
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

A metaprotocol-based Internet of Things
architecture

L. Milić, L. Jelenković & I. Magdalenić

To cite this article: L. Milić, L. Jelenković & I. Magdalenić (2022) A metaprotocol-based Internet of
Things architecture, Automatika, 63:4, 676-694, DOI: 10.1080/00051144.2022.2063227

To link to this article: https://doi.org/10.1080/00051144.2022.2063227

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 17 Apr 2022.

Submit your article to this journal

Article views: 365

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2022.2063227
https://doi.org/10.1080/00051144.2022.2063227
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2022.2063227
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2022.2063227
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2022.2063227&domain=pdf&date_stamp=2022-04-17
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2022.2063227&domain=pdf&date_stamp=2022-04-17

AUTOMATIKA
2022, VOL. 63, NO. 4, 676–694
https://doi.org/10.1080/00051144.2022.2063227

Ametaprotocol-based Internet of Things architecture

L. Milića, L. Jelenkovićb and I. Magdalenića

aFaculty of Organization and Informatics, University of Zagreb, Varaždin , Croatia; bFaculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia

ABSTRACT
In this paper we propose a metaprotocol-based architecture for the Internet of Things. The
metaprotocol defines the message content, but it uses existing communication protocols and
the forwarding capabilities of nodes that support this metaprotocol. Such nodes are described
with amodel that is demonstratedwith a prototypemiddleware implementation. The behaviour
of non-trivial nodes is defined with rules that specify actions for various events, including for-
warding of received messages. In this way, a dynamic overlay network can be created with
various possibilities of interconnecting and various node roles. Regardless of the roles a node
possesses, communication with other nodes in this architecture is based on the same metapro-
tocol. The metaprotocol is based on SQL operations, which allows maximum flexibility in the
design of a specific system. On the other hand, the proposed message encoding and the
dependence on the underlying transmission protocols allow the creation of very short and sim-
ple messages, so that even the most resource-constrained devices can be included in such a
system. A comparison with similar architectures shows the expected advantages of the pro-
posed architecture when most resource-constrained nodes are used and when an arbitrary
network configuration is required, different from the standard layered thing-gateway-server
configuration.

ARTICLE HISTORY
Received 20 March 2021
Accepted 3 April 2022

KEYWORDS
Internet of Things;
architecture; metaprotocol;
databases

I. Introduction

Internet of Things (IoT) is the name for a concept that
starts from the idea that all things (that humans can
use) should communicate, “think” and decide with-
out human interference. This frees humans from doing
everything that internetworked digitized things can do
faster, easier, and better in their place [1]. The field of
IoT is being intensively developed today, and there are a
variety of commercial environments implementing the
concept [2]. The beginnings of the development of the
IoT date back to 1999 [3].

Today, thousands of articles are published in the
field of IoT, which proves the current intensity of
its development, the spread of its application and
the existence of a plethora of still unsolved problems
[4].

One of the problems with current research is that
much of the solutions focus only on a variety of specific
applications [5], sometimes referred to in the literature
as “connecting toothbrushes to the Internet” or “devel-
oping Intranets of Things rather than the Internet of
Things” [6]. Another problem is the large heterogene-
ity of IoT due to a large number (hundreds) of existing
platforms that are not designed for interconnectivity
but as separate ecosystems [7]. Therefore, one of the
challenges for researchers is to design a more flexible

architecture that can be more easily used for any appli-
cation in the IoT, and not only for a narrow set of
specific problems. The flexibility should allow systems
to be architecturally built based on the problem they
are solving, rather than the other way around – by fit-
ting the problem being solved to a predefined architec-
tural pattern. The latter will usually lead to suboptimal
solutions [8].

The next problem is that the research often does
not address security at all but defers it, as a problem
that can be easily solved later [9]. Embedding secu-
ritymechanisms, especially privacy requirements, must
instead be an integral part of the architecture and not an
“afterthought”.

Perhaps the biggest problem with existing architec-
tures is the complexity of building and using them
[10]. Most people do not know how to build com-
puter systems, and those who do know have varying
levels of knowledge. The complexity may discourage
many users, who do not see value in an IoT system
due to the complexity of building and using it in their
domain. Initial expectations of massive IoT use may
not yet have been realized precisely because of this
problem.

This paper presents a new IoT architecture based on
three principles. The first principle is to disregard the

CONTACT L. Milić luka.milic@foi.hr

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2022.2063227&domain=pdf&date_stamp=2022-07-23
mailto:luka.milic@foi.hr
http://creativecommons.org/licenses/by/4.0/

AUTOMATIKA 677

distinction between nodes representing things, gate-
ways, and application nodes – any node anywhere in
the system can take on any role if it is capable of doing
so. The second principle is to describe a metaprotocol
for data transfer between nodes. This metaprotocol can
use any datalink-layer, network-layer or transport-layer
protocols, and can even be used with only a physical
layer. The basis of this metaprotocol are database oper-
ations from the SQL language, i.e. the SQL command
SELECT and the corresponding data response. The
third principle is the use of a specially designed con-
figuration and a rule system that allows the integration
of different nodes, from resource-constrained ones to
advanced, into one system, with different connectivity
between the nodes.

In this architectural description, the term “metapro-
tocol” is used. The metaprotocol, like the application
protocol, uses existing underlying protocols for mes-
sage transmission. However, to reach its final destina-
tion, a message may hop across multiple nodes. Some
of these nodes may be ordinary network nodes (e.g.
routers) and other metaprotocol-enabled nodes that
can forward a message based on its content. In this way,
the metaprotocol creates an overlay network that inter-
connects its nodes. A new underlying protocol is not
proposed as there are already many IoT protocols on
different layers and the creation of another such proto-
col seems unnecessary. The proposedmetaprotocol can
reuse many elements from the underlying protocol and
only contain elements that are missing from that proto-
col. Therefore, it can be implemented over the simplest
of protocols (e.g. serial connections) or over sophisti-
cated protocols (e.g. HTTPS). It is this ability to use it
over very different networks and protocols that distin-
guishes the proposed metaprotocol from other existing
IoT protocols.

The proposed architecture was designed with sim-
plicity of implementation and flexibility inmind.Nodes
of different roles and complexity can be part of IoT
systems based on this architecture, from the most
resource-constrained thing to very complex nodes.
With the proposed architecture, nodes can be assigned
many tasks, such as transmitting sensor readings,
requesting data from other nodes, responding to data
requests, data processing, data storage, forwardingmes-
sages from other nodes, using the publish/subscribe
mechanism either as a publisher or subscriber or both,
and the like. Most of these operations are supported
by the proposedmetaprotocol, implicit node behaviour
and rule system, and should simplify the implementa-
tion of any node. Nodes can form arbitrary networks,
and each node can communicate directly or indirectly
with any other node if there is a reason for such com-
munication. The proposed architecture does not define
or rely on a predefined network organization (e.g. a
tiered one), does not require a centralized node, and
can be used to create arbitrary networks, with mutable

connections, even with moving nodes. This makes this
architecture very flexible.

Security in the proposed architecture is based on
reusing existing security services, i.e. using what is
already there, namely proven security services of the
underlying transmission (transfer) protocols. If these
services are not sufficient, an additional mechanism,
proposed in the metaprotocol, can be used. Whether
the services of the underlying protocol or those of the
metaprotocol are used can be determined with implicit
or explicit rules within a node.

The original contribution of this paper is a new IoT
architecture here defined with a system model, a node
model, a communication metaprotocol, and a middle-
ware implementation. The main advantages of the pro-
posed architecture include the ability to easily incorpo-
rate resource-constrained nodes into the system, define
the nodes’ tasks through rules, and create an arbitrary
centralized or decentralized network system.

The remainder of the paper is organized as fol-
lows. In Section II, the related work is elaborated.
In Section III, the model of the system is presented.
In Section IV, the system is showcased on a use
case. In Section V, usage guidelines are laid out. In
Section VI, advantages of using the proposed system
are discussed, as well as some disadvantages. Finally,
in Section VII, the conclusion and future work are
given. The Appendix holds a few example scenarios
with implementation details.

II. Related work

Currently, a few protocols are mainly used in IoT [11].
At the datalink layer, the most commonly mentioned
protocol is Bluetooth and its version for resource-
constrained systems called Bluetooth Low Energy
(BLE), which solves the problems of energy consump-
tion, master-slave architecture, and required processor
power. The BLE protocol has eclipsed other protocols
in this layer, such as IEEE 802.11 (Wi-Fi) and its revi-
sion called IEEE 802.11ah, which addresses power con-
sumption. The IEEE 802.15.6 protocol is also notwidely
used, nor is IEEE 802.16 (WiMAX), although these
protocols are sometimes mentioned as suitable for the
IoT [11]. Within the category of low-power wide-area
(LPWA) protocols, LoRaWAN and SigFox [11] have
found a somewhat larger audience.

The datalink-layer protocol IEEE 802.15.4 (called
154 for short in the text) [12] is used as the basis for
ZigBee [13], a popular solution for local networks, and
for the Thread protocol stack [14]. Thread is also based
on the 6LoWPAN protocol [15] for encapsulating the
IPv6 protocol. Another popular protocol stack of this
capacity is Z-Wave [16], based onproprietary protocols.
ZigBee and Z-Wave are only designed for communica-
tion in a local IoT network. Thread also assumes the
existence of a router, but considering 6LoWPAN, this

678 L. MILIĆ ET AL.

router only needs to perform protocol conversion, and
does not need to have a control function. On the net-
work and transport communication layers in the global
network, common protocols are used (IP, IPv6, TCP,
UDP).

At the application layer, CoAP (adapted from
HTTP) [17], XMPP [18], MQTT [19], AMQP, and
RESTful-based protocols are commonly used [20].
They all use the publish-subscribe model, i.e. they all
create client-server architectures and define commu-
nication mechanisms, but they do not define node
operations as the proposed architecture does.

In [21], devices can communicate via REST using
multiple protocols at the datalink layer. They can
receive certain data and be asked for certain data. The
user must learn the rule language, which is later com-
piled into the Java programming language. In [22], the
rules are written in the Lua scripting language using
a semantic engine API. The engine can communicate
with devices through its protocols and make conclu-
sions based on ontologies. The rules are edited using
web configuration.

In [23], users can create smart objects by selecting
their shape, parts and behaviours through a graphical
interface. The behaviours consist of rules that control
parts of the objects, which have some ready functional-
ity and are then compiled in Java. The rules are of the
type “when < some reading> do < some action> ”.
In [24], rules are created using a graphical interface
to compose provided services. The services are based
on data collected from things, data sent to things,
and metadata derived about things. Things are also
abstracted through a representation layer.

In [25], there is a system that usesHTTPor anHTTP
gateway to communicate with things that use REST.
This creates what is often called aWeb of Things (WoT)
on the local network. Rules are written in JavaScript
and the description of their triggers is written in JSON
format. They can refer either to data from things or to
existing data, and generate events for amodule that per-
forms activities that can also be monitored in real time.
In [26] a system for graphical creation and modifica-
tion of rules is presented, implemented in JavaScript
and jQuery technology. The system works with a rule
engine that can receive events, store data and execute
actions. The engine communicates with smart things
using various protocols.

In [27], triggers of different levels of abstraction can
be defined using context information about an onto-
logically based representation of devices classified by
categories and their services classified by capabilities.
The system is used to automatically create an appropri-
ate graphical interface in one of the authors’ projects
and to propose rules to the user in another project.
In [28], existing rules of a given system are analyzed
and described using formal models. Then, when a
new device is connected to the system, it can use the

mappings learned there to analyze its functionalities,
automatically create rules and recommend them to the
user.

In [29], gateways store timestamped data from
devices. Devices are abstracted by their so-called
“avatars”, which are described with ontologies. Higher
layers can send queries to the gateways using the gate-
ways’ query language and the gateways can respond.
In [30], Event-Condition-Action (ECA) rules are cre-
ated using a graphical editor that corresponds to the
system’s rule language, which are then compiled into
another rule language. The cloud onwhich the system is
installed receives data from things that use the local net-
works. Then it can push actions to an application that
connects to the cloud.

Further comparisons with the above solutions are
presented inmore detail in SectionV, after the proposed
architecture is presented.

III. Systemmodel

The systemmodel is defined by its nodes, their connec-
tivity, and their operation.

An essential part of the system are “metaprotocol
nodes”, i.e. nodes that actively use the metaprotocol.
Depending on their role, such nodes can be very sim-
ple (resource-constrained nodes) that can only send or
receive simpler metaprotocol messages, or they can be
more complex. For example, in addition to its orig-
inal function of using its sensors and/or actuators, a
node may also be used to forward unmodified mes-
sages, or modify messages before forwarding them,
possibly using a different underlying transmission pro-
tocol. Another node may be even more sophisticated,
using rules to manipulate, store, retrieve messages,
perform operations on a collection of messages, use
security features, etc. These node complexities can be
related to RFC 7228 [31] and its classes. When the
most resource-constrained nodes are mentioned, they
can be considered as Class 0, but in this architecture,
the modelled metaprotocol nodes can be Class 0, 1, 2,
or “above”. The complexity of a node does not affect
its metaprotocol communication, only the operations it
supports.

The second node type is the “user node”, which
may not be aware of the metaprotocol but is a part of
the system, e.g. via a web interface provided by nodes
actively using the metaprotocol (as in the prototype
implementation).

Finally, the last node type is the “network node”,
which is simply a part of the network infrastructure
(routers, gateways, switches) and as such serves to pro-
vide connectivity on the respective network without
being aware of the metaprotocol it enables.

Two nodes can be connected (exchangemessages) in
several ways:

AUTOMATIKA 679

Figure 1. A system example with various nodes and
connections.

1. via a direct physical connection using the underly-
ing protocols with a metaprotocol message in the
payload

2. via another metaprotocol node forwarding the
original or modified message

3. via a network node that does not use the metapro-
tocol with its message in the payload

4. viamultiple nodes, all, some, or nonemetaprotocol
nodes.

Figure 1 illustrates an example system based on the
proposed system model, which consists of metaproto-
col nodes (square), user nodes (diamond shape), and
network nodes (circle).

Normally, in such a system, any node can be con-
nected to any other node as needed. However, there
may also be isolated nodes that indirectly participate
in system operation through changes in the system
environment. For example, their sensors may detect
changes that are effected by other nodes and vice versa.

Only the metaprotocol nodes define the system
behaviour. In the following text, only these nodes are
described, and the term “node” stands for such a node.

The metaprotocol is defined by its messages and
the behaviour of the nodes. Several message types are
defined, mostly based on the SQL SELECT command
and its data response, each type representing a par-
ticular operation in the model of IoT systems. The
main purpose of messages is to enable communica-
tion between nodes that produce data (usually called
“things”), nodes that process and store data (“servers”
or “clouds”), and nodes that request this data for a
specific purpose (“clients” or “users”). In addition, the
proposed model includes the usual publish/subscribe
mechanism.

In the proposed system model, there are no stan-
dard node categories, since each node can take the role
defined for it, e.g. the role of a thing, a server, a client,
a gateway, or a combination of roles. A generic node
model is presented whose behaviour is controlled by

its software, node settings, and capabilities. The stan-
dard architecture model (thing-gateway-server-client)
can be realized by the proposed model, but other arbi-
trary models can also be created.

A. Nodemodel

Each node in the proposed systemmodel has a role that
defines its behaviour. For very resource-constrained
things, this behaviour can be simply described as “col-
lect and send the sensor value”. On the other hand,
a node in the cloud can collect data, process it, com-
bine results fromdifferent sources, and control complex
operations. Such extreme node cases require custom
programmes – in the first case a very simple pro-
gramme, in the second case a collection of multiple
programmes and services. However, the focus in this
subsection is on other types of nodes that are not among
the most resource-constrained ones and are also not
extremely complex. Such nodes can be modelled in
terms of a few operations that they performperiodically
or in response to sensor input or a received message.

The node that controls some devices (actuators)
or collects readings from a connected sensor can be
modelled as an activity “every X time units do
THIS” or “on event Y do THIS”. The operation
“THIS”may include reading the sensor, sending a com-
mand to the attached actuator, storing the obtained
value locally, sending some data to a remote node,
etc. These operations can be broken down to simpler
actions that can be described with a few parameters.
Such breakdown is used in the proposed node model.

Another part of the node’s behaviour are the actions
related to the message exchange. What is to be done
when a message is received? Should the node store it,
forward it, discard it, or perform a local action on it,
e.g. “read sensor”, “send command to device”, etc.?
Sometimes an additional action may be required when
sending a message, such as “save a copy”, “send to a
backup node”, “update something”, etc. The previously
described behaviours can be modelled with “triggers”
that are evaluated for each message that is received or
to be sent.

The proposed node model is shown in Figure 2. It
includes operations that can be triggered periodically,
then when a local event occurs, and finally when mes-
sages are exchanged. Triggers can be defined with rules,
as described in Section V.

B. Nodemiddleware

The model of the middleware prototype implementa-
tion is shown in Figure 3. The basic components are
a main programme and underlying protocol modules,
UPMs. TheUPMs can use any underlying protocol. E.g.
the node in Figure 3 has 4 UPMs, one for TCP, one
for UDP, one for BLE, and one for 154. These UPMs

680 L. MILIĆ ET AL.

Figure 2. Node model.

Figure 3. Software architecture of middleware implementa-
tion.

enable the proposedmetaprotocol to be used over other
protocols by using protocol encapsulation and decap-
sulation, and extraction and injection of information
from and into the headers of the underlying protocol.
The UPMs use the node’s network adapter(s), directly
or through other layers (protocols), to communicate
with other nodes.

The main programme relies on a database that
can contain stored messages, subscription triggers,
rules, node configuration, user list, etc. A database can
be used directly or through externally programmed
database functions. This should be sufficient for gen-
eral node operations, using sensors, receiving mes-
sages, processing messages, sending messages, and
forwarding.

If a node is to allow direct interaction with users, an
additional web server should be integrated. Through its
web interface, common users and administrators can
retrieve the desired information, send commands to the
nodes, and perform similar operations. In the prototype
implementation, the users can use the web interface
to access raw data, inject or manually send messages,
manipulate rules and configuration, etc.

Figure 4. Protocol format and encapsulation.

For more resource-constrained nodes, without a
web interface, the configuration must be set manually
(imported into the database) if the default behaviour
is not sufficient. If a node is even more resource-
constrained, it will not use a database at all so every-
thing must be programmed into the main programme,
as shown in Section V.

The node model and implementations are modular
– modules that are not required, such as the web server,
database, or some UPMs can be removed from many
nodes, reducing hardware requirements.

The proposed message formats and types with their
purpose are described next, followed by the rest of the
node activities.

C. Messages

The proposed metaprotocol does not define its under-
lying transfer protocol – its messages can be transferred
over any available underlying protocol. However, facil-
ities provided by the underlying protocol can be used
to simplify the metaprotocol’s message by omitting
already provided elements.

The message types, message elements and their
encapsulation into the underlying protocol are shown
in Figure 4. A single messagemay contain the following
elements, in this order:

1. HD – message header (1 byte);
2. ID – message identification number (1 byte);
3. LEN – payload length (2 bytes);
4. DST – EUI-64 destination node id (8 bytes);
5. SRC – EUI-64 source node id (8 bytes);
6. PL – message payload (varying length);
7. CRC – message checksum (4 bytes).

Not all elements are required in all messages. For
example, if the source/destination node identifier can

AUTOMATIKA 681

be extracted from the underlying layer (e.g. if the proto-
col carries EUI-64), these elements can be omitted from
the message; CRC may only be required if the under-
lying protocol (e.g. a simple physical layer) does not
provide similar protection. In some short messages, all
or almost all elements can be omitted.

The header consists of 8 bits that specify which ele-
ments are included in the message (bits I, L, D,
S, R for ID, LEN, DST, SRC, CRC) and which
optional operations are required from the message
receiver, namely: returning an acknowledgement mes-
sage (bitK), securing themessage for confidentiality (bit
C) and securing it for authenticity (bit A).

The identifiers used in the metaprotocol are there-
fore EUI-64 identifiers of the respective node. Almost
every metaprotocol node has at least one of them by
itself, since many datalink-layer protocols (BLE, 154,
Ethernet, Wi-Fi . . .) use them anyway, and some net-
work layer protocols (IPv4, IPv6 . . .) may make use of
them as well. Some protocols use EUI-48, which can be
easily converted to EUI-64, and others use even shorter
addresses, which can be even more easily converted to
a unique 64-bit representation.

The message ID together with SRC and DST forms
the message identification and is used to confirm that
the message has arrived, to notify an error in the mes-
sage, to notify an unsupported operation in the mes-
sage, and to detect duplicates, such as when the same
message arrives at a destination via multiple routes.

In the following protocol description, mostly only
the message payload is described.

1. SQL encoding
In order to make this metaprotocol as suitable as pos-
sible for resource-constrained devices, great effort has
been made to make it extremely lightweight, both in
terms of message size and the encoding/decoding pro-
cess. Elements that can be extracted from the under-
lying protocol can be omitted from the message. For
some message types, encoding can be used to further
reduce the length of the payload. The type of a received
message can almost always be decoded from only the
first character of the payload. Also, most resource-
constrained nodes may support only a few simple oper-
ations (or only one) and ignore received unsupported
message types.

The message payload formats are inspired by SQL
commands. These commands can be partially encoded
to reduce message size, using an 8-bit binary value
from the ASCII 128–255 range for the most commonly
used SQL SELECT keywords. For example, the SQL
query “SELECT a, b, c FROM table WHERE
a > b AND b > c ORDER BY c;” can be
encoded as “X1a,b,cX2tableX3 a>bX4b>c
X5X6c”, where “Xi” are the corresponding 1-byte
code values for the replaced keywords. With such

an encoding, the message payload size is significantly
reduced, e.g. from 59 to 24 bytes for the given example.

Theoretically, any SQL SELECT query can be
requested in the message. However, since this metapro-
tocol is designed for IoT environments, some of the
SQL syntax has been simplified to facilitate the most
commonly used operations. Additionally, the default
table and column names are used if they are not directly
specified in the SQL query.

The default table name is formed from the source/
destination node identifier prefixed by the char-
acter “t”, as in “table”. Whether the source or
the destination identifier is used depends on which
node is providing the data: when sending data, the
source identifier is used; when requesting data, the
destination identifier is used. E.g. if a node with
“source id” = 0×1111111111111111 sends data,
the default table name on the destination node (which
will store the data) is “t1111111111111111”. Sim-
ilarly, if a node with “destination id” = 0×22222222
22222222 requests data from another node, the
default table name is “t2222222222222222”.

If the column name for a message with a single value
is not specified, the name “d” (as in “default”) is used.
If a message contains multiple values, default names are
“d1”, “d2”, “d3”, etc.

Tables containing data received from other nodes
must also contain, in addition to the columns speci-
fied in the message, a default column “t” – a timestamp
of the message data, that is, when it was created or
received.

Differentmessages can be classified into severalmes-
sage types according to their payload:

• DATA;
• SELECT, SELECT_SUBSCRIBE;
• UNSUBSCRIBE, UNSUBSCRIBE_ALL;
• QUICK;
• HELLO;
• ACKNOWLEDGMENT;
• PAYLOAD_ERROR;
• OPERATION_UNSUPPORTED.

2. Message type DATA
DATAmessages are usually sent by nodes that generate
data (like sensors) or in response to a SELECT query.
A DATA message contains some data (readings, status,
a reply to a data request, a reply to a subscription, etc.).
A DATA message can contain a single named value in
the form:

name=value;

or contain multiple named values:

name1,name2,...,nameN=val1,val2,
...,valN;

or even multiple values for the same names, i.e. a table:

682 L. MILIĆ ET AL.

name1,name2=val11,val21;val12,val22;

or values without column names, using the default
naming with “d1” and “d2”:

val11,val21;val12,val22;

Whenmultiple values are specified for the same names,
the value rows are delimited with a semicolon (;). In
the last example, there are two values for each name (in
JSON, “name1”: val11, val12, “name2”: val21, val22).

A node that merely stores received DATA messages
in the described tables must first expand a message
into a SQL INSERT query and then execute it. The
table implicitly used in this query has the default name
consisting of the letter “t” and “source id”.

3. Message type SELECT
A retrieval of data from a node is requested by a
SELECT message. The SQL SELECT query can be a
simple query such as “SELECT col1, col2 FROM
table;” or more complex with aliases, a WHERE, and
other clauses and conditions. When data is requested
from a sensor node, the query can be even simpler, e.g.
“SELECT val1, val2;”, or “SELECT ∗;” – or
even “X1∗” when encoded.

The result of the SQL query is usually packed into a
DATAmessage and returned to the requester.

4. Message type SELECT_SUBSCRIBE
SELECT_SUBSCRIBE is intended for the publish/
subscribe service, where, after receiving somedata from
its sources, the service provider sends the appropriate
data to its subscribers.

Themessage SELECT_SUBSCRIBE is an extended
SELECTmessage that contains the suffix “SUBSCRIBE
id” at the very end, before the last “;”. A node pro-
viding such a service must save this SQL request as a
“subscribe request”, identified by the given “subscribe
id” and “source id”. When a SELECT_SUBSCRIBE is
received, the SELECT query it contains shall be exe-
cuted and stored. Later, when new data is inserted into
the tables mentioned in the SELECT_SUBSCRIBE
message, the SELECT query should be executed again
on the updated tables and the difference from the pre-
vious SELECT result, if any, returned to the client.

5. Message type UNSUBSCRIBE
An UNSUBSCRIBEmessage is intended for cancelling
a subscription. The message contains only the keyword
“UNSUBSCRIBE” and a subscription id. The receiving
node shall delete that subscription from its tables.

6. Othermessage types
An UNSUBSCRIBE_ALL message is the same as the
UNSUBSCRIBE message, except that it contains the
keyword ALL as the “subscribe id”. The receiving node

should delete all subscriptions of the sending node in
its tables.

A simpler DATA message, called QUICK, contains
only a one-byte value in the payload. All other mes-
sage elements, even the header, can be omitted. There-
fore, the shortest QUICK message can have a one-byte
length in total. Such amessage is intended for resource-
constrained things where only very short messages are
feasible.

A HELLO message has no payload at all. Since all
other message elements can be omitted, a message of
this type can also be very short, even zero-bytes long.
This message type is intended for notifications or sta-
tus requests (“I am online”) and should usually be sent
periodically, or when a node comes online, or it is avail-
able for message reception, e.g. for nodes that are not
always online.

An ACKNOWLEDGMENT message is used to notify
the sender of a previous message that the message was
received and understood. The message payload con-
tains “K<1-byte message id> ”, and, together with
SRC and DST reversed from the original message, it
identifies the message for which this is the acknowl-
edgement. This message is usually sent when the K-bit
had been set in a previously received message.

A PAYLOAD_ERROR message is sent when there
is an error in the received message. The message is
in the form “P<1-byte message id> ” and identi-
fies the troubled message with the given identifier. It
may be followed by an optional error description, e.g.
“P\x33Malformed payload”.

An OPERATION_UNSUPPORTED message is sent
when there is a processing error in the received mes-
sage, caused by an unsupported operation in the des-
tination node. The message is of the form “O<1-byte
message id> ” and it identifies the troubled message
with the specified identifier. An optional description
string may follow the identifier.

D. Security actions

The proposed system allows the use of the underlying
protocol’s security services when they are available, but
also provides mechanisms when they are unavailable or
insufficient. In the following text, the security options of
the metaprotocol are first described, and then the way
they can be combined with the available security ser-
vices of the underlying protocols through implicit and
explicit rules.

In the context of this metaprotocol, security con-
sists of confidentiality and authenticity. Confidentiality
is realized by encrypting the message, while authentic-
ity is realized by a digital signature. A node sending a
message defines the necessary security components by
setting flags C for confidentiality and A for authentic-
ity in the message 8-bit header. Other nodes involved

AUTOMATIKA 683

in the message transfer must meet the security require-
ments defined for the message by using the underlying
services or the services provided by the metaprotocol,
or simply not forward the message if they cannot. The
public key cryptography is used for the key scheme.
In the implementation of the metaprotocol, AES-192
with CBC is used for symmetric encryption and RSA-
2048 with SHA-256 is used for asymmetric encryption
and signing. The key exchange is not a part of the pro-
posed metaprotocol – it is assumed that the keys are
inserted into the nodes by some othermethod, either by
complex rules built over themetaprotocol, or manually.

If only the C flag is set in the message header, only
the confidentiality is requested. The confidentiality is
achieved by a digital envelope. A digital envelope of
the original message has the following format in the
payload:

1. one-byte character @;
2. two-byte length of the encrypted message;
3. original message, symmetrically encrypted;
4. two-byte length of the encrypted secret key;
5. asymmetrically encrypted key;
6. initialization vector (24 bytes for AES-192-CBC).

Using the digital envelope, the entire original mes-
sage can be encrypted, including all elements, not just
the payload, and placed as the payload into a new “car-
rier” message. In this way, even the message identifier,
the original source, and the final destination can be
hidden from nodes that only forward this message. If
this is not required, depending on the original message
or the rules, only the header and the payload can be
encrypted, since, after decryption, the original message
can be reconstructed with elements from the “carrier”
message.

The symmetric encryption key and the initialization
vector are randomly generated. The public key of the
destinationnode is used for the asymmetric encryption.

If only theA flag is set in themessage header, only the
authenticity is requested. The authenticity is achieved
by a digital signature. A digitally signedmessage has the
following format in the payload:

1. original message payload;
2. one-byte character #;
3. hash of the entire message, asymmetrically

encrypted (sender’s private key).

When both flags A and C are set, the message con-
tains both a digital envelope and a digital signature of
the message. A digitally enveloped and signed message
has the following combination in the payload:

1. character @;
2. rest of the envelope (parts 2–6);
3. character #;
4. rest of the signature (part 3).

When processing messages in the rule system, the
flagsENCRYPTED andSIGNED are used, togetherwith
the special commands ENCRYPT, DECRYPT, SIGN
and VERIFY.

When communication takes place in a closed system
where all nodes are trusted, security is not mandatory,
and a message can be sent unencrypted and unsigned,
as is the case in many systems today. This is especially
the case for things on a local network thatmay be physi-
cally separated from everything else. However, once the
message crosses such boundaries and is forwarded to a
destination over an unsecure network, it is necessary to
ensure at least someminimal security requirements, e.g.
by signing the message, to prevent the introduction of
message forging.

Given the very likely processing limitations of some
IoT devices related to cryptographic algorithms, the
metaprotocol allows these devices to request security
“by proxy” even if they cannot provide it. For exam-
ple, this security may apply only to the time after the
message has left the local network.

A node can decide what to do with a message based
on implicit rules (presented later in this section) or
additional (explicit) rules defined specifically for that
node. For example, with the additional rules, a node
can check where the message came from and decide
what to do next based on that. After considering the
implicit rules that arise from the basic ideas of the pro-
posed architecture, common additional rules are also
considered.

Resource-constrained nodes can be configured to
not use security, but simply trust everything and for-
ward all received messages unchanged, helping a mes-
sage from a more distant thing reach a smarter node
(e.g. a gateway). The smarter node can analyze themes-
sage from a security perspective and secure it appropri-
ately as it is forwarded. To do this, it can use services of
the underlying protocol layer or the capabilities of the
metaprotocol, or both.

The implicit security-check rules are represented
with an algorithm shown in Listing 1, which uses
Python-like pseudocode. The argument msg is the
message to be transported,iSRC (immediate source) is
the underlying-protocol address of the previous node in
the transmission, iDST (immediate destination) is the
underlying-protocol address of the following node, and
uproto is the underlying protocol.

A resource-constrained node can be configured to
forward anymessage it receives. A smarter node should
check flags A and C in the message header and, if
they are not set, forward the message. If the flags are
however set, but the message is already protected by
the security mechanisms of the metaprotocol, the mes-
sage should also be forwarded. Otherwise, the mes-
sage will be dropped unless the underlying trans-
mission protocol can provide the required security
mechanisms.

684 L. MILIĆ ET AL.

Listing 1. Implicit security checks before sending a message.

Listing 2. Implicit security checks upon message reception.

Security checks should also be performed when the
message is received. The algorithm for implicit checks
at the message reception is shown in Listing 2.

The second part of the security mechanisms are
explicit message rules that should normally be activated
when a message crosses the network boundaries. For
example, consider a system inwhich a gateway connects
the trusted local network and the untrusted global net-
work.A rule in the gatewaymight specify that amessage
without C or A received by a node in the local network
and headed to a remote node (in the global network)
should be dropped. A similar rule should be estab-
lished for received messages from the global network.
Another rule can enforce encryption and signing of a
received unprotectedmessage from the local network if
flags C and A are set in the message. A complementary
rule decrypts and verifies a message received from the
global network before forwarding it to a local network
node. For example, trusted and untrusted networks can
be distinguished by protocol – a local protocol can be
trusted (e.g. BLE) and a global one can be untrusted
(e.g. TCP).

E. Message routing

The message ID is randomly generated the first time a
message is created for a given destination node. On the
next message from the same node for the same destina-
tion, this ID is incremented in modulo-256 arithmetic.
This mechanism can be used to detect duplicate mes-
sages. In a local network, duplicates are expected when
a message is broadcast from the starting node toward
the destination node, using other nodes as carriers.
Here, since ID, SRC and DST are used as the complete
message identifier, the duplicate messages can be eas-
ily detected in the short period of time for which the
message identifiers are stored.

Figure 5. Example IoT System.

A message sent from one node to another may tra-
verse different paths at different times or even simulta-
neously.When sending or forwarding amessage, a node
may have several alternate routes for the next node. A
single next node can be selected or a message can be
sent to all alternatives. To optimize network usage, a
smarter node should track the reachability of the des-
tination node over each route and dynamically update
this information for future use.

The most resource-constrained nodes like the Class
0 should not have complex routing and can use
broadcast at the underlying layer. When a resource-
constrained node receives a broadcast message that is
not intended for that node, it can drop or forward that
message. When using broadcast, some security features
must be turned off – some message elements must be
visible to all to allow forwarding. However, the mes-
sage payload may still be encrypted and/or signed for
the destination node.

IV. Use cases

In this section, an example IoT system is used to
demonstrate the benefits of the proposed architecture
in terms of system design, facilitated inclusion of very
resource-constrained things, and usability and flexi-
bility. Additional examples with more details on the
messages can be found in Appendix A.

An example system shown in Figure 5 is modelled
for a smart farm with animals, e.g. cows, sheep or the
like. The IoT part of the system consists of devices
(things) embedded in collars worn by the animals, in
water stations, feeding stations, gates, beacons, an ani-
mal processing station (e.g. milking station), a server
node and user applications.

In this example, the farm consists of large land areas
where animals can roam, eat, rest, sleep, etc. The land is
divided into these areas which are accessible through
fenced corridors controlled by smart gates. The idea
is to automatically direct the animals to selected areas
each day. Smart water and feeding stations are placed

AUTOMATIKA 685

in some areas, where necessary and possible. Beacons
are also placed on some fences and other farm objects
to monitor the animals’ movements.

The smart gates receive commands from the server –
DATAmessageswith “action= ‘open’/’close’/‘status’”
– and need a long-distance connectivity to do so, at least
sometimes, e.g. once an hour. A smart gate node does
not only control the gate, but also records which animal
has passed through it. A smart collar on an animal peri-
odically sends a HELLOmessage. When a gate receives
such amessage, it extracts the identifier of the collar and
stores it locally along with the current timestamp. Later,
when a connection to the server is established, the gate
sends all buffered data to it, as one or more DATAmes-
sages, in the form “time,animal_id=t1,id1;
t2,id2;...;”. Alternatively, if no remote connec-
tion is available, the gate can be programmed to open
and close at specific times of the day.

The smart nodes at beacons, gates, water, feed-
ing, and processing stations periodically broadcast
their locations, implicitly via their identifiers, through
a DATA message “location= <node_id>;”. A
smart collar that receives such a message saves it for
later retrieval at the barn gates, that ask for them with
the message “SELECT ∗;”. If a more detailed real-
time animal tracking mechanism is required, more
smart nodes with long-range connectivity can be dis-
tributed on the farmland. For example, some beacons,
water and feeding stations could be equipped with such
more advanced nodes. For evenmore accurate tracking,
some collars could be equipped with a smarter node
with a GPS sensor that tracks nearby animals through
theirHELLOmessages, and sends this data to the server
periodically, or only when specifically requested by the
server with a “SELECT ∗;”.

The smart water and feeding stations detect the pres-
ence of nearby animals via their HELLO messages.
When an animal is detected, the station should use its
sensors to check the availability of food or water and
provide more if needed.

The presented system is loosely connected. Adding
a node sometimes requires no any changes to any
other nodes in the system, except perhaps in the server
node. For example, if a new beacon is placed some-
where, its location should be entered into the server
and no other changes are required. The same works
for gates, stations and collars. If a node is removed, no
change is required to any other node. The behaviour
shown earlier for different nodes can be easily pro-
grammed before the node deployment. Some nodes
are very resource-constrained (e.g. beacons) and can
be implemented with some very resource-constrained
microcontrollers like the Class 0 devices. A node with
a new or a changed role can be easily introduced into
the system without requiring system-wide intervention

or any change at all. For example, the status of water
and feeding stations can be transmitted by (some of)
these stations simply by appending a resource to the
message they already send as a part of the location
messages. For example, such a message may look like:
“location,water,battery= ‘w421’,73,45;”
conveying not only the location identifier (“w421”),
but also the water tank status (73%) and battery
status (45%). The collar that receives such a mes-
sage simply stores it as-is (e.g. implicitly extended
table with new columns), and later passes it on
request – a change is required only in the node
that provides this additional information, and prob-
ably in the server node that can use it (other-
wise this new information is only stored and not
used).

All collected data can be stored on a single
(remote/local) server, or the data can be delivered to
multiple servers. Therefore, control can be defined in
one or more places. For example, data from feeding
stations can be delivered to the server of a company
that manages farm supplies. However, this information
will be also available to the farmer so that he can ana-
lyze the food consumption at the different stations and
determine, for example, where there is enough vege-
tation and where to send his animals. On the other
hand, several farms, even with different owners, can be
controlled by the same server (or several).

Security is not considered so far because there are no
critical problems presented. However, if nearby areas
are used by other farms with their animals and a dis-
tinction between them must be made, various other
mechanisms can be used.

If only object discrimination is sufficient, it can be
implemented almost entirely by data filtering in the
servers. Water and feeding stations could be optimized
and given a list of animals for that farm (or filtered
on identifiers) so that they are not activated when only
foreign animals are nearby, i.e. outside the fences but
within communication range.

If this is not sufficient, other security mechanisms
must be used. If security can be achieved by the lower-
layer transfer protocol, that would be optimal: it places
the least demands on the node’s processing capabilities.
For example, if a shared secret is used on this com-
munication channel, all nodes can be configured for it
before deployment. If this is not enough, and there is a
suspicion that a node in such a network might be com-
promised, more sophisticated methods can be used,
e.g. using digital envelopes and/or digital signatures
provided by the metaprotocol or a more secure under-
lying protocol. Using thesemethods would then require
public and private keys for all nodes and public key dis-
tribution. Each message can then be authenticated and
only the valid messages are processed.

686 L. MILIĆ ET AL.

V. Implementation options

A. Simplified application design

In the subsection III.B, the node model is presented.
Building on this, this section describes other middle-
ware capabilities that can simplify node implementa-
tion. Like the TCP and UDP protocols provided by
the network layer in operating systems, the proposed
middleware can provide message manipulation oper-
ations (creation, verification, data extraction, sending,
receiving, rule processing . . .).

For devices with very limited memory, the use of an
advanced middleware, such as the implemented proto-
type,might be too demanding. Such devicesmight need
only a small subset of the operations, support only some
message types when sending and receiving, no support
for encryption, etc.

Devices with more memory, but not enough for the
full middleware, can use only some elements of the
middleware in a custom programme. For example, a
resource-constrained device that reads its sensors, and
sends the readings to the default gateway every hour
or on explicit request, could be programmed with the
following pseudocode:
program

register_event(ON_MESSAGE, on_
message)

loop
default_send(read_

sensor())
delay 1 hour

on_message(message)
default_send(read_sensor())

The operations register_event and default
_send should be provided by the includedmiddleware
parts.

Deviceswith sufficientmemory could usemoremid-
dleware elements to simplify application development,
e.g. as in prototype implementation or the like. Such
middleware should be able to perform the operations
required by the device for most use cases without
the need for an additional application. All required
behaviours (for most use cases) can be defined through
the node configuration using rules. Basic rules can
be classified into periodic rules, on-message-reception
rules, on-message-sending rules etc. A basic set of
actions can include reading a sensor to a file or a table,
writing a value to a peripheral device (e.g. an actuator),
sending data to the default node or a specific one, some
actions on a sensor event, onmessage reception, and the
like.

Rules can be defined via editing the rule table in SQL,
or a graphical interface as in the prototype implemen-
tation. In the following descriptions, a textual represen-
tation of the implemented interface is used because it is
more descriptive and simpler.

A device like the previous one, but implemented
with the described middleware, can have the following
configuration:
RULE 1:
type=PERIODIC
period=3600
action:

READ_SENSOR (TEMP_25, TABLE_0)
SEND_DATA (DEFAULT_GW, TABLE_0)

RULE 2:
type=ON_MESSAGE
FILTER (MESSAGE.type = = MSG_TYPE_

SELECT)
action:

READ_SENSOR (TEMP_25, TABLE_0)
SEND_DATA (MESSAGE.from,

TABLE_0)
RULE 3:
type=ON_MESSAGE
FILTER (MESSAGE.type = = MSG_TYPE

_HELLO)
FILTER (MESSAGE.flags & MSG_FLG_

ACK != 0)
action:
SEND_DATA (MESSAGE.from, EMPTY_

MESSAGE)
The samemiddleware for advanced nodes (e.g. gate-

ways) could have more message filtering and forward-
ing capabilities by using the database with information
about sensor nodes: which nodes to forward messages
from and where to forward them to. The following
sample configuration can be used in such a node.
RULE 1:
type=ON_MESSAGE
FILTER (SQL_CHECK_FORWARD_FROM

(MESSAGE.from))
FILTER (SQL_CHECK_FORWARD_TO

(MESSAGE.dest))
action:

RUN_SQL (“SELECT real_dest FROM
table_fwd

WHERE from_id =“ + MESSAGE.
from, RESULT_0)

FORWARD_MESSAGE (MESSAGE,
RESULT_0)

B. Architecture implementation guide

A guide for implementing the proposed architecture is
shown in Figure 6 with a UML activity diagram.

If a new system is to be created, an overall sys-
tem architecture should be defined first. Otherwise,
an existing architecture can be used instead, possi-
bly with some refinements. Next, elements are added
or updated. For resource-constrained nodes (“things”),
simple programmes can be used. Advanced nodes

AUTOMATIKA 687

Figure 6. Architecture implementation guidelines.

should use middleware, e.g. like the one presented and
implemented in this paper, which can be configured
with implicit and explicit rules. The process is repeated
until a satisfactory system is created. The same imple-
mentationmodel can be used for existing systemswhen
nodes are added or the behaviour of a node is changed.
Changing only one node should require little or no
changes to other nodes, since the implicit behaviour of
the metaprotocol can suffice in most cases. In this way
it is similar to the Internet: when a new computer con-
nects it should get its IP address, and no further changes
are required for other computers and devices already on
the Internet.

VI. Discussion

The behaviour of the proposed architecture is mostly
based on a rule system, with implicit and custom rules.
However, there are some differences with similar sys-
tems cited in Section II.

Some of those systems ([23,30]) are designed for a
specific purpose only (here – home automation, sports
training). Many of these systems require the user to
learn a specific language in order to use them (partially
[21] and [22], fully [25,29]). All of these systems (except
[22] to some extent) can only be used on local networks.
Next, all of them require an additional abstraction layer

between the devices and the system, the layer that con-
verts data into messages and vice versa. All of the cited
systems (except [21] to some extent) have strictly sep-
arated node categories (e.g. sensors, routers, servers).
None of the previous systems allow dynamically chang-
ing the role (and complexity) of a node by only
changing its settings. The insertion of a node initially
having only simple operations, which then gradually
becomes more complex, is not possible in any of these
systems.

The proposed architecture, on the other hand, is not
designed for a single purpose, but for general-purpose
IoT systems. Since SQL is used for message formation,
there is no need to learn an additional programming
language used only for that system. In further devel-
opment, an interface can be created that automates
rule generation and uses only data operations that are
understandable to the ordinary users. The messages
of the proposed metaprotocol cross over different net-
works and protocols unchanged, and there is no need to
create an additional layer or converter for this purpose.

Changing node settings through the database or a
user interface to dynamically change the role of the
node can be straightforward. A resource-constrained
node can be assigned additional roles, or it can be freed
from previously given roles. In this way, the architec-
ture of the entire system can be dynamically adapted to
possibly updated system requirements by making some
changes to some nodes.

There are many commercial solutions for IoT today
[32], such as Microsoft Azure [33], Amazon Web
Services [34], and IBM IoT Platform [35]. These
complete full-stack cloud-based application packages
enable advanced analytics on the collected data [32].
Their architecture is strictly layered, with a hierarchi-
cal node organization, with services in the cloud at the
top of the hierarchy [32]. Many systems can be built
with such an architecture, but not all. Their flexibility
is limited, and the authors do not consider this archi-
tecture general enough. Nevertheless, it is possible to
combine such a system together with a system that uses
the proposed architecture. For example, some commer-
cial platforms can be used for advanced computing,
for user interfaces, and for similar parts of the broader
IoT super-ecosystem. The proposed architecture can
interoperate with many other architectures if an addi-
tional module is provided that converts protocols (e.g.
from/to MQTT) or APIs.

There are also popular free software solutions used
in IoT, like Node-RED [36]. Node-RED is a browser-
based rule editor that allows graphical composition
of JavaScript functions. The resulting programme is a
“flow” that is stored in JSON and deployed to devices
which use Node.js technology. Node-RED can deploy
its software on multiple “things” (Opto, Raspberry,
Siemens . . .) and communicate with multiple clouds
(AT&T, Cisco, Nokia . . .). It is designed for devices

688 L. MILIĆ ET AL.

that are at the edge of the network and for cloud
computing. Node-RED is mostly concerned with com-
munication between a node and a server and does not
provide flexibility in node organization and connectiv-
ity like the proposed architecture. It cannot be deployed
on resource-constrained devices because JavaScript is
being used. In addition, the communication is not opti-
mized for low overhead requirements.

For many users, using a commercial solution may
be too costly and/or complex to deploy. The proposed
architecture does not require dedicated server nodes
like those. Here, control can be embedded in things or
multiple resource-constrained control nodes. An ordi-
nary user may not be able to create such system by
himself, but after an engineer has designed and set
up his network, the user can later expand this system
with additional things and operations. Or, the user can
do everything himself by copying an existing architec-
ture designed for similar systems and adapting it to his
needs.

A. System evolution

Possible scenarios where the proposed architecture
should have an advantage over other architectures
include systems where continuous evolution and adap-
tation is mandatory. As users change their expectations
of the system as they continually learn more about its
capabilities (or what other users are doing in similar
systems), it is likely that more and more systems will
require that continuous evolution. An evolution step
may include the addition of new nodes, changes to
some existing nodes, changes to the system structure,
and so on. With the proposed architecture, many of
these operations can be performed locally by chang-
ing only a small number of nodes and possibly only the
configuration or rules.

The following is an example of using the proposed
architecture to create a new system. The starting point
can be a node with a gateway role that, initially, col-
lects all data from the local network. Adding a thing (a
node) to such a system could be as simple as program-
ming such a node to send its reading in the simplest
of messages (e.g. just one byte of information broad-
cast by the local datalink-layer protocol). The gateway
could initially process the received messages and pos-
sibly perform a simple action (defined by the rule sys-
tem supported by its middleware). If another node that
can perform advanced processing or store messages is
added at a later time, the gateway should be updated
by adding rules that forward some (or all) messages to
that advanced node. Things on the local network do not
need to know about the networks beyond the gateway.
They can transmit their own data, process data, and
respond to messages they receive. Changing the com-
plexity of a node by adding or removing an operation
(e.g. by rules), does not necessary require changes to

other nodes, except perhaps configuring a counterpart
node to participate in that operation.

After prototyping the local network, further opti-
mizations are supported. E.g. messages can be short-
ened if energy efficiency is required, or security can be
added if the network is deployed outside the currently
controlled environment, or rules can be added that fil-
ter received messages, or nodes that request data can
be added, or users can be added via a node with a user
interface. The local network can evolve with additional
nodes, changes in configuration and connectivity, sub-
networks, changing node roles, and similar.

The next stepmight require a connection to a remote
node if the local network is to be a part of a larger sys-
tem. Such connectivity could be implemented by local
changes in some nodes (e.g. the gateway), mostly by
rules only. More complex network changes can require
new SQL queries (in databases, messages). Connect-
ing to other systems does not require changes in most
nodes of the local network. Moreover, the evolution of
the local network could be continuous and unhindered
by changes in connectivity with (and changes within)
other networks.

Nowadays, the focus is often on rapid prototyping
of networks (pervasive IoT networking), not creating
complex systems from the scratch, but starting with the
smallest possible systems thatmeet the current needs of
the user, and then optimizing or expanding the system
or making it more complex and secure [37]. Whatever
the change may be, when using the proposed architec-
ture, it is perceived as a normal increment without a
significant system-wide change.

Other architectures referenced in this paper do not
provide similar flexibility in system design because they
impose a layered organization. Each new node (thing)
added to the system must be registered with a control
node – no implicit table creation is provided for such
a node as is possible with the implicit rules of the pro-
posed architecture. Changes in the system will almost
always affect a significant number of nodes. Changes
to some nodes can require a software upgrade, which
is problematic for remote nodes, while node changes
within the proposed architecture usually only require
configuration/rule changes. Nevertheless, for systems
with a clearly layered/tiered structure and specifications
known in advance (which will not change), another
solution might be a better choice, since the proposed
architecture is not optimized for such a structure.

Adding a thing to an existing system may therefore
require additional changes in most IoT architectures.
Table 1 illustrates such changes.

B. Communication overhead

The communication overhead of the proposed metap-
rotocol is compared to similar protocols like MQTT,
XMPP and CoAP. Several use cases are used for the

AUTOMATIKA 689

Table 1. Operations related to addition of simple node in existing IoT system.

Architecture Thing level Gateway level Server level User level

Common 4–layer
architecture

- operation of the thing
- configuration for commu-

nicationwith remote node

- optional configuration of
the gateway for message
processing and forward-
ing

- inserting added node
parameters to the server
system

- optional higher-level logic

- inserting settings for com-
munication and message
processing for addednode
on user application

Proposed
architecture

- operationof thenodewith
thing role

- optional configuration
for communication with
remote node if implicit
settings are not enough

- optional configuration of
the node with gateway
role for message pro-
cessing and forwarding if
implicit settings are not
enough

- optional configuration for
added node in the node
with server role if implicit
settings are not enough

- optional higher-level logic

- optional insertion of
added node settings for
communication and mes-
sage processing on node
with user role if implicit
settings are not enough

comparison. In the first use case, a node sends infre-
quent one-byte messages to the receiving node (e.g. a
server). The next two use cases have largermessages (20
and 100 B) but still infrequent communication, while
the last use case analyzes nodes with frequent commu-
nication.

The first three use cases with infrequent communi-
cation assume that the connection with another node
is established only for a short time to exchange data.
After that, the node is disconnected. Therefore, pro-
tocols that require a “handshake” operation before the
data exchange will naturally generate more traffic than
those that do not.

If the proposed architecture and metaprotocol are
used, the total overhead can be as small as that of a
header, since all message elements except the header
can often be omitted. Even the header can be omitted
in one-byte or zero-byte messages. If all message ele-
ments are used (header, message id, length, origin and
destination id, CRC), the overhead is 20 bytes. Since no
handshake is required, this is the total overhead of the
metaprotocol (zero, one, or 20 bytes).

TheMQTTprotocol requires a handshake, and, with
minimal messages, the total overhead is 63 bytes for a
single data exchange. For a persistent connection, the
overhead is 23 bytes per data exchange, excluding the
initial handshake.

XMPP is a text-based protocol that uses XML seg-
ments named “stanzas” for communication. XMPP
has a very large overhead for infrequently sent data,
as it contains large text segments for authentication
and other connection-establishing needs during the
initial handshake. However, once the connection is
established, it can communicate with simple one-way
messages.

CoAP has a very low overhead because it is a type
of a binary-encoded HTTP. It uses the so-called PUT
method from HTTP for communication, but as with
HTTP, eachmessagemust be confirmed. Also, resource
identifiers still need to be explicitly specified, as with
other protocols, and so it still has a larger overhead than
the metaprotocol.

The results of an analysis of protocol traffic are
shown in Table 2. The metaprotocol is optimized for
shorter messages and simpler nodes, so this is where its
greatest advantage lies.

Table 2. Traffic comparison for a simple message transmission.

Payload/protocol 1 B rarely 20 B rarely 100 B rarely 100 B often

MQTT 64 83 163 123
XMPP 1130 1149 1229 146
CoAP 26 45 125 125
Metaprotocol with
minimal message

1 21 101 101

Metaprotocol with
full message (all
elements)

21 40 120 120

C. Security analysis

For the security analysis, several cases must be consid-
ered, since security can be realized by either the under-
lying protocols, by themetaprotocol, or by othermeans.
Therefore, three different configurations are analyzed:
the first, no security is realized by the protocols, the
second, security is realized by the underlying protocols,
and finally, security is realized by the metaprotocol.

A resource-constrained (naïve) system may not use
security at all. If such a system is attacked, i.e. if a mali-
cious node infiltrates the network where messages are
exchanged, all kinds of security attacks are possible: the
attacker can eavesdrop, change messages, provide false
identification, resend old messages, etc.

When the security services of the underlying pro-
tocol are used, they provide protection between the
two nodes that use that protocol for communication.
If these two nodes are the original source and destina-
tion nodes (e.g. if TLS or secured BLE is used between
them), then the security of the underlying protocol
defines the system security. Otherwise, if a message
hops from the original source to the destination across
multiple nodes, with separate security mechanisms
between each of the two nodes involved in the com-
munication (e.g. thing1-to-thing2, thing2-to-gateway,
gateway-to-server), then the weakest link/node defines
the system security. If one node in this chain becomes
compromised, the entire system may be at risk.

Since most transfer protocols include some security
features that are usually optimized for targeted sys-
tems, the metaprotocol’s security features should be
used only rarely, because they may require a significant
upgrade in computing power. In any case, the secu-
rity provided by the metaprotocol includes encryption
(digital envelope) and digital signature. Each node has

690 L. MILIĆ ET AL.

its own private key and the public keys of all other
nodes with which secure metaprotocol communica-
tion is to take place. These public keys are expected
to be manually distributed to the nodes’ configurations
prior to communication. If only the digital envelope is
used, the attacker cannot eavesdrop, but he can mod-
ify messages and provide a false identification. If only
the digital signature is used, naturally, the attacker can
read the message content but cannot modify it or inject
a forged message. When both the digital envelope and
the digital signature are used, non-repudiation, privacy,
integrity, and authentication are guaranteed (cannot be
compromised).

Reply attacks can be mitigated by several mecha-
nisms. Firstly, each message has an identification num-
ber (ID+SRC+DST) that can be used to detect and
drop duplicate messages within short time intervals.
A message with an out-of-order ID can be detected
and used in message filtering. If this is not enough, a
timestamp can be included as part of a DATAmessage.

The metaprotocol itself is somewhat immune to
denial-of-service attacks due to its statelessness. How-
ever, malicious nodes could attempt to overload data
subscriptions or databases if there is no security. It is
recommended to enable security to prevent communi-
cation with malicious nodes, even though this will not
prevent possible denial-of-service attacks on the under-
lying protocols. In these cases, a protocol replacement,
or software firewalls, can protect the node.

Finally, some nodes may use explicit message filter-
ing rules to detect and respond to possible attacks on
the system.

D. Implementation notes

The prototype of the middleware has been imple-
mented and hosted on GitHub. The programming lan-
guages used are C++ for the middleware, PHP for web
configuration, bash for testing, and Kotlin for a mobile
app, with PostgreSQL for the database and Apache
Web Server for web configuration. The implementation
currently supports only Linux-based systems.

The middleware is implemented as follows: each
UPM has a sending thread and a receiving thread. The
sending thread has amessage queue fromwhich it reads
messages, and the receiving thread writes messages to
the main thread’s message queue. In addition, actions
can come from either the database triggers or the web
configuration, which are also queued so that only one
thing can be processed at a time in themain thread. The
structure of the middleware can be seen in Figure 2.
Threads and message queues are not shown there for
simplicity.

Currently, some parts of the described architecture
are not fully implemented. These include security for
some UPMs, parts of digital-envelope handling, web
configuration for cryptographic keys, and others. The

list of implemented and unimplemented features can be
found in the project’s repository [38].

VII. Conclusion

In this paper, a new IoT architecture is proposed, whose
primary design goal is the simplicity of a resource-
constrained node implementation. These nodes
(things) shall be able to communicate with a local
or remote node as easily as possible without being
burdened with communication protocols and network
configuration. To this end, a metaprotocol creating an
overlay network is proposed – that can use any available
transfer protocol and keep messages as short as pos-
sible. To complement the metaprotocol, a node model
is introduced with its implicit behaviour and the pos-
sibility to use additional user-defined rules. Since the
network configuration is not restricted, and the nodes
can be defined by rules, a “colourful” system can be
easily created.

The proposed message format is mostly based on
SQL and allows for simple and advanced information
transfer and command exchange. The simple messages
are data messages or simple queries – commands that
request new readings or other operations from things.
Advanced messages can contain a custom SQL query
that is to be executed on the destination node and its
result to be returned to the sender. Such message for-
mats enable the creation of various systems, from stan-
dard tiered architectures (thing-gateway-server-client)
to custom systems with distributed nodes and roles.

The use of the proposed architecture is demon-
strated with examples. The analysis of the proposed
architecture and the comparison with similar systems
show advantages in terms of simplicity of use and flex-
ibility of system implementation.

A middleware prototype for the proposed architec-
ture is implemented and used to test its functions from
various perspectives, from being used in data storing
and processing nodes that can use its full potential, to
the very resource-constrained nodes that require only a
small portion of its potential.

The proposed architecture does not exclude others
and can be used together with other (commercial) solu-
tions thanks to its flexible relation-based data model.

The future research includes the completion of the
middleware implementation that covers all the oper-
ations proposed in this paper. Then, various analy-
ses can be performed, from hardware requirements
to performance evaluation for different nodes and
operations. Further research can also include deploy-
ing the proposed metaprotocol, middleware, and cus-
tom resource-constrained things in real-world environ-
ments to solve real-world problems. Then, the simplic-
ity and flexibility of the proposed architecture demon-
strated in this paper on synthetic examples could be
further evaluated.

AUTOMATIKA 691

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

This work has been fully supported by the Croatian Science
Foundation under the project IP 2019-04-4864.

References

[1] Atzori L, Iera A, Morabito G. The Internet of Things: a
survey. Comput Netw. 2010;54(15):2787–2805.

[2] Lin J, Yu W, Zhang N. A survey on Internet of Things:
architecture, enabling technologies, Security and Pri-
vacy, and applications. IEEE Internet of Things J.
2017;4(5):1125–1142.

[3] Ashton K. That ‘Internet of things’ thing. RFID J.
2009;22(7):97–114.

[4] Risteska Stojkoska BL, Trivodaliev KV. A review of
Internet of Things for smart home: challenges and solu-
tions. J Cleaner Prod. 2017;140(3):1454–1464.

[5] Zorzi M, Gluhak A, Lange S. From today’s INTRAnet
of things to a future INTERnet of things: a wireless-
and mobility-related view. IEEE Wireless Commun.
2010;17(6):44–51.

[6] Mugauri PC, Aravind K, Desmukh A. A survey on
applications of Internet of Things in healthcare domain.
Res J Pharmacy Technol. 2018;11(1):93–96.

[7] Qiu T, ChenN, Li K.How can heterogeneous Internet of
Things build our future: a survey. IEEE Comm Surveys
Tutorials. 2018;20(3):2011–2027.

[8] Ciortea A, Boissier O, Zimmermann A. Responsive
decentralized composition of service mashups for the
Internet of Things. In Proc. 6th Int. Conf. Internet of
Things, Stuttgart, Germany, 2016, pp. 53–61.

[9] Yang Y, Wu L, Yin G. A survey on security and privacy
issues in Internet-of-Things. IEEE Internet of Things J.
2017;4(5):1250–1258.

[10] Dias JP, Faria JP, Ferreira HS. A reactive and model-
based approach for developing Internet-of-Things sys-
tems. In Proc. 2018 11th Int. Conf. Qual. of Inf.
and Commun. Technol. Coimbra, Portugal, 2018,
pp. 276–281.

[11] Oliveira L, Rodrigues JJPC, Kozlov SA. MAC layer pro-
tocols for Internet of Things: a survey. Future Internet.
2019;11(1):16–57.

[12] IEEE. IEEE standard for low-rate wireless networks.
IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-
2015), 2020.

[13] ZigBee Alliance. ZigBee specification. ZigBee Docu-
ment 05-3474-21, 2015.

[14] Thread Group. Thread 1.1 specification. Thread, 2016.
[15] IETF. Transmission of IPv6 Packets over IEEE 802.15.4

Networks. RFC 4944, 2007.
[16] Z-WaveAlliance. Z-Wave specification. Z-WaveAlliance

2020C, 2020.
[17] IETF. The Constrained Application Protocol (CoAP).

RFC 7252, 2014.
[18] IETF. Extensible messaging and presence protocol

(XMPP): core. RFC 6120, 2011.
[19] OASIS Group. MQTT Version 5.0. OASIS, 2019.
[20] Asim M. A survey on application layer protocols for

Internet of Things (IoT). Int J Adv Res Comput Sci.
2017;8(3):996–1000.

[21] Park NS, Lee HK, Jang J. Rule-based modeling tool for
web of things applications. In Proc. 2015 IEEE 5th Int.

Conf. Consumer Elect. – Berlin (ICCE-Berlin), Berlin,
Germany, 2015, pp. 515–518.

[22] Kaed CE, Khan I, Van Der Berg A. SRE: semantic rules
engine for the industrial Internet-of-Things gateways.
IEEE Trans Indust Inform. 2018;14(2):715–724.

[23] Mazzei D, Fantoni G, Montelisciani G. Internet of
Things for designing smart objects. In Proc. 2014 IEEE
World Forum Internet of Things (WF-IoT), Seoul,
South Korea, 2014, pp. 293–297.

[24] Yao L, Sheng QZ, Dustdar S. Web-based manage-
ment of the Internet of Things. IEEE Internet Comput.
2015;19(4):60–67.

[25] Yangqun L. A light-weight rule-based monitoring sys-
tem for web of things. In Proc. 2013 Int. Conf. Cyber-
Enabled Dist. Comput. and Knowledge Discovery. Bei-
jing, China, 2013, pp. 251–254.

[26] Toumisto T, Kymäläinen T, Plomp J. Simple rule editor
for the Internet of Things. In Proc. 2014 Int. Conf. Intel.
Environments. Shanghai, China, 2014, pp. 384–387.

[27] Monge Roffarrello A. End user development in the IoT:
a semantic approach. In Proc. 2018 14th Int. Conf. Intel.
Environments (IE), Rome, Italy, 2018, pp. 107–110.

[28] Hwang I, Kim M, Ahn HJ. Data pipeline for genera-
tion and recommendation of the IoT rules based on
open text data. In Proc. 2016 30th Int. Conf. Adv.
Inf. Netw. and Appl. Workshops (WAINA). Crans-
Montana, Switzerland, 2016, pp. 238–242.

[29] Hossayni H, Khan I, Kaed CE. Embedded semantic
engine for numerical time series data. In Proc. 2018
Global Internet of Things Summit (GIoTS), Bilbao,
Spain, 2018, pp. 1–6.

[30] Baricelli BR, Valtolina S. A visual language and inter-
active system for end-user development of inter-
net of things ecosystems. J. Vis. Lang & Comput.
2017;40(1):1–19.

[31] IETF. Terminology for constrained-node networks.
RFC 7228, 2014.

[32] Muhammed AS, Ucuz D. Comparison of the IoT plat-
form vendors, Microsoft Azure, AmazonWeb Services,
and Google Cloud, from users’ perspectives. In Proc
2020 8th Int Symp Digital Forensics and Secur. Beirut,
Lebanon, 2020, pp. 1–4.

[33] Microsoft. Azure IoT – Internet of Things Plat-
form | Microsoft Azure. microsoft.com. Available
from: https://azure.microsoft.com/en-us/overview/iot/
(accessed February 1, 2022).

[34] Amazon. AWS IoT – Amazon web services. ama-
zon.com. Available from: http://aws.amazon.com/iot/
(accessed February 1, 2022).

[35] IBM. Internet of Things | IBM. ibm.com. Available
from: http://www.ibm.com/cloud/internet-of-things
(accessed February 1, 2022).

[36] IBM. Node-RED. nodered.org. Available from: http://
nodered.org (accessed February 1, 2022).

[37] Zahoor S, Mir RN. Resource management in perva-
sive Internet of Things: A survey. J King Saud Univ –
Comput Inf Sci. 2021;33(8):921–935.

[38] Milić L. GitHub – lukamilicfoi/IoT. github.com. Avail-
able from: https://github.com/lukamilicfoi/IoT
(accessed February 1, 2022).

Appendix A. Example Scenarios

The following examples demonstrate the capabilities of the
proposed metaprotocol in different usage scenarios expected
in IoT systems.

https://azure.microsoft.com/en-us/overview/iot/
http://aws.amazon.com/iot/
http://www.ibm.com/cloud/internet-of-things
http://nodered.org
https://github.com/lukamilicfoi/IoT

692 L. MILIĆ ET AL.

Table A1. Elements of message 1.

Element Value

Header (HD) 0b11111000
Message id (ID) 0× 48
Length (LEN) 0× 0009
Destination node ID (DST) 0× 333333FFFE333333
Source node ID (SRC) 0× 111111FFFE111111
Payload (PL) “pres = 1034”
Cyclic redundancy check (CRC) (4 bytes)

A. Example 1. Basic operations

An example system shown in Figure 7 consists of four nodes.
Node-1 andNode-2 are simple things that communicate with
Node-3 over BLE. Node-3 and Node-4 communicate using
the TCP/IP stack. Node-1 represents a pressure sensor that
sends its readings once per hour toNode-3. Similarly, Node-2
represents a temperature sensor which also sends its readings
once per hour toNode-3.Node-4 represents a client node that
requests data from Node-3 about the readings from sensor
nodes, Node-1 and Node-2.

In the presented scenario, the first message (1) is sent
by Node-1, with its readings. Node-3 receives this message
and stores it. Next, Node-2 sends its own readings (2). Such
messages are sent repeatedly (with new readings), once per
hour. Sometime later, Node-4 requests readings for a spe-
cific period of time (3) and then receives the response from
Node-3 (4). The description of the previousmessages follows.

Node-1 sends a DATAmessage (message 1 from Figure 7)
with all the metaprotocol fields, as shown in Table 3. Since
all the fields are present in this message, there is no need to
use BLE capabilities, and hence BLE is not analyzed for this
message. The purpose of Table 3 is to showcase the proposed
message format in its most complete form.

The header describes the message elements. In this exam-
ple (header=0b11111000), the message contains all ele-
ments, even though some of them are clearly unnecessary
here.

When the message is created, the message identifier
(0× 48) is randomly generated, the source and destination
identifiers are usually generated fromExtendedUnique Iden-
tifiers (EUIs, extracted from BLE addresses), the message
length represents only the payload length and the CRC is cal-
culated over the entire message. For simplicity, the source
and destination identifiers in the example are set to sim-
ple values. In this example, the message payload is a string
“pres=1034” (“pres” as in “pressure”), which is inter-
preted as a DATAmessage.

Figure A1. A simple IoT system.

After receiving the message 1, Node-3 creates a table
“t111111fffe111111” (character “t” extended by the
source identifier) with the default column “t” (TIMESTAMP
(4) WITHOUT TIME ZONE) and a column from the
DATA message – column “pres” with the type determined
by the provided value, i.e. NUMERIC(4, 0).

If this were not the first message fromNode-1, such a table
would have already existed on Node-3. If the table exists, but
without the column “pres”, this columnwill be added when
this message is received. If the column “pres” exists, but
with a less precise type, it will be extended.

Therefore, the received message is expanded to pres=
1034,t=LOCALTIMESTAMP(4), and inserted into the
table “t111111fffe111111”.

In this example message, all protocol fields are surely not
needed, asmost of them could be derived from the BLE fields,
as shown further for the message 2.

Node-2 sends its reading using the QUICK simplest mes-
sage type, which contains only one byte, no other message
elements or even a header, just the payload. Since BLE is used,
the packet containing this message consists of the fields listed
in Table 4.

Since the message length (calculated from the BLE packet
elements) is only one byte, Node-3 processes the message
as the QUICK type and therefore generates other message
elements by extracting information from the BLE packet,
or calculating them, or using default values. In this exam-
ple, the message header is deduced to zero (0×00), the
message payload length to 0×01, the source identifier to
the sensor’s EUI-64 (0×222222fffe222222 expanded
from AdvA), the destination identifier to the gateway’s
EUI-64 – since broadcast is implied. The CRC is com-
puted over the 1-byte message (and still checked), and its
first byte is further used ad-hoc as the message identifier.
Then, the payload is expanded from AdvData to “d=20”
(0×14=20) and, as with the message from Node-1, the
table “t222222fffe222222” is created with only the
columns “d” and “t” columns, and finally the row 20,
LOCALTIMESTAMP(4) is inserted.

In further examples and messages, the focus will be only
on their payload. Other required fields are either provided
in the message or generated from the packet, but without
detailed explanation.

The next event from the described scenario involves
Node-4, asking for sensor readings on 2022-01-01 from
10 h to 14 h. The message it sends to Node-3 is of type
SELECT and it contains the following SQL-standard query
in its payload:

SELECT ALL t1.pres AS pres, t2.d AS
temp FROM t111111fffe111111 AS t1
INNER JOIN t222222fffe222222 AS t2 ON
CAST(t1.t AS DATE) = CAST(t2.t AS
DATE) AND EXTRACT(HOUR FROM t1.t) =
EXTRACT(HOUR FROM t2.t) WHERE CAST(t1.
t AS DATE) = DATE ‘2022-01-01’ AND
EXTRACT(HOUR FROM t1.t) BETWEEN 10 AND
14 ORDER BY t1.t ASC; (311 bytes).

Using the proposed encoding of SQL keywords, the message
is encoded as follows:

\xDE\x85t1.pres\x87pres,t2.d\x87temp\
xACt\x11\x11\x11\xFF\xFE\x11\x11\x11\x87
t1\xB3\xB7t\x22\x22\x22\xFF\xFE\x22\x22\
x22\x87t2\xEFCAST(t1.t\x87\x9B)=CAST(t
2.t\x87\x9B)\x84EXTRACT(\xB2\xACt1.t)=
EXTRACT(\xB2\xACt2.t)\xFBCAST(t1.t\x87\

AUTOMATIKA 693

Table A2. BLE packet for message 2.

Element Value

Preamble (1 byte)
Access Address (4 bytes)
Header (2 bytes)
AdvA 0× 222222222222
AdvData 0× 14
Cyclic redundancy check (CRC) (3 bytes)

Figure A2. Distributed IoT system example.

x9A)=\x9A‘2022-01-01’\x84EXTRACT(\xB2\
xAC t1.t)\x8C10\x8414\xD1\x8Ft1.t\x88
(164 bytes encoded).

Node-3 decodes thismessage, executes the selected query and
then responds with the result in a DATAmessage, e.g. with a
payload:

pres,temp=1030,19;1031,20;1032,20;
1031,21;1030,21

B. Example 2. Operation subscribe

In the second example, the same system as the previous
one from Figure 7 is used, but with additional functional-
ity: Node-4 requires notification when the temperature sen-
sor sends a value greater than 20 °C. Therefore, Node-4
sends the following subscription request to Node-3 (message
SELECT_SUBSCRIBE):

SELECT ALL t1.d FROM t222222fffe222222
AS t1 WHERE t1.d > 20 SUBSCRIBE 1;

SQL triggers could be used in the subscription feature
implementation (as in the prototype).Whenever some data is
changed in any of the tables named in the subscription query,
the query is to be executed again, and if there is a set (as in “set
theory”) difference from the previous result, the difference is
returned to the subscriber.

In this example, Node-4 requires Node-3 to execute the
given query whenever data is received from the tempera-
ture sensor, i.e. here whenever data is inserted into the table
t222222fffe222222. For example, if Node-2 sends a
temperature of 23, Node-3 inserts a value of 23 into the
device’s table and then, on a trigger, runs the subscription
query. If this produces some new result, it sends it to Node-4
in a DATAmessage (message d=23 or 0×17).

C. Example 3. Distributed system

The nodes for the next example are shown in Figure 8.
The example simulates a hierarchical distributed system with
Node-3 at the top and nodes Node-1 and Node-5 at the bot-
tom of the hierarchy. Node-1 represents a sensor, Node-2 is
an IoT gateway near the sensor location, while Node-3 is a
remote server that serves as a default forwarding point for
Node-2. Node-5 represents an IoT node at another remote
location where the configuration for Node-1 (and possibly
others) is defined. Node-5 is not directly reachable, butNode-
4 serves as its IoT gateway. Node-4, similarly to Node-2, uses
Node-3 as its default forwarding node.

In this example, it is assumed that a simpler underlying
protocol is used between Node-1 and Node-2, and between
Node-4 and Node-5 (e.g. BLE), while Node-3 is connected
to Node-2 and Node-4 through some Internet protocol (e.g.
TCP, UDP, HTTPS . . .).

Nodes higher in hierarchy might not know the statuses
and addresses of lower nodes without the lower nodes explic-
itly announcing this to them. For this announcement (aware-
ness), anymessage sent by the lower nodes is sufficient. How-
ever, if there is no information to convey, a simple HELLO
message can be used, e.g. when such nodes are booted up.

In the scenario presented in this example, when the nodes
are started, a HELLO message is sent in the following order:
Node-2 to Node-3 (message 1 from Figure 8), Node-1 to
Node-2 (2), Node-2 to Node-3 (3 – forwarded message 2),
Node-4 to Node-3 (4), Node-5 to Node-4 (5), and Node-4 to
Node-3 (6 – forwarded message 5).

It is also assumed that, in this scenario, Node-1 must peri-
odically send its readings to Node-2. However, firstly Node-1
must retrieve the period defined in minutes from Node-5.
Therefore, the next message (7) is sent by Node-1 to Node-2
(as its default gateway) but destined for Node-5. Node-2 for-
wards this message to its default gateway Node-3 (8). Node-3
determines (in its data structures) that Node-5 is reachable
through Node-4 and forwards the message to it (9), and
finally Node-4 forwards the message to Node-5 (10). The
message that Node-1 had sent is a SELECTmessage:

SELECT ALL period FROM configs WHERE
node_id=X’111111FFFE111111’;

On Node-5, a table named configs (a manually created
table) should contain one distinct row per sensor node, with
the node’s configuration parameters. Node-5 replies with a
DATAmessage with the payload:

period=20

forNode-1 as its destination (in theDST field of themessage),
but the message is sent (e.g. over BLE) to Node-4 (11), and
then forwarded to Node-3 (12), Node-2 (13) and finally to
Node-1 (14).

Node-1 can now start sending sensor readings every
20 minutes (message 15 from Figure 8; Node-1 knows
the time unit). Node-1 can use a DATA message (e.g.
“reading=123”) or, if a result can be fitted into a byte,
a QUICKmessage (e.g. 0×7B, meaning “d=123”).

D. Example 4. Security and privacy

The last example demonstrates the use of security of the
underlying transfer protocol where it is available, but also the
use of additional security mechanisms used by the proposed
metaprotocol when the underlying protocol is not sufficient.

For this purpose, the same nodes as in Example 3 from
Figure 8 are used. In this example, secure communication is

694 L. MILIĆ ET AL.

requested between Node-1 and Node-5, not allowing other
parties involved in the message transfer to view the mes-
sage content (except for the nodes enabling security). E.g.
since Node-2 communicates with Node-3 over TCP/IP, there
are usually many nodes (routers) between them transmitting
their packets. None of them should be able to see the contents
of the message.

If all underlying transfer protocols (between Node-1 and
Node-2, between Node-2 and Node-3, etc.) support suffi-
ciently securemechanisms, then the use of thesemechanisms
is required by theC flag in themessage header. Otherwise, the
security mechanisms of the proposed metaprotocol must be
used. The security mechanisms are demonstrated using two
subexamples.

In these subexamples it is assumed that Node-1 from
Figure 8 must send a message (e.g. with payload “data=
56”) securely to Node-5. Node-1 and/or Node-5 may or may
not have cryptographic capabilities.

In the first example, both nodes, Node-1 and Node-5, can
secure messages through the metaprotocol, as shown in the

subsection III.D. In this example, only Node-1 and Node-
5 can see the message payload in its original (decrypted)
form.NodesNode-2, Node-3 andNode-4 should use a secure
transport mechanism (e.g. TLS, DTLS) when transporting
the message because flags C and/or A are set in the message
header, but they cannot decrypt/verify the payload.

In the second example, Node-1 cannot use security mech-
anisms (e.g. because it is a very resource-constrained node
without the required capabilities). In this case it is up toNode-
2 to know this, and (as a trusted node/gateway) to provide
the requested security. Node-2 must have explicit rules that
are triggered when a message arrives from Node-1 and the
flags C/A are set. There must also be complementary rules
when a message arrives for Node-1. Node-2 acts on behalf
of Node-1 and therefore must have its credentials (both pri-
vate and public key). Node-5 can provide security itself in
this example. The presented example assumes that in the local
network the security is achieved by othermeans (e.g. by phys-
ical inaccessibility or by lower-layer protocols) and that only
the transmission over the public networks is untrustworthy.

	I. IntroductionQ4
	II. Related work
	III. System model
	A. Node model
	B. Node middleware
	C. Messages
	1. SQL encoding
	2. Message type DATA
	3. Message type SELECT
	4. Message type SELECT_SUBSCRIBE
	5. Message type UNSUBSCRIBE
	6. Other message types

	D. Security actions
	E. Message routing

	IV. Use cases
	V. Implementation options
	A. Simplified application design
	B. Architecture implementation guide

	VI. Discussion
	A. System evolution
	B. Communication overhead
	C. Security analysis
	D. Implementation notes

	VII. Conclusion
	Disclosure statement
	Funding
	References
	Appendix A. Example Scenarios
	A. Example 1. Basic operations
	B. Example 2. Operation subscribe
	C. Example 3. Distributed system
	D. Example 4. Security and privacy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

