the cart sub-system.
There are 16 possible combinations of the TPID controllers
that can be classified into unstable, redundant, underde-
termined, and feasible setups [6]. The only feasible TPID
controllers that have five parameters (The same number of
parameters of the proposed OFC) are the PID-P and the
PI-PD [6]. The filters associated with the considered PID-P
(called PID in section 4) controllers are given by:

C1PID(s) = K13s2 + K11s + K12

s(1 + T1s)

C3P(s) = K31

(B5)

Combining (B5), (40), and the Laplace transform of (11)
gives the following five-order transfer functions:

F1PID−P(s) = X1(s)
X3d(s)

= A1PID−P(s)
DPID−P(s)

F3PID−P(s) = X3(s)
X3d(s)

== A3PID−P(s)
DPID−P(s)

(B6)

with

A1PID−P(s) = −K31b1(s + T−1
1 )s2

A3PID−P(s) = K31(b2s3 + T−1
1 b2s2 − b1β1s − T−1

1 b1β1)

DPID−P(s) = s5 + T−1
1 s4 − (a1 − b2K31 + T−1

3 b1K13) s3

− T−1
1 (a1 + b1K11 − b2K31) s2

− (T−1
1 b1K12 + b1K31β1) s − T−1

1 b1K31β1
(B7)

The gains associated with the controllers (B5) taking the
coincident real pole configuration into account for the closed-
loop linearized CIP system is deduced from the denominator
in (B6) as follows:

K11 = −(1/5)α1β1
−1b−1

1 p4 − 2b−1
1 p2 − a1b−1

1

K12 = (24/25)b−1
1 p3

K13 = b2p4 + 50b1β1p2 + 5a1b1β1

25b21β1p

K31 = −(1/5)β1
−1b−1

1 p4

T1 = −(1/5)p−1

(B8)
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