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ABSTRACT
In the existing pieces of literature about the three-coil wireless power transfer (WPT) system, a
three-coil structure is proposed to increase the efficiency compared to the two-coil WPT sys-
tem. The cross-coupling among three coils, compensation capacitor of the repeating coil (RPC)
and the rectified load are considered incompletely. The circuit model of a three-coil WPT system
with rectified load is developed by taking the cross-coupling of all coils and the compensa-
tion capacitor of RPC into consideration in this paper. The relationship among system efficiency,
compensation level, and rectifier load is deduced. The detailed mathematical analysis and com-
pensation capacitor selection of RPC are investigated to improve the system efficiency. An
experimental study demonstrates that the selected compensation capacitor of RPC achieves a
higher efficiency than resonant compensation in a three-coil WPT system with different cross-
coupling conditions and rectifier load conditions. System efficiency is promoted from 73.9%
(resonant compensation capacitor for RPC) to 84.2% (selected compensation capacitor for RPC).
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1. Introduction

The wireless power transfer (WPT) technology has
been developed rapidly these years [1–4]. It can real-
ize the transmission of electric energy across the air
compared with the traditional contact mode. Especially
the inductive power transfer based on the magnetic-
field coupling is the most popular WPT technology
[5–8]. The WPT technology has been applied in many
areas, such as industrial robots [9,10], electric vehicles
[11–13], consumer electronics, implantable equipment,
unmanned underwater devices, etc.

Based on the two-coil WPT system, the three-coil
[14] or multi-coil [15] structures are proposed to pro-
mote the system efficiency when the distance between
the transmitting coil and receiving coil increases. In the
three-coil structureWPT, the application of a repeating
coil (RPC) can reduce the current in the drive circuit
[14,16,17]. For the three-coil WPT system with RPC
composed of double coils in [18], the constant current
and constant voltage modes are realized based on the
reconfigurable middle coil. In [19], a switch device is
used in the receiving end to select the constant current
mode or the constant voltage mode in theWPT system
with RPC.

In the existing pieces of literatures about the three-
coilWPT system, the cross-coupling between the trans-
mitting coil (TC) and receiving coil (RC) is usually
ignored to simplify the analysis of the modelling [14].

In [20] where the cross-coupling and rectifier of load
are ignored, the efficiency optimization and power sta-
bility of a WPT system charging multiple loads with
a relay coil structure are studied, and the frequency
configuration and distribution design are proposed. To
investigate the comprehensive characteristics of a three-
coil WPT system, the cross-coupling among all three
coils and rectifier loads should be considered in the
modelling and analysis process. On the other hand,
RPC is commonly compensated resonantlywith a series
capacitor [14,20]. The analysis and selection for com-
pensation capacitors of RPC are also rarely discussed to
promote system efficiency.

To fill this gap, the efficiency improvement of a three-
coilWPT systemwith rectified load based on a selected
compensation capacitor is investigated in this paper.
This paper is organized as follows. In Section II, the
circuit model of a three-coil WPT system with a rec-
tifier load, considering the cross-coupling of three coils
and a compensation capacitor of RPC, is developed. In
Section III, the relationship among system efficiency,
compensation capacitor of RPC and rectifier load is
deduced. The detailed mathematical analysis and com-
pensation capacitor selection of RPC is investigated to
improve the system efficiency. In Section IV, the theo-
retical research is verified by experiments with different
cross-coupling and rectifier load conditions. Finally,
conclusions are summarized in Section V.
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2. Modelling of a three-coil WPT systemwith a
non-resonant repeating coil

The typical circuit diagram of a three-coil WPT sys-
tem is introduced in Figure 1. The equivalent circuit
of the three-coil WPT system with non-resonant com-
pensated RPC considering all cross-couplings is shown
in Figure 1. Us represents the output voltage of a high-
frequency inverter. Lt and Rt represent the inductance
and internal resistance of TC, respectively. The LCC
(inductor-capacitor-capacitor) compensation circuit at
the transmission side is composed of Lf , Cf , and Ct . Lr
and Rr are the inductance and internal resistance of RC,
respectively. Cr represents the compensation capaci-
tance at the receiving side. RL (the equivalent AC load
in Figure 2) can be converted byRDC (DC load after rec-
tifier in Figure 1) according to RL = (8RDC)/(π2) [21].
The inductance and the resistance of RPC are L2 and
R2, respectively.

The compensation capacitor C2 is connected in
series. k1 and k2 represent the coupling coefficient
between TC and RPC and that between RC and RPC,
respectively. k3 is the coupling coefficient between TC
and RC. The system works at the frequency of f. The
corresponding angular frequency is ω = 2π f.

In Figure 2, If is the output current of the inverter. It ,
I2 and Ir are the currents of TC, RPC, and RC, respec-
tively. The following circuit equation can be derived
based on the mesh current analysis

(ZLf + ZCf )If − ZCf It
= Us − ZCf If + (ZLt + ZCt + ZCf + Rt)It

− Zk1I2 − Zk3Ir = 0

Figure 1. The typical circuit diagram of a three-coil WPT
system.

Figure 2. Equivalent circuit of a three-coil WPT system
with non-resonant compensated RPC considering all
cross-couplings.

− Zk1It + (ZL2 + ZC2 + R2)I2 − Zk2Ir = 0

− Zk3It − Zk2I2

+
(
ZLr + ZCr + Rr + 8RDC

π2

)
Ir = 0 (1)

where ZLt = jωLt , ZCt = 1/(jωCt), ZLf = jωLf , ZCf =
1/(jωCf ), ZL2 = jωL2, ZC2 = 1/(jωC2), ZLr = jωLr,
ZCr = 1/(jωCr), Zk1 = jXk1 = jωk1

√
LtL2, Zk2 = jXk2

= jωk2
√
L2Lr, Zk3 = jXk3 = jωk3

√
LtLr.

The compensation topology on the transmitting side
is LCC type and the parameter [22] satisfies

ω = 1√
Lf Cf

= 1√
(Lt − Lf )Ct

. (2)

According to (1) and (2), the current of TC can be
calculated by

It = Us

ωLf
. (3)

The series resonant compensation circuit is applied
on the receiving side, which satisfies

ω = 1√
LrCr

. (4)

U ′ and U ′′ represent the induced voltages produced
in the RPC circuit and RC circuit by the TC circuit,
respectively.

U ′ = Zk1 · It = Usk1
√
LtL2/Lf

U ′′ = Zk3 · It = Usk3
√
LtLr/Lf (5)

In general, the compensation circuit is designed res-
onantly according to the operating frequency of the
system. The compensation capacitor of RPC is rarely
investigated in a three-coil WPT system with a recti-
fier load. In this paper, the selection of compensation
capacitor is discussed in detail considering all cross-
couplings among three coils and a rectifier load.

Parts of (1) can be rewritten as
⎧⎨
⎩

(R2 + j(ωL2 − 1/(ωC2))) · I2 − Zk2 · Ir = U ′

−Zk2 · I2 +
(
Rr + 8RDC

π2

)
· Ir = U ′′ .

(6)
The current at the receiving side can be deduced by

Ir = U ′′(R2 + j(ωL2 − 1/(ωC2))) + U ′Zk2(
Rr + 8RDC

π2

)
(R2 + j(ωL2 − 1/(ωC2))) − Zk22

= Us

Lf
·
R2k3

√
LtLr + j ((ωL2 − 1/(ωC2))

k3
√
LtLr + ωk1k2L2

√
LtLr

)
(
Rr + 8RDC

π2

)
R2 + ω2k22L2Lr

+j(ωL2 − 1/(ωC2))
(
Rr + 8RDC

π2

)
. (7)
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The current of RPC can be represented by

I2 = U ′(Rr + RL) + U ′′Zk2(
Rr + 8RDC

π2

)
(R2 + j(ωL2 − 1/(ωC2))) − Zk22

= Us

Lf
·

(Rr + RL)k1
√
LtL2

+jωk2k3Lr
√
LtL2(

Rr + 8RDC
π2

)
R2 + ω2k22L2Lr

+j(ωL2 − 1/(ωC2))
(
Rr + 8RDC

π2

)
. (8)

The output power of the three-coil WPT system with a
rectifier load is computed by

P = 8RDCIrIr∗

π2 . (9)

The system efficiency can be calculated by

η = IrIr∗8RDC

π2RtItIt∗ + π2R2I2I2∗ + IrIr∗(π2Rr + 8RDC)
.

(10)
According to (7)–(10), the compensation capacitor C2
of the RPC circuit, together with cross-coupling (k1,
k2 and k3), will affect the output power and system
efficiency. The algebraic analysis and optimization will
be proposed to analyse the influence of non-resonant
compensation degree on system efficiency in the next
part.

3. Analysis and selection of a compensation
capacitor

The system efficiency can be calculated by

η = 8RDC

π2RtχI + (π2Rr + 8RDC)
(11)

where the efficiency analysis factor χI = |It |2+σ |I2|2
|Ir|2 ,

σ = R2
Rt .

Based on (3), (7) and (8), we have

|It|2
|Ir|2

=
((π2Rr + 8RDC)R2 + π2ω2k22L2Lr)

2

+(ωL2 − 1/(ωC2))
2(π2Rr + 8RDC)

2

π4R22ω2k32LtLr + ((ωL2 − 1/(ωC2))

π2ωk3
√
LtLr + π2ω2k1k2L2

√
LtLr

)2
(12)

|I2|2
|Ir|2

=
(π2Rr + 8RDC)

2k12LtL2
+π4ω2k22k32Lr2LtL2

π4R22k32LtLr
+ (

(ωL2 − 1/(ωC2))π
2k3

√
LtLr

+π2ωk1k2L2
√
LtLr

)2
(13)

The efficiency analysis factor can be expressed as

χI =
ω2L02Ra2δ2 + (RaR2 + π2ω2k22L2Lr)

2

+(σω2k12LtL2Ra2 + σπ4ω4k22k32Lr2LtL2)
π4R22ω2k32LtLr

+ (
π2ω2δL0k3

√
LtLr

+ π2ω2k1k2L2
√
LtLr

)2
(14)

where Ra = π2Rr + 8RDC and δ = (L2 − 1/(ω2C2))/

L0. L0 is the reference value.
It can be concluded from (11) that efficiency will

decrease with the increase ofχI. Therefore, amaximum
value can be achieved for η when χI is minimized. (14)
can be rewritten as

χI = A1δ
2 + A2

B1δ2 + B2δ + B3
(15)

where A1 = ω2L02Ra2, A2 = (RaR2 + π2ω2k22L2Lr)2
+ σω2k12LtL2Ra2 + σπ4ω4k22k32Lr2LtL2, B1 = π4ω4

L02k32LtLr, B2 = 2π4ω4L0k1k2k3LrL2Lt , B3 = π4ω4

k12k22L22LtLr + π4ω2R22k32LtLr.
If the coupling between TC and RC is ignored (k3

is 0), B1 and B2 in (15) are 0. (15) is written as χI =
A1δ

2+A2
B3 . χI reaches a minimum value and efficiency is

maximumwhen δ = 0. Hence, when the coupling coef-
ficient k3 = 0, the system efficiency is maximum when
RPC is resonant compensated (δ = 0) theoretically.

In this paper, all cross-couplings are considered. A1,
A2, B1, B2 and B3 are all positive. The efficiency factor
χI in (15) is the function of δ (related to compensation
capacitance of RPC loop). Taking the derivative of χI
with respect to δ gives

χI(δ)
′ = A1B2δ2 + (2A1B3 − 2A2B1)δ − A2B2

(B1δ2 + B2δ + B3)2
(16)

According to χI(δ)
′ = 0 two extreme points can be

obtained

δ1 = A2B1 − A1B3
A1B2

−
√(

A2B1 − A1B3
A1B2

)2
+ A2

A1

δ2 = A2B1 − A1B3
A1B2

+
√(

A2B1 − A1B3
A1B2

)2
+ A2

A1
(17)

The maximum value of χI can be achieved at the
point δ = δ1 and the minimum value is achieved at
the point δ = δ2. The Vieta theorem tells us that when
δ1δ2 = −A2

A1
and δ1 < 0 < δ2, δ1 will lie in the over-

compensation region and δ2 will lie in the under-
compensation region.

Based on L’Hopital’s rule in mathematics, we
have lim

δ→ - ∞
χI(δ) = lim

δ→+∞
χI(δ) = A1

B1 , the minimum

extreme point δ = δ2 achieved by χI is exactly the
minimum value.

Therefore, the system efficiency will monotonically
decrease for δ ∈ ( - ∞, δ1), increase for δ ∈ (δ1, δ2), and
decrease for δ ∈ (δ2,+∞). The maximum value of effi-
ciency is achieved at δ = δ2 and the corresponding
variation trend is presented in Table 1.

The theoretical optimal compensation degree δ2 can
be obtained by substituting the parameters in (15) and
(17). In the RPC circuit, the compensation capacitor
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Table 1. Change trend of the efficiency factor and system
efficiency.

δ (−∞, δ1) δ1 (δ1, δ2) δ2 (δ2,+∞)

χI ↗ MAX ↘ MIN ↗
η ↘ MIN ↗ MAX ↘

Figure 3. The characteristic curve of the efficiency factor (log-
arithmic form) and system efficiency as a function of the com-
pensation degree factor δ.

corresponding to the optimal compensation degree fac-
tor can be calculated as C2 = 1

ω2(L2−δ2L0)
.

According to (15) and (11), the efficiency factor χI
(logarithmic form) and the system efficiency changing
with the compensation degree of RPC are shown in
Figure 3 (k3 is not ignored). In Figure 3, the efficiency
factor χI is at the minimum value when δ = δ2 and the
system efficiency is at themaximum value, demonstrat-
ing the correctness of the algebraic derivation analysis
and optimization of the compensation degree.

4. Experimental verifications

The experimental prototype is built, as shown in
Figure 4. The high-frequency full-bridge inverter is set
up using DSP (TMS320F28335) as the controller and
four MOSFETs (IRFP4227PBF). The full-bridge recti-
fier consists of four diodes (DSEP15-06A) on the receiv-
ing side. The system parameters are listed in Table 2.
The external length of a side of three square coils is

Figure 4. Experimental prototype.

Table 2. System parameters.

Symbol Lt (μH) Lr (μH) L2 (μH) Lf (μH) Cf (nF)

Value 43.6 64.4 6.8 17 149
Ct (nF) Cr (nF) Us (V) f (kHz) L0 (μH)
95.3 39.4 20 100 10

16 cm. The turns of the transmitting coil are 15. The
turns of the repeating coil are 4. The turns of the receiv-
ing coil are 15.

After fixing the positions of three coils, mutual
inductances are measured using an LCR meter
(TH2817C). According to coil inductances, the cross-
coupling can be obtained as k1 = 0.181, k2 = 0.152,
k3 = 0.0672. According to (15) and (17), the opti-
mal compensation factor δ can be calculated as 0.1963
(@RDC = 5�) and 0.1188 (@RDC = 10�). The opti-
mal compensation capacitors are 523.6 and 451.3 nF
respectively, while the resonant compensation capac-
itor is 372.5 nF. The measured results of efficiency
and receiving power varying with δ are shown in
Figure 5. Figure 6 shows the waveforms of the input
voltage, input current, and output voltage when the
optimal compensation is applied (@RDC = 5� and
@RDC = 10�). The waveforms are measured using the
oscilloscope (Tektronix TDS2014C), the current probe
(Sunraise SRS6025) and the voltage probes (Cybertek
P1300).

Setting RDC = 5�, different coupling conditions
are obtained by changing the positions of the three
coils. Based on (15) and (17), the optimal com-
pensation factor δ can be 0.1963 (@A: k1 = 0.181,
k2 = 0.152, k3 = 0.0672), 0.1074 (@B: k1 = 0.125,
k2 = 0.128, k3 = 0.045) and 0.043 (@C: k1 = 0.0889,
k2 = 0.0798, k3 = 0.0247). The corresponding com-
pensation capacitors are 523.6, 442.4 and 397.7 nF.
The measured results of efficiency and receiving power
varying with δ are shown in Figure 7.

According to the experiment results under differ-
ent load and crossing coupling conditions, the com-
pensation capacitor of RPC influences the efficiency
of the three-coil WPT system markedly. For case A

Figure 5. Measured results of efficiency and receiving power
varying with δ.
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Figure 6. Waveforms when the optimal compensation applied (@RDC = 5� and @RDC = 10�).

Figure 7. System characteristics under different cross- cou-
plings.

in Figure 7, system efficiency is promoted from 73.9%
(resonant compensation) to 84.2% (non-resonant com-
pensation optimization). Higher efficiency is achieved
under non-resonant compensation optimized by the
theoretical analysis compared to resonant compen-
sation. The theoretical analysis and optimization are
verified experimentally under different load or cross-
coupling conditions.

5. Conclusions

In a three-coil WPT system, the cross-coupling among
three coils, the compensation capacitor of the repeating
coil (RPC) and the rectified load are not fully consid-
ered simultaneously. In this paper, the circuit model
of a three-coil WPT system with a rectified load is
developed to analyse the general status by taking the
cross-coupling of all coils and the compensation capac-
itor of RPC into consideration. The internal connec-
tion among system efficiency, compensation level and
rectifier load is derived. According to the proposed
modelling and analysis, it is proved that the optimal
efficiency is achieved at resonant compensation the-
oretically when the coupling between TC and RC is
ignored. After taking the coupling between TC and

RC into consideration, the detailed mathematical anal-
ysis and compensation capacitor selection of RPC are
investigated to improve the system efficiency. Finally,
the experimental study demonstrates that the selected
compensation capacitor of RPC achieves a higher effi-
ciency than the resonant compensation in a three-coil
WPT system with different cross-coupling conditions
and rectifier load conditions.
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