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SUMMARY 

Generalized Griffith’s criterion and models with pre-destruction zones are considered in this 

paper. Unlike those models that used linear dependences, the authors proposed the destruction 

process to be represented by differential equations. The positive effect of such representation is 

the possibility to formulate boundary conditions using the corresponding constant in the 

differential equation solution. The result is that the critical load values responsible for the 

occurrence and propagation of quasi-brittle cracks in materials are obtained. It is stated that the 

maximum load of crack propagation completely or essentially depends on its initial length. These 

generalizations estimate the influence of stress caused by hydrogen close to crack-like defects. In 

the case of defect-free material, the established formula is used to determine the critical forces 

necessary for the occurrence of cracks with a definite length. Numerical examples for some types 

of materials are given to illustrate the theoretical estimates. 

KEYWORDS: cracked body models; potential energy; surface energy; deformation energy; 

fracture; critical loads. 

1. INTRODUCTION 

The present-day fracture mechanics as an independent science on the scientific scene is closely 

connected with the publication of fundamental works [1] by the famous scientist A. Griffith. 

Various analytical scenarios of these works are demonstrated in detail in [2]. For the first time, 

the author proposed the model of an elastic body and assumed the presence of a discontinuity 

in the form of a through fracture whose edges carry the surface energy. The surface energy 

here is understood as the formation of new surfaces caused by the origination and propagation 
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of fractures. In the case of the plane elasticity problem [3] within the framework of such a 

model, the author of these works has calculated the potential energy � of an elastic isotropic 

body with the crack length of 2� under the evenly distributed stretching forces of intensity � 

perpendicular to the rectilinear contour of such cavity and sufficiently distant from the crack 

surfaces. The general representation of such energy is as follows: 

 � � �� ��	�, �� � 
	��, (1) 

where �� is the potential energy of a deformed body without cracks, �	�, �� � �������	is the 

energy of elastic deformations caused by the opening of a 2� long crack under the force 

intensity �, furthermore, � � 	1 � ��� ��⁄  for the plane deformation, � � 1 ��⁄  under the 

plane stress, � is the Poisson’s ratio, � is the material Young’s modulus; 
	�� � 4��, � is the 

density of material effective surface energy. Figure 1 illustrates the scheme of Griffith crack in 

the coordinate system Oxy. 

 

 

Fig. 1  Griffith crack scheme 

Differentiating the energy Eq. (1) concerning the variable � and equating the obtained 

derivative to zero, Griffith postulated the value �∗ of a critical load at which the limit state of a 

body with a 2� long crack occurs, and it becomes possible for the crack to start and propagate 

spontaneously. In paper [1], the following formulae for the critical (destructive) value �∗ is 

established: 

 �∗ � � ���
�	��� �!   and   �∗ � ����

�!  (2) 

for the plane deformation and plane stress state, respectively. 

However, it is not difficult to note that at the above critical load �∗ some arbitrariness and 

inaccuracy are presumed. Via the differentiation of energy, specified by the Eq. (1), with 

respect to the variable �, we establish not a critical �∗ but a critical value of �∗ at the respective 

�. Concurrently, differentiating Eq. (1) with respect to the parameter �, one can calculate that 

"�/"� � "�/"� � 2������ and thus receive no critical load values. The specified fact 

suggests an idea of the necessity to refine the algorithm used to define the critical parameter �. 

Therefore it is logical to assume that the critical value of the intensity � of the external load 

necessary for cracks origination functionally depends on the initial half-length �	of the material 
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defect. Since an explicit dependence of these parameters is still unknown, let us assume that 

the load � is an implicit function of the crack half-length, i.e.: 

 5� � �	��. (3) 

The above assumption comes naturally since the destructive load for minor fractures should 

be greater than for large fractures [4]. Here one can notice the spontaneity of destruction in 

respect of the load scheme discussed above. At the same time, in contrast to Griffith’s theory, 

this assumption leads to a differential equation, the solution of which generalizes relations 

obtained through the application of this theory. 

Differential equations (ODEs and PDEs as well) are a modern instrument in the mathematical 

modelling of propagation of the different types of material fractures. For example, ordinary 

differential equations describing the transfer intensity of tangent shearing stress and normal 

stress on the crack edge are considered by Verveiko et al. [5]. Due to the obtained exact 

solutions in the case of unstressed material classical criteria of brittle destruction were 

specified. Sendova et al. studied the analysis of differential equations arising under a new 

approach to model brittle destruction based on mechanics of continuous media being extended 

to nano-dimensions [6]. There are analysed transient characteristics of linear elastic solid body 

weakened by a nano-dimensional crack on condition that solid body is under impact loading 

[7]. The problem is formulated as a non-classical mixed initial-boundary problem. The 

corresponding boundary problem is reduced to the singular differential equation that can be 

numerically solved. Lalegname et al. studied crack propagation in the boundary linear elastic 

body under shearing waves influence for the simplified 2D-model [8]. This model is described 

by two associated differential equations, namely, a two-dimensional scalar wave equation in 

the boundary domain and an ordinary differential equation obtained from the energy balance 

law. There is an established improved formula for the ordinary differential equation of crack 

tip movement with stress- intensity factor. Yankelevsky et al. obtained by modelling crack 

propagation via an ordinary second-order differential equation [9]. There are estimated 

parameters of crack width which are the main effectiveness criterion in ferroconcrete 

constructions and also are essential for bridge safety exploitation. A differential equation 

model is used to select directly experiment data of a-N fatigue crack propagation [10]. Zheng 

proposed the method of estimation for the parameters of Weibull distribution via differential 

modelling [11]. 

It makes sense to emphasize additionally the application of differential equations modelling to 

the influence of hydrogen-induced stress estimation. In particular, Ivanyts’kyi et al. established 

the exact analytical solution in the closed form of the problem of hydrogen diffusion in the 

process zone near the crack tip [12]. A new criterion for hydrogen-induced cracking that 

includes both the embrittlement effect and the loading effect of hydrogen was obtained 

theoretically [13]. Stashchuk and Dorosh considered the generalized mathematical model to 

estimate the influence of hydrogen-induced stress generated close to crack-like defects [14]. 

The paper aims to generalize Griffith criterion and the $%  criteria [15] to model the material 

destruction. The generalization is made by formulating and solving the corresponding 

differential equations for the specified models of deformable solid bodies. As a result, values of 

critical loads responsible for the origination and quasi-brittle crack propagation in materials 

are found. 



M. Stashchuk, P. Pukach, M. Vovk: A Modified Approach to the Mathematical Model of Crack with Pre-destruction Zones 

4 ENGINEERING MODELLING 36 (2023) 1, 1-10 

2. DIFFERENTIAL EQUATIONS OF CRACKED BODY MODEL 

Theorem 1. The critical load for the start of a micro-crack of length in the framework of 

Griffith’s theory to length 2� modelling by a differential equation is determined by the formula: 

�	�� = & 4����� '1 − ��� ( + �∗� �����. 
Proof. In view of Eq. (3), Eq. (1) is rewritten in the following form: 

 � = �� − ����	����� + 4��. (4) 

Let us find a derivative: 

 
*+*! = 4� − 2�����	��,��-	�� + �	��. (5) 

and use a necessary extreme condition: 

 
*+*! = 0. (6) 

Here from one can get a differential equation to define the critical value �, which is necessary 

to shift a crack with a half-length �: 
 � *0*! + 0 ! = ��� 1! . (7) 

Let us call the last equation as a differential equation within Griffith’s model for the description 

of the limit state of an elastic body with a sharp-pointed crack. The general solution of the 

above equation is: 

 ��	�� = 23�!� 1 + 4∗5 ���. (8) 

Hence, for 2� long crack the corresponding intensive force is: 

 �	�� = � 3�� 1! + 6∗! . (9) 

Equation (9) shows that the load can be defined up to a constant 4∗, thus it is a non-unique one. 

It is logical to assume that the critical value � for a crack shift depends on its initial length. 

Therefore, modelling of crack initiation in materials via differential equations can set up a 

condition that for each initial value �� the specified value �∗ is relevant, i.e.: 

 �	��� = �∗, (10) 

where �∗ defines the value of p when the limit state of a body having the crack of a half-length �� occurs. Due to condition defined by Eq. (10): 

 4∗ = �∗���� − 3�� 1 ��. (11) 

Thus Eq. (9) changes as: 

 �	�� = � 3�� 1! 21 − !7! 5 + �∗� !7 ! . (12) 

Theorem 1 is proved. 

As one can see, the latter formula contains the initial half-length �� of a crack in a solid body. 

Griffith’s Eq. (2) doesn’t comprise this parameter, though the author projected in his reasoning 
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the presence of fractures before the destruction. Let’s also note that from Eq. (12) with zero 

initial half-length 	�� = 0�, one can get the relation analogous to Eq. (2). In this case, the 

numerical values increase √2-fold. Consequently, the question about the physical meaning of 

the obtained relation arises. That means: if �� � 0 (no initial crack is present), Eq. (12) in this 

specific case allows defining the critical value �∗, necessary for the origination of a fracture of 

half-length � in a continuous (with no defects) solid body. 

Consequence 1. The critical nucleation stress of a half-length crack l is: 

�	�� � 2� �
� 1!. 

3. DIFFERENTIAL EQUATION OF A CRACKED BODY MODEL WITH PRE-

FRACTURE ZONES 

In this section, a more effective generalized differential model of the crack theory would be 

considered. 

Theorem 2. The critical load for the start of a microcrack of length 2�� in the framework of the 

theory of cracks with zones of pre-destruction to length 2�� modelling by a differential 

equation is determined by the formula: 

�	�� � �97
� �:;�� <=>�? �!7

�97 1! 2
�
! � �

!75@A. 
Proof. Firstly, let us write the potential energy for a cracked body model, which stipulates the 

presence of pre-fracture zones in material defect apices, i.e., for the so-called crack model with 

pre-destruction zones. Mathematical calculations regarding the crack model with pre-

destruction zones are based on the problem of elasticity theory considering a crack with 

weakened interatomic bounds in its apices. It is supposed that an infinite plate has a 2�� long 

crack and is loaded in the infinite remote points with the intensive force � directed 

perpendicularly to the crack edges. Under these forces and within the limit state at the finite 

segments close to the crack edges the constant stress B� , caused by the interatomic 

(intermolecular) resistance to material strength, is allowed. Coordinate system Oxy is 

associated with an elastic plate and a crack so that axis Ox is aligned with the crack surface (see 

Figure 2). 

 

Fig. 2  Pre-destruction zones 
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Then the boundary conditions of a respective elasticity theory problem used to establish stress 

tensor components BC, DEC are the following [15]: 

 DEC	>, 0� = 0,  if  −∞ < H < +∞,    BC	>, 0� = I0,						JK	|>| < ��,B�, if �� < |>| < �, (13) 

and it is supposed that at infinity points of the stress plane: 

 BC	>,∞� = �. (14) 

Based on calculations [15], the stress is: 

BC	>, 0� = 1�√>� − �� I�	� − B�� '> − M>� − �� + 2B�> ;JN�� ��� + B�M>� − ��( ∙ 
 P;JN�� ! �E!7!	E�!7�− ;JN�� ! QE!7!	EQ!7�RS , > ≥ �. (15) 

Notice, according to the $%  stress model, crack apices (i.e., when > → 0) should be limited. The 

stress limit is provided when the multiplier equals zero in a singular part 1 √>� − ��⁄  of Eq. (3) 

at points > = ±�, i.e., when: 

 � = ��B� �:;�� !7!  (16) 

or 

 � = �� ;=� �0�97. (17) 

Then, the crack edges shift is: 

 W	>, 0� = �B�X	> − ���Y	�, >, ��� − 	> + ���Y	�, >, −���Z, |>| ≤ �, (18) 

where: 

 Y	�, >, \� = �N ! �E]�M	! �E �	! �] �! �E]QM	! �E �	! �] �. (19) 

By Eqs. (15) and (18) the energy � of elastic deformations caused by crack opening originated 

due to the intensity stress � perpendicular to its plane is calculated. Using the results 

presented in [2], [15] it can be shown that: 

 � = −^ BC	>, 0�W	>, 0�_> = �^ W	>�_> − B� 2^ W	>�_> + ^ W	>�_>!!7�!7�! 5!�!!�! . (20) 

Calculating integrals on the right-hand side of Eq. (20) following is obtained: 

 � = 2����B�M�� − ��� 2� − �� B� �:;�� !7! 5 − 2B�����,Y	�, −��, ��� + Y	�, ��, −���., (21) 

taking into account, Eqs. (16) and (17): 

 � = −8B������ �N !7! . (22) 

Using Eq. (17), one can obtain the following formula: 

 � = −8Ba����� �N 2�:; �0�975. (23) 

As Griffith’s theory suggests, the potential energy � of the body with a crack, modelled by 

weakened pre-fracture zones at its ends, can be received. Substitution of Eqs. (21) and (23) 

into Eq. (1) gives the final analytical formula of the potential energy of the body weakened by a 

real crack taking into account the pre-fracture zones in its apices: 
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 � = �� + 4��� + 8B������ �N 2�:; �0�975. (24) 

The following considerations support the validity of the Eq. (23). If the crack growth 

conditions proposed by Griffith are applied: 

 
b+b!7c0d0∗ = 0,			 b +b!7 < 0, (25) 

then after differentiation of the Eq. (24) and its substitution into the first of Eqs. (25), we 

obtain the following relation: 

 � = −4B����� �N 2�:; �0∗�975. (26) 

Hence: 

 �∗ = �� B� �:;�� P=>� 2− �397 !715R. (27) 

In Eqs. (24) and (25) �∗ is the intensity of critical load. The second condition in Eq. (25) holds 

automatically. If in the Eq. (27) � = $%B� 2⁄  [15], where $%  is a critical distance between the 

non-interacting crack edges, we automatically obtain the known formula: 

 �∗ = �� B� �:;�� P=>� 2− efg!79715R. (28) 

Equation (28) confirms the reliability of writing potential energy in the form of Eq. (24). 

However, applying the condition of Griffith Eq. (6) and taking into account dependence Eq. (3), 

the differential equation is obtained: 

 2B����� *h*! + 4B����i + � = 0, (29) 

where i = �N 2�:; �0�975 = 0. The Eq. (29) corresponds to $%-model of the body with a � long 

crack and weak zones on its stretch up to � > ��. The general solution of this differential 

equation is: 

 �	�� = �97� �:;�� P=>� 26∗! − ��97 1!5R. (30) 

To define 4∗, let’s impose a condition: the rupture load at the end of an initial crack of half-

length �� equals the material theoretical strength, i.e.: 

 �	��� = B�. (31) 

This condition is satisfied if: 

 
6∗!7 − ��97 1!7 = 0. (32) 

Hence: 

 4∗ = �!7�97 1. (33) 

So the limited effort necessary for a crack to grow is: 

 �	�� = �97� �:;�� <=>�? �!7�97 1! 2�! − �!75@A, (34) 

where �� is the initial half-length of a crack in the material. Equation (34) differs from the 

analytic Eq. (27) by the presence of a half-length �� of the initial section. Theorem 2 is proved. 
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Consequence 2. Assuming that the initial crack half-length �� = 0 (defect-free body), the 

value: 

 �	�� = �97� �:;�� P=>� 2− ��97 1!5R (35) 

can be considered as corresponding to the origination of a 2� long fracture in a solid deformed 

body. 

It should be noted that if the Eq. (34) is expanded into a series, then, keeping the terms of the 

first-order smallness, Eq. (12) is obtained. The critical value of the half-length �� has already 

been calculated, furthermore, initial data were taken as deformable body output parameters 

[16]. We obtain similar results with small deviations considering the origin of a fracture on the 

planar rigid inclusion continuum. 

4. APPLICATION OF THE OBTAINED RESULTS. DETERMINATION OF THE 

CRITICAL LOAD OF THE TRANSITION FROM MICRO- TO MACRO-CRACKS 

To determine the critical load of crack formation, it is necessary to know the critical length of 

the microcrack during the transition to the macrocrack. Using the results presented in [2, 4] it 

is possible to establish the minimum size of a microcrack at its transition to a macrocrack. It 

was considered that a microcrack becomes a macrocrack if the energy of deformation of the 

body with the crack changes its shape, i.e. suffers a catastrophe [4]. It is established that the 

critical half-length of such a microcrack is equal to: 

 �∗ = �gk��√lm197 . (36) 

Due to Consequence 1 and Griffith’s theory, the critical load required to generate a microcrack 

of this length is: 

 �∗� = 3k√l��m� B�. (37) 

The critical load in the framework of the theory of cracks with pre-fracture zones is as follows: 

 �∗� = �97� �:;�� P=>� 23k√l��m�97 5R. (38) 

The numerical values of the half-length of the crack, as well as the critical load found within 

these theories (Eqs. (37) and (38)), are presented in Table 1. 

Table 1  Crack half-length values and critical loads for some types of materials 

Material µ �, no� �, po� 
�∗, o �∗�, no� �∗�, no� 

Plexiglass 0.2 2.45 ⋅ 10s 1.5 ⋅ 10� 0.934	 ⋅ 10�l 2.28 ⋅ 10v 2.45 ⋅ 10v 

Silicate glass 0.24 6.7 ⋅ 10�� 2.1 ⋅ 10� 0.048 ⋅ 10�l 62.45 ⋅ 10v 67 ⋅ 10v 

Carbon steel U8 0.28 2.06 ⋅ 10�� 7.5 ⋅ 10� 0.057 ⋅ 10�l 192 ⋅ 10v 206 ⋅ 10v 

 

For given values �∗, �∗�,	�∗� calculated values of surface energy � are stated in the paper [15], 

where B� = 0,01�	are intermolecular forces. Mechanical characteristics of materials, namely 

Poisson’s ratio � and Young’s modulus �,	are taken from the handbook [17]. The difference in 

critical loads according to the considered theories is the most essential for steel. 
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5. CONCLUSIONS 

By writing the corresponding differential equations, the criteria of Griffith were supplemented 

in relation to material destruction. In the formula corresponding to this theory, the initial 

fracture length was introduced, which Griffith did not use in his theoretical analysis. 

It was pointed out that the inaccuracy, seen as incorrect from the mathematical analysis point 

of view, was allowed in Griffith analytical studies to determine the critical load. Determining 

the value of the length of a crack suspected of a potential energy extreme should be critical. 

It was established that the maximum load of the crack propagation in the material depends 

entirely or significantly on the initial crack length. 

The working formula for critical loads required for the movement of the crack of a specific 

length, i.e., the weakening of the material, is obtained. 

It was shown that Griffith criterion is more significant for the formation of a 2� long fracture 

than it is responsible for the growth conditioned by its size. 

It was proved that the well-known crack model with pre-destruction zones, which generalizes 

Griffith criterion, is related to energy criteria. 

The obtained analytical relations are used to determine critical values of acting mechanical 

stress necessary for the destruction of the deformed material with a predetermined fixed crack 

within the known crack model with pre-destruction zones, which becomes its generalization. 

In this case, for a defect-free material, a working formula was established for determining the 

critical forces required for the occurrence of a fracture of a certain length. 
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