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ABSTRACT
The nonlinear rationalmodel is a generalized nonlinearmodel and has been gradually applied in
modellingmany dynamic processes. The parameter identification of a class of nonlinear rational
models is studied in this paper. This identification problem is very challenging because of the
complexity of the rational model and the coupling betweenmodel inputs and outputs. To iden-
tify the nonlinear model, a bias compensated multi-innovation stochastic gradient algorithm is
presented. The multi-innovation technique replacing the scalar innovation with an information
vector is adopted to accelerate the traditional stochastic gradient algorithm. However, the esti-
mate obtained by the accelerated algorithm is biased because of the correlation between the
information vector and the noise. To overcome this difficulty, a bias compensation strategy is
used. The bias is calculated and compensated to get an unbiased estimate. Theoretical analysis
shows that the proposed algorithm can give biased estimates with linear complexity. The pro-
posed algorithm is validated by a numerical experiment and the modelling of the propylene
catalytic oxidation.
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1. Introduction

To describe the dynamic characteristics of the non-
linear systems, many nonlinear structures have been
developed, such as the NARMAX model, Volterra
series model, block-oriented nonlinear model and so
on [1–4]. In recent years, a model named nonlinear
rational model (NRM) has been gradually applied in
the modelling and control of nonlinear systems, par-
ticularly in some chemical processes and mechanistic
systems [5–8]. The NRM is a kind of generalized non-
linear model. Traditional rational model, NARMAX
model, integral model, output affine model and linear
difference equation model can be seen as its special
form [9].

The NRM is defined as the ratio of two polyno-
mial expansions of past inputs, outputs and predic-
tion errors [10]. The identification of the NRM is
quite difficult because the NRM cannot be parame-
terized into a linear-in-parameter system [9–11] and
the coupling between model input and output. Despite
the difficulties, researchers have reported some results
[7,9,12]. For example, to identify the parameters of
the NRM, a prediction error algorithm and a new
rational model estimation (RME) algorithm were pro-
posed [11,13]. To decrease the computational cost of
the above two algorithms, a recursive RME algorithm,

an error back propagation algorithm, an implicit least-
squares iterative algorithm, two maximum likelihood
algorithms and a globally convergent algorithm were
derived [5,7,10,14,15]. To determine the NRM’s struc-
ture, an orthogonal RME algorithm and a genetic
algorithm were investigated [9,11]. Zhu et al. sum-
marized the advances in NRM identification and
control [8].

Although these algorithms work well for many
NRMs, they have at least O(n2) complexity, which
makes them unsuitable for online applications. To
decrease the complexity, the stochastic gradient (SG)
algorithm is an alternative because it costs only O(n)
flops each iteration [16]. There are many gradient-
based algorithms, among which, a key term sep-
aration gradient iterative algorithm was derived to
identify a fractional-order nonlinear system [17], a
three-stage forgetting factor SG method was pro-
posed for a Hammerstein system [18] and an auxiliary
model stochastic gradient method was studied for a
Wiener–Hammerstein system [19].

However, the estimate for the NRM given by the
traditional SG algorithm is biased because the infor-
mation vector is correlated to the noise [10,20,21]. To
get unbiased estimates, the bias compensation (BC)
technique and instrumental variable (IV) technique are
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often used, for example, a BC-based method was pro-
posed to estimate the state of charge for lithium-ion
batteries [22], a BC-based sign algorithmwas addressed
to estimate the weight vector of an unknown system
[23], an IVmethod was implemented for detecting and
correcting parameter bias within structural equation
models [24], a unified model-implied IV approach was
reported for structural equation modelling with mixed
variables [25]. Sometimes, for the IVmethod, although
there are some guiding principles, it is still very difficult
to select an appropriate instrumental variable. There-
fore, the BC method is adopted to obtain an unbiased
estimate for the NRM in this paper [10].

This paper considers the parameter identification of
the so-called ARX-NRM. This NRM contains a pro-
cess model with nonlinear rational form and its noise
model has the same denominator as the process model.
This paper investigates this parameter identification in
the time domain, without considering modelling error,
time-delay estimation, uncertainties in the real systems
and frequency-domain identification [26–29]. Mean-
while, this paper discusses the integer adaptivemethods
for the nonlinear models. Recently, the fractional adap-
tive method has been an important part of adaptive
algorithms. For details, please see [30–33].

Themain contributions of this paper are as follows:

(1) The parameter identification of an ARX-type non-
linear rational model is considered, which is quite
difficult because this model is a nonlinear-in-
parameter system and its output is coupled with
the input.

(2) To accelerate the stochastic gradient algorithm,
the multi-innovation technique is integrated into
the algorithm, in which the scalar innovation is
replaced by the innovation vector.

(3) The bias of the multi-innovation stochastic gradi-
ent algorithm is calculated by the observations and
the previous estimates, and then compensated to
get an unbiased estimate.

(4) The proposed algorithm is validated by numerical
examples and case study. Results indicate that the
proposed algorithm can obtain accurate estimates
with a fast converge speed.

The rest of this work is organized as follows. In Section
2, the ARX-NRM to be estimated is described. Then an
unbiased multi-innovation SG algorithm is presented
in Section 3. In the next section, the performance of
the proposed algorithm is analysed. Numerical exam-
ples and case study are adopted to validate the proposed
algorithm in Section 5. Finally, conclusion is summa-
rized in Section 6.

2. Problem description

Consider an ARX-NRM depicted in Figure 1, where
u(k), y(k) and v(k) are the input, output and noise,

Figure 1. Block diagram of an ARX-NRM.

respectively. f (k) and g(k) are two nonlinear poly-
nomials concerning y(k − i) and/or u(k − j), i, j =
1, 2, . . . , r.

From Figure 1, we can express the output y(k) by

y(k) = f (k)
1 + g(k)

+ 1
1 + g(k)

v(k), (1)

where{
f (k) = f (y(k−1), . . . , y(k−r), u(k−1), . . . , u(k−r)),
g(k) = g(y(k−1), . . . , y(k−r), u(k−1), . . . , u(k−r)).

(2)

It can be seen from Figure 1 and Equation (1) that
the structure of this NRM is similar to that of the ARX
model, y(k) = B(z−1)

1+A(z−1)
u(k)+ 1

1+A(z−1)
v(k) [21]. The

difference is that the numerator f (k) and denomina-
tor g(k) of the NRM are both nonlinear polynomi-
als, and the input u(k − i) is implicit in the nonlinear
transfer function. Thus the NRM in Figure 1 is named
ARX-NRM.

Multiplying both sides of Equation (1) by 1 + g(k)
yields

(1 + g(k))y(k) = f (k)+ v(k) (3)

with {
f (k) = b1ψ1(k)+ · · · + bnbψnb(k)
g(k) = a1φ1(k)+ · · · + anaφna(k)

(4)

and φi(k), ψj(k) are scalars with the forms of uj(k −
i), yj(k − i), um(k − i)yl(k − j), etc. Then we can
parameterize the ARX-NRM as follows:

y(k) = −y(k)g(k)+ f (k)+ v(k) = ϕT(k)θ + v(k),
(5)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = [θTa , θ
T
b ]

T ∈ R
n×1,

ϕ(k) = [−y(k)ϕT
a (k),ϕT

b (k)]
T ∈ R

n×1,
n = na + nb,

ϕa(k) = [φ1(k), . . . ,φna(k)]
T ∈ R

n×1,
ϕb(k) = [ψ1(k), . . . ,ψnb(k)]

T ∈ R
n×1,

θa = [a1, . . . , ana]
T ∈ R

na×1,
θb = [b1, . . . , bnb]

T ∈ R
nb×1.

(6)
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The identification of the ARX-NRM in Figure 1 is
transformed into the estimation of the parameter vector
θ based on the observations {u(k), y(k)}Nk=1, whereN is
the data length.

3. Identification algorithm

3.1. Stochastic gradient (SG) algorithm

Consider the parameterized system in Equation (5) and
denote the error e(k) as

e(k) = y(k)− ϕT(k)θ̂(k − 1), (7)

where θ̂(k − 1) is the parameter estimate at time k − 1.
Sometimes, e(k) is also called innovation [16].

Define a cost function as follows:

V(k) = 1
2
e2(k). (8)

The SG algorithmupdates the parameter estimate along
the negative gradient direction of the criterion function
V(k) until V(k) reaches the minimum. The stochastic
gradient of V(k) concerning θ at time k is

g(k) = −ϕ(k)e(k) = − ϕ(k)(y(k)− ϕT(k)θ̂(k − 1)).
(9)

The SG algorithm for identification of θ is as follows
[20]:

θ̂(k) = θ̂(k − 1)− η(k)g(k), (10)

whereη(k) is the variable step size that can be calculated
by [16]

η(k) = 1
r(k)

, r(k) = λr(k − 1)+ ϕT(k)ϕ(k),

r(0) = 1, λ ∈ (0, 1]. (11)

3.2. Multi-Innovation SG (MI-SG) algorithm

Although the SG algorithm costs less calculation than
the least-squares algorithm, it converges slowly. To
accelerate the algorithm, multi-innovation is intro-
duced [16]. Replacing the single innovation e(k) in
Equation (9) with the multi-innovation vector Ep(k),
and replacing the single information vector ϕ(k) with
the information matrix �p(k) gives a stacking gradient
Gp(k) as follows:⎧⎨
⎩
Gp(k) = −�p(k)Ep(k) ∈ R

n×1,
�p(k) = [ϕ(k),ϕ(k−1), . . . ,ϕ(k−p + 1)]∈R

n×p,
Ep(k) = [

e(k), e(k−1), . . . , e(k−p + 1)
]T∈ R

p×1,
(12)

where p is the stacking length, Gp(k), Ep(k) and �p(k)
are the stacked gradient, stacked innovation vector, and

stacked information matrix, respectively. Expanding
Gp(k) yields

Gp(k) = −
k∑

i=k−p+1

ϕ(i)e(i) = −
k∑

i=k−p+1

g(i), (13)

where g(i) denotes the gradient at time i.
It can be seen from Equation (13) that the stacked

gradient Gp(k) is the sum of recent p gradients, and it
can also be regarded as the weighted information vec-
tors, and the weighting coefficient is the innovation at
the corresponding time. In short, this summation or
weighting increases the size of the gradient, modifies
the direction of the gradient and is conducive to accel-
erating the gradient algorithm. This gradient algorithm
using multi-innovation is called multi-innovation SG
(MI-SG) algorithm.

Consider Equation (13), the SG estimator Equation
(10) is rewritten as

θ̂(k) = θ̂(k − 1)− η(k)Gp(k). (14)

Equations (7)–(14) except Equation (10) construct the
MI-SG algorithm.

3.3. Bias compensatedMI-SG (BC-MI-SG)
algorithm

Let us study the properties of the parameter estimate
given by the MI-SG algorithm.

Considering Equations (7) and (9), the stacked gra-
dient Gp(k) in Equation (12) is rewritten as

Gp(k) = −
k∑

i=k−p+1

ϕ(i)e(i)

= −
k∑

i=k−p+1

ϕ(i)(y(i)− ϕT(i)θ̂(i − 1))

= −
k∑

i=k−p+1

ϕ(i)(ϕT(i)θ0

+ v(i)− ϕT(i)θ̂(i − 1))

= −
k∑

i=k−p+1

(ϕ(i)ϕT(i)θ0 + ϕ(i)v(i)

− ϕ(i)ϕT(i)θ̂(i − 1))

= −
k∑

i=k−p+1

�θ0 −
k∑

i=k−p+1

T(i)

+
k∑

i=k−p+1

�θ̂ (i − 1), (15)

where T(i) = ϕ(i)v(i), � = ϕ(i)ϕT(i) and θ0 denote
the true parameter vector.
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Considering Equations (15) and (14) becomes

θ̂(k) = θ̂(k − 1)+ η(k)
k∑

i=k−p+1

�θ0 + η(k)

×
k∑

i=k−p+1

T(i)− η(k)
k∑

i=k−p+1

�θ̂(i − 1).

(16)

Taking expectation on both sides of Equation (16)
yields

E{̂θ(k)} = E{̂θ(k − 1)} + η(k)
k∑

i=k−p+1

�θ0

+ η(k)E

⎧⎨
⎩

k∑
i=k−p+1

T(i)

⎫⎬
⎭

− η(k)E

⎧⎨
⎩

k∑
i=k−p+1

�θ̂(i − 1)

⎫⎬
⎭ . (17)

Supposing � is not related to θ̂(i − 1), and using the
conditional expectation formula [20]

E{f (x)y} = E{E{f (x)|y}y}, (18)

The fourth item on the right side of Equation (17) can
be written as

− η(k)E

⎧⎨
⎩

k∑
i=k−p+1

�θ̂(i − 1)

⎫⎬
⎭

= −η(k)�E

⎧⎨
⎩

k∑
i=k−p+1

θ̂(k − 1)

⎫⎬
⎭ . (19)

Equation (17) becomes

E{θ̂(k)} = E{̂θ(k − 1)} + η(k)�
k∑

i=k−p+1

θ0 + η(k)

×
k∑

i=k−p+1

E{T(i)} − η(k)�

×
k∑

i=k−p+1

E{̂θ(i − 1)}. (20)

When k → ∞, E{θ̂(k)} = E{θ̂(k − 1)}, we have

lim
k→∞

k∑
i=k−p+1

E{̂θ(i − 1)− θ0}

= �−1
k∑

i=k−p+1

E{T(i)} �= 0. (21)

It can be seen from Equation (21) that the parameter
estimate obtained by the MI-SG algorithm is biased.
We can find that the bias �−1 ∑k

i=k−p+1 E{T(i)}
is caused by the η(k)

∑k
i=k−p+1 T(i) on the right

of Equation (16). To obtain an unbiased estimate,
this term must be subtracted from the right of
Equation (14), i.e.

θ̂(k) = θ̂(k − 1)− η(k)Gp(k)− η(k)
k∑

i=k−p+1

T(i).

(22)

However, T(i) cannot be calculated by ϕ(i)v(i) because
of the unknown v(i). For the ARX-NRM in Figure 1,
considering Equation (6) and replacing the unknown
v(i) by e(i), T(i) is calculated by

T(i) = ϕ(i)v(i) =
[−y(i)v(i)ϕa(i)

v(i)ϕb(i)

]

=
[−y(i)v(i)ϕa(i)

0nb×1

]

≈
[−y(i)e(i)ϕa(i)

0nb×1

]
(23)

Substituting Equation (23) into Equation (22) yields

θ̂(k) = θ̂(k − 1)− η(k)Gp(k) + η(k)

×
k∑

i=k−p+1

y(i)e(i)
[
ϕa(i)
0nb×1

]
, (24)

Equations (7)–(13) and Equation (24) (except Equation
(10)) construct the bias compensated MI-SG (BC-MI-
SG) algorithm.

4. Performance analysis

4.1. Computational analysis

The calculation costs of each iteration of the SG,MI-SG,
RLS and BC-MI-SG algorithms are shown in Table 1. It
is seen that:

(1) The computational burden of the three SG algo-
rithms is all O(n).

(2) The MI-SG and the BC-MI-SG algorithm cost
more computations than the SG algorithm because
of the multi-innovation.

(3) The proposed algorithm costs less computation
than the recursive least squares (RLS) algorithm,
whose complexity is O(n2) [9,16].
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Table 1. Computational costs of the SG, MI-SG, BC-MI-SG, and
RLS algorithms.

SG MI-SG BC-MI-SG RLS

Computation
cost 6n + 2 5n + np + 2 5n + np + na + 5 4n2 + 6n
n = 10, p = 3,
na = 5 62 82 90 460
n = 100, p = 3,
na = 50 602 802 855 40,600

4.2. Convergence analysis

According to Section 3.3, for the proposed BC-MI-SG
algorithm, Equation (17) becomes

E{̂θ(k)} = E{̂θ(k − 1)} + η(k)
k∑

i=k−p+1

�θ0

− η(k)E

⎧⎨
⎩

k∑
i=k−p+1

�θ̂(i − 1)

⎫⎬
⎭ . (25)

When k → ∞, E{θ̂(k)} = E{θ̂(k − 1)}, Equation (25)
can be rewritten as

lim
k→∞

k∑
i=k−p+1

E{̂θ(i − 1)− θ0} = 0. (26)

Consider limk→∞ E{θ̂(k − j)} = E{θ̂(k)}, j = 0, 1, · · · ,
p − 1, Equation (26) is rewritten as

p lim
k→∞

E{̂θ(k)− θ0} = 0, (27)

which means limk→∞ E{̂θ(k)} = θ0.

5. Experiment results

5.1. Numerical example

Consider an ARX-NRM in Equation (1) with{
f (k) = 0.5y(k − 1)u(k − 2)+ u(k − 1),
g(k) = 1 + u2(k − 1)+ y2(k − 1), (28)

where the input u(k) is a Gaussian signal with mean
zero and variance 1.02. A noise v(k) with mean zero is
added to the model. 600 observations are collected and
depicted in Figure 2. The initial value of each entry of
the parameter vector is set to 1 × 10−6 and the estima-
tion error is defined as δ(%) = ‖θ̂(N)−θ0‖

‖θ0‖ × 100.

1) Results using BC-MI-SG, MI-SG, SG and RLS
algorithms

The parameter estimates using the proposedBC-MI-
SG are shown in Table 2, and the estimation errors are
depicted in Figure 3, where σ 2 = 0.012, λ = 0.4, p = 3.
For comparison, the parameter estimates given by the
SG, RLS andMI-SG algorithms are also listed inTable 2,

Figure 2. Curves of the observed data.

Figure 3. Estimation errors using the SG, MI-SG and BC-MI-SG
algorithms.

and the estimation errors using the last three algorithms
are also depicted in Figure 3.

It can be seen that:

(1) In Figure 3, all curves decrease when k increases,
whichmeans that the estimation errors of the three
algorithms become small with the new data being
used.

(2) The error curves of the two algorithms with MI
are almost the same, which are far lower than that
of the SG algorithm. In other words, the parame-
ter estimates given by the two MI-SG algorithms
are more accurate than those given by the SG
algorithm.

(3) Among the two curves with MI, the curve of the
proposed BC-MI-SG algorithm is at the bottom,
which shows that the estimation error given by
the proposed algorithm is smaller. That is to say,
the bias compensation can improve the estimation
accuracy of the MI-SG algorithm.
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Table 2. Estimates using the SG, MI-SG, RLS and BC-MI-SG algorithms.

Algorithm 50 100 200 400 600 True

SG a1 0.3565 0.5624 0.7392 0.8683 0.9116 1.0000
a2 0.0027 0.0085 0.0268 0.0984 0.1741 1.0000
b1 0.3044 0.3526 0.4077 0.4083 0.4203 0.5000
b2 0.6456 0.7483 0.8694 0.8782 0.9116 1.0000
δ(%) 69.5595 62.2554 56.5903 51.2437 46.5461

MI-SG a1 0.8569 0.9600 1.1180 0.9686 0.9962 1.0000
a2 0.3042 0.3439 0.7279 0.8385 0.8885 1.0000
b1 0.4545 0.4401 0.4617 0.4793 0.4897 0.5000
b2 0.9159 0.9551 1.1138 0.9904 0.9842 1.0000
δ(%) 39.7595 36.6965 17.7479 9.2127 6.2787

RLS a1 0.9816 0.9803 0.9994 0.9760 0.9802 1.0000
a2 0.8819 0.9111 0.9975 0.9494 0.9291 1.0000
b1 0.4808 0.4951 0.5008 0.4907 0.4898 0.5000
b2 0.9758 0.9799 0.9970 0.9812 0.9842 1.0000
δ(%) 6.8482 5.1813 0.2234 3.3156 4.2167

BC-MI-SG a1 0.8227 0.9661 1.0815 1.0023 1.0045 1.0000
a2 0.2633 0.3063 0.9366 0.9834 1.0012 1.0000
b1 0.4503 0.4358 0.4804 0.4912 0.4994 0.5000
b2 0.8948 0.9599 1.1108 1.0094 1.0007 1.0000
δ(%) 42.5233 38.7559 8.4748 1.1752 0.2646

Figure 4. Estimation errors using BC-MI-SGwith different noise
variances.

(4) In the second half of identification, the curve of the
RLS algorithm has little difference with the pro-
posed algorithm, which implies the RLS algorithm
can give an accurate estimate for the ARX-NRM.
However, the RLS algorithm costs too much com-
putation to prevent its application in some situa-
tions that needs fast identification (see Table 1 for
more details).

2) Results using the BC-MI-SG algorithmwith differ-
ent noise variances

To show the performance of the proposed algorithm
under different noise levels, we estimate the ARX-NRM
in Equation (28) using the BC-MI-SG algorithm with
σ 2 = 0.012, 0.022, 0.042. The estimation errors using
different σ 2 are depicted in Figure 4.

It can be seen that:

(1) For a given noise variance σ 2, the overall trend of
the estimation error decreases with the increase of
k.

(2) When the variance is small, the curve of the
estimation error is relatively smooth. With the
increase of variance, the fluctuation of the error
curve increases.

(3) The estimation error of σ 2 = 0.012 is smaller than
those of the σ 2 = 0.022 and σ 2 = 0.042. That is, a
larger σ 2 is not conducive to the improvement of
the estimate’s accuracy.

6. Case study

A chemical model describing propylene catalytic oxi-
dation with the following structure [5,15,34] is used to
validate the proposed algorithm,

y(k) = bCp(k)

1 + a Cp(k)
C0.5
o (k)

+ v(k)

1 + a Cp(k)
C0.5
o (k)

where two inputs Co(k) and Cp(k) are the oxygen and
propylene concentrations at time k respectively. The
rate of disappearance of propylene y(k) is taken as the
output variable. The true values are a0 = 0.231, b0 =
7.28 × 10−4. The inputs Co(k) and Cp(k) are taken as
random integers between (1, 100) and between (1, 10)
respectively, {v(k)} is taken as a white noise sequence
with mean zero and variance σ 2 = 0.12. The curve of
600 observed data is shown in Figure 5.

Following ARX-NRM structure is used:

y(k) = f (k)
g(k)

+ 1
g(k)

v(k)with

f (k) = bup(k), g(k) = 1 + a
up(k)
uo(k)

.

Estimate using proposed BC-MI-SG algorithm with
λ = 0.4, p = 3 is listed in Table 3, where the estimation
error is calculated by the following formula: δ(N) =(
‖ a0−â(N)

a0 ‖ + ‖ b0−b̂(N)
b0 ‖

)
× 100.
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Figure 5. Curve of the propylene catalytic oxidation data.

Table 3. Results using the SG, MI-SG and BC-MI-SG algorithms
for the propylene catalytic oxidation data.

Algorithm â(N)(×10−3) b̂(N)(×10−6) δ(N)(%)

SG 1.7332 −234.4738 231.4576
MI-SG 193.5557 640.9437 28.1679
BC-MI-SG 229.9675 727.8740 0.4642
TrueValue 231.0000 728.0000

For comparison, the estimates of the SG and MI-
SG algorithms are also shown in Table 3. It is easy to
find that the estimation error of the proposed algorithm
is the smallest one among the three algorithms, which
means the model obtained by the BC-MI-SG algorithm
is the most accurate model of the three.

7. Conclusion

To identify the parameters of an ARX-NRM, a
bias compensated multi-innovation stochastic gradi-
ent algorithm is presented. To accelerate traditional
stochastic gradient algorithm, a multi-innovation is
integrated into the algorithm. The multi-innovation
technique replaces the scalar innovation in the SG
algorithmwith an information vector. Theoretical anal-
ysis shows that theMI-SG algorithm gives a biased esti-
mate because the output contained in the information
vector is correlated to the noise. To get an unbiased esti-
mate, the bias is calculated firstly and then compensated
to the MI-SG algorithm. The proposed algorithm is
validated by numerical experiments and the modelling
of the propylene catalytic oxidation. Results indicate
that the proposed algorithm can give accurate estimates
using less computation.
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