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renewable energy systems
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ABSTRACT
This paper presents the design of a grid-connected hybrid system using modified Z source con-
verter, bidirectional converter and battery storage system. The input sources for the proposed
system are fed from solar andwind power systems. Amodified high gain switched Z source con-
verter is designed for supplying constant DC power to the DC-link of the inverter. A hybrid deep
learning (HDL) algorithm (CNN-BiLSTM) is proposed for predicting the output power from the
hybrid systems. The HDL method and the PI controller generate pulses to the proposed system.
A closed loop control framework is implemented for the proposedgrid integratedhybrid system.
A 1.5 Kw hybrid system is designed in MATLAB/SIMULINK software and the results are validated.
A prototype of the proposed system is developed in the laboratory and experimental results
are obtained from it. From the simulation and experimental results, it is observed that the ANN
controller with SVPWM (Space vector Pulse width Modulation) gives a THD (Total harmonic dis-
tortion) of 2.2% which is within the IEEE 519 standard. Therefore, from the results, it is identified
that the ANN-SVPWM method injects less harmonic currents into the grid than the other two
controllers.
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1. Introduction

The world’s population growth is increasing exponen-
tially and so is the energy requirement. Conventional
energy sources like fossil-fuel-based generators, nuclear
power plants and hydropower plants have served us
good so far, but create environmental pollution and cli-
matic changes [1]. With green-house emissions from
the thermal power plants there has been a consider-
able climatic change. In addition, the fossil-fuels are
being depleted at an alarming rate. Hence, initiatives
are being taken up by various firms to replace the con-
ventional energy sources with green energy sources
like solar and wind. The extraction of energy from the
renewable energy sources cannot be precisely planned,
as these sources are weather dependent. Solar energy
generation [2] is dependent on irradiance, temperature,
wind speed and cloud cover; whereas wind energy [3]
generation is dependent on wind speed, temperature,
pressure and humidity. This causes high variability and
seasonal deviations in energy generation; moreover, it
does not follow the load demand profile. Thus, the inte-
gration of large amounts of solar and wind generators
in the power grids can lead to lowered reliability and
stability.

In order to increase the penetration of renew-
able energy systems into the conventional power
grid, forecasts at multiple time horizons can play an

important role. A good forecasts [4] can make effec-
tive planning of renewable energy generation. Also,
highly accurate forecasts can help in grid regula-
tion, power scheduling, unit commitment and load-
following. Numerous experts throughout the world
are currently conducting detailed study on solar [5]
and wind energy [6] prediction methods. Solar and
Wind power prediction techniques can be classified
into three broad categories based on their prediction
concepts: physical approach, statistical approach and
machine learning approach [7].Machine learning (ML)
has experienced significant growth in prediction appli-
cations as artificial intelligence has progressed. Higher
accuracy and a more perfect extraction of renewable
power is obtained by the machine learning strategy
during the change in output curve of solar and wind
power significantly. ANN (Artificial Neural Network)
with back propagation can be used successfully forwind
speed forecasts, and similar ANN models can be used
for forecasting other weather variables like Dew-Point
Temperature, Relative Humidity, Wind Direction and
Pressure [8]. ANN and NWP (Numerical Weather Pre-
diction) are the best model choices for wind speed pre-
diction [9]. ARIMA (Autoregressive IntegratedMoving
Average), ANN and NWP methods are a good choice
for short-term (intra-hour and intra-day) and long-
term (day-ahead; NWP) forecasting. Although some
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updated machine learning approaches have reached
excellent reliability and efficiency, they continue to face
challenges when processing vast amounts of input data
and interacting with disappearing or bursting gradi-
ents. As a result, theDL technique [10] has been applied
in the forecasting process in order to address the draw-
backs of ML methods. There are several deep learning
methods used in forecasting the renewable power. They
are convolutional neural network [11] (CNN), genera-
tive adversarial networks [12] (GAN), deep belief net-
work [13] (DBN), bidirectional long short time mem-
ory neural network [14] (Bi-LSTM) and deep residual
learning [15] (DRL). The CNN method is used in sev-
eral load and solar irradiation forecasting applications
and has not been used for wind power applications.
The sparse connectivity and parameter sharing prop-
erties of CNN makes it to use fewer training variables,
reduces the time in training process and enhances the
forecasting efficiency. In the first stages of its develop-
ment, the CNNmodel is designed for image processing,
which is better suited for analyzing two-dimensional
information. The use of CNN increases the complexity
and decreases the accuracy as information is trans-
lated from one-dimensional to two-dimensional form.
Therefore, the LSTM model [16] is mostly preferred
in tackling time series problems due to its ability to
analyze sequential data. The LSTMs include particular
loops that allow data to persist for longer. In this variant
of ANN, the input parameters are not processed twice,
but instead they are just cross-referenced once (from
the input). The prediction is computed based on previ-
ous and real-time data from the network to the output.
The use of hybrid forecasting models can improve the
accuracy of the forecasting system [17]. The authors
in [18] proposed the hybrid DL method (CNN-GRU)
which can effectively predict the very short-term wind
generation in Australia. The CNN-GRU method is
compared with other existing methods and the pro-
posed method performs well for wind farms. In [19]
the authors used the CNN-GRU with HHO method
for forecasting the wind power in the Boco Rock Wind
Farm in Australia. The suggested hybrid DL method
obtained an accuracy of 38% and 24% during predic-
tion for 5–10min. The authors in [20] proposed the
CNN+ LSTMapproach for predicting the photovoltaic
output power. Experimental investigations were done
using the real-time data and the test results proved that
the CNN+ LSTMapproach provides accurate forecast-
ing than other DL methods. A Higher-order multivari-
ateMarkov chain (HMMC)method is implemented for
the prediction of solar and wind power in [21]. The
proposed method considers the heat index for fore-
casting the output power accurately. From the results,
the proposed method performs well in terms of accu-
racy. The authors in [22–24] discussed the implemen-
tation of HDL methods in hybrid power generation

forcasting. From the literature it is observed that most
of the work are carried out using the CNN and other
DL method. The important advantage of using CNN is
that it automatically detects the filters for feature iden-
tification on its own.When the CNN is trained with the
solar andwind data, the CNNuses the backpropagation
algorithm and will find out the right amount of filter
used for feature extraction. The training of any neural
network is a repetitive process in which some variant
of gradient descent is used. In a neural network, the
necessity of the gradient is to indicate, how to alter the
variables, in order to reduce the model’s error. But in
deep learning methods this gradient is unstable. There-
fore, when the Recurrent Neural Networks (RNN) are
trained, the gradient is calculated not only through var-
ious layers but also through time. Vanilla RNN contains
a restriction that both input and output must be of the
same size. The long short-termmemory type of RNN is
superior to other RNNs since it can overcome the van-
ishing or exploding gradient descent problem. Another
type of RNN is the bidirectional long short-termmem-
ory (BILSTM) is developed with the goal of increasing
the prediction performance, and permits two sets of
training stages during which the input parameters are
used in both directions (backward and forward). The
BiLSTMs models are derived from the accumulation of
prior and forthcoming step input data (i.e. information
that pertains to past and future time steps) to a specific
time step in LSTMmodels. As a result, in BiLSTMs, past
and future information are retained at any moment in
time. Therefore, in the proposedwork the BILSTM type
RNN is used, where the real-time data available on solar
andwind alongwith the previous data of solar andwind
are used for accurate prediction of output power. The
problems in implementing the forecasting methods for
the wind and solar power system can be described as
follows:

• Wind and Solar energy’s inevitable intermittent
nature and variabilitymakes inaccurate prediction of
wind and solar power generation.

• Few studies have examined the bidirectional learn-
ing capability of Bi-LSTM in the context of wind
and solar energy prediction, while the majority of
research has concentrated on LSTM.

• From the literature it has been identified that, the
hybrid deep learning method (CNN-BiLSTM) has
not yet been used for prediction of hybrid power
generation.

• There has been no standardized assessment and val-
idation of several deep learning techniques (CNN,
LSTM, Bi-LSTM, CNN-Bi-LSTM) in the wind and
solar energy forecasting domain.

Finally, to address the constraints and fill in the
limitations mentioned above,
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• AHDLmethod (CNN-BiLSTM) is presented in this
article to estimate the short-term solar and wind
power output by effectively reaping the benefits of
the bilateral temporal pattern extraction of Bi-LSTM
and spatial pattern extraction ability of CNN.

• A modified switched Z-source converter is imple-
mented in the proposed system

• In solar and wind energy prediction, model compar-
isons between various DL models (CNN, BiLSTM,
CNN-BiLSTM) are conducted.

The following summarizes the hierarchy of the arti-
cle. The first section explains the paper’s topic and
challenge through a literature study and outlines the
existing gaps and challenges in the field of wind and
solar energy forecasting; The second section details the
modular switched Z source converter and design of
the various components in the proposed system. The
third section discusses how to apply the CNN-BiLSTM
approach to solar and wind energy systems. The fourth
section discusses the proposed system’s control; The
final section discusses the suggested system’s results
and conclusions.

2. Proposed system

The hybrid renewable energy configuration, including
the converter and the control system, is depicted in
Figure 1. In order to facilitate better energy output from
the DC sources and to integrate the DC sources with
the grid, PV panels, a wind energy conversion system
and a storage battery are used in the proposed system.
There is a converter unit to regulate the output power

from the DC sources and an inverter unit to integrate
with the grid. The photovoltaic system is made up of
a collection of photovoltaic panels which are intercon-
nected in order to harvest the maximum amount of
energy possible. It is necessary to implement a switched
Z-Source converter in order to boost the array voltage
to a level that is equivalent to theDCvoltage at the Point
of Common Coupling (PCC). The wind energy system
is comprised of wind turbines, a turbo generator and a
diode bridge rectifier, boost converter, which regulates
the amount of wind energy produced. If there is zero
power generation from solar and wind power, a chain
of batteries is installed to maintain a constant voltage
at the PCC and inject the power into the grid. PI con-
troller controls the charging and discharging modes of
the battery bank in the secondary storage system. The
secondary storage system also includes a bidirectional
converter. This converter is utilized as an intermediate
between the storage device and the PCC, and it regu-
lates the current flow when the line voltage at the PCC
and the storage device are varied.

The grid coordinated inverter converts the direct
current (DC) power produced by the hybrid renewable
sources into alternating current and feeds it back into
the grid. When combined with an inverter and battery,
a feedback controller (PI controller) is used to regulate
the hybrid energy system, resulting in a hybrid power
monitoring and control system that is both reliable and
efficient in operation. When it comes to controlling the
power flow, the centralized power management system
is comprised of ANN that is facilitated by artificial intel-
ligence to integrate both the transient and steady-state
power flow.

Figure 1. Block diagram of the proposed system.
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2.1. Proposedmodified switched Z-source
converter (MSZSC)

The proposed converter is designed by considering the
basic topology of the Z-source converter circuit. The
input to the proposed converter is fed from PV panels.
Figure 2 presents the basic structure of the PV panel. In
the modified converter a slight modification is done in
the circuit by incorporating a capacitor C2 and a diode
D2 to the other circuitry elements C1 and D1. There-
fore, a switched capacitor circuit has been developed
by using the components C1,C2 andD1,D2. To achieve
a higher voltage gain, the suggested converter main-
tains constant current flow. To understand the static
characteristics of the converter the storage elements are
assumed to be ideal and equal in nature.

Figure 3 presents the modified Z source circuit with
its operating modes. These modes are also known as
stages and operate by turning on and off the semicon-
ductor switch S.

2.1.1. Mode I
During the conduction of switch S, the semiconductor
diodes D1,D2 open due to their anti-parallel connec-
tion with the capacitor. Vi and C3 makes the induc-
tor L1 to charge, and Vi and C2 makes the induc-
tor L2 to charge. Since Vi,C1, and C2 are connected
in a sequence, the DC power is supplied to the load

Figure 2. PV cell basic structure.

Figure 3. (a) Switched Z-source converter (b) Mode I (c) Mode
II.

through the switch S. The underlying steady-state equa-
tions are derived using KVL to the circuit presented in
Figure 3(b).

VL1 = Vi + VC3 (1)

VL2 = Vi + VC1 (2)

V0 = Vi + VC1 + VC2 (3)

When the switch S is in off condition, the diodes
D1, D2 starts conducting. Since the output diode Do is
in reverse blocking state, the capacitances C1, and C3
gets charged through the inductors L1 and L2. Since the
inductor L1 is in series with inductor L2, the capacitor
C2 charges through the input voltage source Vi and the
inductor L1. Therefore current in the converter circuit
flows through the output capacitor Co to the RL load.
The underlying steady-state equations are derived using
KVL to the same circuit presented in Figure 3(b) with
switch S in closed position.

VL1 + VC1 = 0 (4)

VL2 + VC3 = 0 (5)

Vi = VL1 − VC3 + VC2 (6)

Under stable conditions the voltage across the induc-
tor is equal to zero.

Therefore

VC1 = VC3 = D
1 − 2D

Vi (7)

VC2 = Vi + VC1 + VC3 = 1
1 − 2D

Vi (8)

From Equations (11), (12) the output voltage V0 is
presented in Equation (13).

V0 = Vi + VC1 + VC2 = 2 − D
1 − 2D

Vi (9)

The gain (G) of the proposed modified converter is:

G = V0

Vi
= 2 − D

1 − 2D
(10)

2.2. Modelling of bidirectional converter

Bidirectional converters and battery units are used to
ensure the electrical potential at PCC as high as pos-
sible, which exceeds the threshold storage capacity of
batteries (540V). Single-cell batteries must use voltage
equalization circuitry to ensure that all cells deliver the
same voltage. To achieve voltage equalization a battery
of low voltage rating is connected in series with the
battery packs. Therefore, the optimal dc link voltage is
maintained stable at the PCC which improves the bat-
tery life cycle. In the beginning, the conduction time
for the switching pulses is kept at 50%, and the con-
verter does not operate in either step-up or step-down
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mode, and there is no power flow among both the bat-
tery and grid. The difference between the magnitude
of the PCC voltage and the terminal voltage level of
the battery packs, alters the operational sequence of the
converter controlled by the PI controller [25].

When the renewable energy output falls below the
battery voltage, the bidirectional converter boosts the
power from the battery packs to the PCC. When the
PCC voltage falls below the battery voltage, the bidi-
rectional converter makes the battery packs to charge
since power begins to flow from the PCC to the battery.
A battery is also installed at the PCC to reduce the level
of stress and to maintain a constant power supply. It is
important to adhere to the state of charge (SOC) of the
batteries in order to assure appropriate planning. SOC
provides information regarding the thermal resistance,
internal resistance, temperature, present charge and
ageing of battery. In the majority of the implementa-
tions, actual contribution on ampere-hour calculation
is used to measure SOC.

SOC(t) = SOC(0) − 1
Q

∫ t

0
I(t)dt (11)

It is absolutely critical to keep the SOC (or “state of
charge”) of the battery within the base as high as
possible in order to utilize battery energy efficiently and

Figure 4. Bidirectional Power flow in Battery setup.

hence earn electricity for use. The battery usage lim-
its suggested are set between 20% and 90% of SOC
(Figure 4).

3. Methodology

In general, a Neural network is used to handle the vari-
ety of inputs such that it can classify the variety of inputs
in a generic way. The use of ANN in image classifica-
tion is less efficient since it requiresmore computations.
Image identification task is highly centred around the
locality of the image. The ANNs cannot differentiate
the local pixel and far pixel in an image. Moreover,
the ANNs are hypersensitive to the region of an object
in the image. Considering the disadvantages of ANNs
the hybrid deep learning methods are proposed. The
hybrid deep learning method used in the proposed
work isCNN-BiLSTM.Themajor objective of thiswork
is to make accurate and robust forecasting in hybrid
power generation systems. For accurate forecasting, the
present and past data of solar and wind energy sys-
tems are mandatory. It is essential to pre-process and
evaluate the data before feeding the data to the model.
Therefore, the pre-processing reduces the complexity
and increases the efficiency of the prediction models.
Before processing, all the abnormal data are eliminated
and the missing data are filled. Thus, the data are nor-
malized. The advantages of the BiLSTM and CNN are
discussed in the literature. While CNN is superior at
mapping constant spatial properties of data, BI-LSTM
can recognize long-term temporal connections in bidi-
rectional ways. Thus, in order to better anticipate the
short-term solar and wind power output, a hybrid
model consisting of CNN and Bi-LSTM is presented.
Figure 5 presents the block diagram of the hybrid DL
model.

Figure 5. Block diagram of the proposed DL model.
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3.1. Convolution neural network (CNN)

CNN collects the model parameters from the incom-
ing solar and wind database as presented in Figure 5.
The CNNmodel is built with a convolution layer, max-
pooling layer and flattening layer. In CNN two process
takes place, one is the feature extraction and the other
is the classification. In the first process, the convolution
layer and ReLU are present. Convolution layer is used
to process the solar and wind database that comes in
as input. By doing a convolution operation, a feature
map is created to identify the particular feature. The
ReLU activation is used to bring the nonlinearity in the
model. The activation function (ReLU) is employed in
the CNN layer to conduct elementwise computations.
The role of the ReLU is to explore a feature map, and
replace the negative values with zeros. ReLU fastens the
training and computations. After the convolution layer
there is another layer called pooling layer. This layer is
used to reduce the size or dimensions of the feature.
The new feature generated after the pooling layerwill be
half the size of the previously extracted feature obtained
from the convolution layer. There are two types of
pooling namely max and average pooling. Max pool-
ing along with convolution gives a position invariant
feature detection. Since max pooling uses less param-
eters in the process of feature extraction, overfitting is
reduced.Max pooling layer is also resistant towards dis-
turbances and variations. The net output obtained from
the convolution and the Max Pooling layer is fed to the
classification process. In this stage, the obtained output
is fed to a densely connected neural network. Therefore,
the required output can be obtained from the CNN. By
applying this learning algorithm, the gradient difficul-
ties such as gradient vanishing and gradient explosion
in RNN can be avoided. In the convoluted output, the
feature vectors of larger values are extracted.

3.2. Bidirectional long short-termmemory
(BILSTM)

Different categories of RNNs possess different struc-
tures; they can learn next states solely from previous
states. However, the complete training dataset from the
input is required for the time series prediction. In order
to deal with the issue of time series data, bidirectional
RNNs have been created. Both the previous and present
values can be fed into BiLSTM layer, which, however,
assigns greater weight to the existing situation at time
t to forecast the future state. Time-series prediction
on the BiLSTM layer begins with the output from the
flattering layer. To deal with the gradient diminishing
problem of RNNs, the BiLSTM uses an update and rel-
evance gate. The influence of these gates affects the
present state output at time t. This is the process that
is used to predict the output power of solar and wind
using the solar and wind parameters.

3.2.1. Steps involved in predicting the solar and
wind power using CNN-BiLSTM
Stage1 – Collecting the solar and wind data presented

in Figure 1 from the geographical location.

PV = {PV1,1, PV1,2, PV1,3, . . . , PV1,T },
WP = {WP1,1,WP1,2,WP1,3, . . . ,WP1,T },

Stage2 – The data collected for the deep learningmodel
is validated from 0 to1.

Stage3 – The homogenized data are transformed into
a 3-dimensional matrix structure. The data vali-
dation will verify that information is on similar
scale.

Stage4 – The homogenized set of data is immediately
transmitted into the single-dimensional convolu-
tion layer having a filtration system with size Sz.
Therefore, the weight at time t is determined by

Wpv(t) = FSz−1
k ∗ FSzk ∗ nSz−1

c ∗ nSzc ,

WWp(t) = FSz−1
k ∗ FSzk ∗ nSz−1

c ∗ nSzc (12)

and bias is determined as Bk
t = nSzc .

The output of the single-dimensional convolutional
layer for predicting the solar output power is deter-
mined by

C(t) = Wpv(t−1) ∗ Apv(t−1) + Bk
t (13)

The output of the single-dimensional convolutional
layer for predicting the wind output power is deter-
mined by

C(t) = Wwp(t−1) ∗ Awp(t−1) + Bk
t (14)

where Apv(t−1),Awp(t−1) is the activation function of
the solar system and the activation function of the wind
system.

Apv(t) = Awp(t) = G(C(t)) (15)

where G(c(t)) represents the nonlinearity in activation
function corresponding to time t.

The parameters obtained from the convolution layer
are fed as the input to the max pooling layer in which
the feature extraction is done under moderate dimen-
sions.

MxH ∗ MxW ∗ nc

=
(
MxH − F

PV
+ 1

)
∗

(
MxW − F

PV
+ 1

)
(16)

MxH ∗ MxW ∗ nc

=
(
MxH − F

WP
+ 1

)
∗

(
MxW − F

WP
+ 1

)
(17)

where MxH ,MxW represent the height and width of
matrix.
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Stage5 – The information to the BiLSTM layer is gen-
erated by the max-pooling layer. Currently stored
memory content at time t is the value of the most
recently active cell and the preceding information,
as well as a bias. The foreget gate memory device,
known as a memory cell unit GM(t), retains the
data about the past and present state. The input
gate gets the value for the input from the previous
CNNs max-pooling layer. The memory control
also determines what information should be held
in the memory module.

Pt = σ (Wi[GMt−1,Xt] + Bk
t ) (18)

The forget gate GM is responsible for deciding the past
state data to eliminate.

GMt = σ (Wf [GMt−1,Xt] + Bk
t ) (19)

Non-linearity is added to the system with the tanh
nonlinear activation factor in the tanh activation stack.

C′(t) = tanh(Wc[GMt−1,Xt] + Bk
t ) (20)

When the input state is same, the memory cell retains
the data and when the input state is different, the forget
gate removes the data.

C(t) = GMt−1 ∗ Ct−1 + Pt ∗ C′(t) (21)

An output gate determines which layer state should
be the output.

A(t) = σ (Wo[GMt−1,Xt] + Bk
t ) (22)

BiLSTM accepts the data from both left and right gates.
This differs from LSTM, which only takes information
from the preceding gate.

h(t)BiLSTM = h(t)forward ∗ h(t)backward (23)

For detailed assessment, the suggested hybrid DL
model is validated with a variety of DL models on a
variety of performance parameters. Investigation has
been done with common parameters such as mean
square error (MSE), mean absolute error (MAE) and r2
error in this work. Furthermore, distribution errors like
skewness and kurtosis errors are also considered.

4. Control system of the proposed system

The proposed system uses PI controller for the PV
system, Wind energy conversion system and Bidirec-
tional converter. Parametric tuning of PI controller
can be seen as one of the most critical engineering
tasks during control system authorizing to obtain the
preferences for control responses. Parametric PI Con-
troller [26] tuning is a compromise between reaction
speed and small-signal disturbance stability and tol-
erance to major signal disturbances. Initially, Ziegler-
Nicholas (Z-N) proposed new guidelines for controller

tuning. This method completely uses the trial-and-
errormethod which is not considered for the open loop
control process.

The output of PI controller is,

u(t) = KPe(t) + Ki

∫ t

0
e(t)dt (24)

4.1. Control of solar photovoltaic system

Two PV panels 100V each is used as the PV input to
the proposed converter. The MZSC boosts the 200V
to 600V. Figure 6 presents the control system for the
solar photovoltaic system. The HDLmethod is used for
accurately predicting the power from solar and wind
systems. This predicted power is compared with the
actual power in the comparator and the error obtained
is fed as input to the PI controller followed by a PWM
generator to produce pulse to the modified Z source
converter. Thus 600V DC is produced as the output
from the proposed converter.

4.2. Control ofWECS

The wind energy conversion system consists of DFIG,
turbine blades, Diode bridge Rectifier (DBR) and a
boost converter. The DFIG is connected to the wind
turbine for harvesting variable AC power from the
wind. The speed of the wind ranges from 10m/s to
12m/s. The obtained variable AC power is fed to diode
bridge rectifier unit and a constant 500V DC output
is obtained from the DBR. This 500V DC is boosted
to 600V DC using a boost converter. Figure 7 presents
the control system of the wind energy conversion sys-
tem. It is observed that a conventional PI controller is
used to provide gating pulses to the switch of a boost
converter, to boost the DC voltage from DBR to the
required DC-link voltage (600V)

4.3. Control of bidirectional DC-DC converter

A bidirectional converter is implemented for compen-
sation of power during an increase in the use of loads.
Whenever the power produced from the renewable
sources is excess, the bidirectional converter operates
as a buck converter and stores the excess power in bat-
tery and when there is unavailability of power from
renewable sources the battery bank supplies power to
grid.During this operation, the converter acts as a boost
converter. Figure 8 presents the control system of the
bidirectional DC-DC converter.

4.4. Control of voltage source inverter

The inverter plays a prominent role in the proposed
system. The DC output fed from the z-source net-
work is fed to the voltage source inverter circuit. The
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Figure 6. Duty cycle generation for the MZSC.

Figure 7. Control system of (a) WECS (b) boost converter.

voltage source inverter consists of six IGBT switches
(S1, S2, S3, S4′ , S5′ , S6′)

The pulses to the inverter switches are obtained
using the SVPWM [27] method. SVPWM method is

depicted in Figure 9, where the six vectors V1–V6 par-
tition the corresponding space vector into six segments.

Let us consider a sectorV1 having a coordinate value
of (1,0,0). The coordinate “1" describes the triggering
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Figure 8. Control system of the DC-DC bidirectional converter.

Figure 9. SVPWM for Inverter switches.

of the switch S1 for the phase a and the other two
coordinates “0, 0" denote the triggering of the switches
S5, S6 for the other two phases b and c respectively.
The ranges of current and voltage reference vectors
used for controlling the rectifier and inverter circuit is(−π

6 ,
π
6
)
and

(
0, π

3
)
. The duty cycle required to operate

the switches corresponding to the active state (V1,V2)
and the zeroth state (Vo,V7) is presented in Equation
(25). Table 1 presents the switching sequence of
the VSI.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣δα =
√
3Unef

udc
sin

[π

3
− y + π

3
(kout − 1)

]
∣∣∣∣∣δβ =

√
3Uref

udc
sin

[
y − π

3
(kout − 1)

]

|δ0 = 1 − δα − δβ

(25)

4.5. Closed loop controller for the proposed grid
connected system

In the closed-loop control systems, the ANN controller
[28] is used. The ultimate goal of the proposed con-
troller is to pump clear sinusoidal current to the grid
even when there is distortion in the grid voltage or
operation of a nonlinear load or any voltage imbalance.
Due to its durability, easy operation and reliability, the
ANN controller is used for control loop operation in
GCPVS. The output of the inverter should be sinusoidal
for appropriate synchronization of grid. Therefore, it
is evident that the input provided to the inverter for
the hybrid system should have lower THD, and faster
dynamic response. To gain maximum power from the
hybrid system and inject sinusoidal current into the

Figure 10. Closed loop control system for the hybrid grid con-
nected system.

Table 1. Switching strategy for the inverter switches.

Vector S1 S2 S3 S4 S5 S6 UAB UBC UCA Vector state

V0 = {000} ✗ ✗ ✗ � � � 0 0 0 Zero
V1 = {100} � ✗ ✗ ✗ � � +Udc 0 −Udc Active
V2 = {110} � � ✗ ✗ ✗ � 0 +Udc −Udc Active
V3 = {010} ✗ � ✗ � ✗ � −Udc +Udc 0 Active
V4 = {011} ✗ � � � ✗ ✗ −Udc 0 +Udc Active
V5 = {001} ✗ ✗ � � � ✗ 0 −Udc +Udc Active
V6 = {101} � ✗ � ✗ � ✗ +Udc −Udc 0 Active
V7 = {111} � � � ✗ ✗ ✗ 0 0 0 Zero
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grid, an interface between the hybrid system and the
grid must be used.

Figure 10 presents the closed-loop control system of
the proposed GCPVS. The voltage control loop con-
trols the DC link voltages from the hybrid system and
the Current loop controls the inverter current. Power
quality standards must be established throughout the
grid-connected system to meet the grid interconnec-
tion.

5. Results and discussion

5.1. Simulation results

The proposed system is tested with the developed
hybrid system and Hybrid DL method in MAT-
LAB/SIMULINK platform. Table 2 presents the param-
eters used for designing the proposed system. Table 3
presents the parameters used for designing the hybrid
DL method. A combinational deep learning approach
is developed based on the CNN and Bi-LSTM, which
incorporates short-term solar andwind power forecast-
ing. Convolutional layers have a kernel size of 64 and
128. There are 64 and 128 neurones beneath the surface
of the hidden layers of BiLSTM [29].

To obtain the expected wind and solar power out-
put, there is a single dense layer with 512 neurones.

Table 2. Parameters of the proposed hybrid system.

Load sizing DC Bus Voltage 600 Vdc
Load Power Required 1 kW

Battery sizing Batteries capacity 102 Ah
Battery Voltage 96 Vdc
Batteries capacity 9.8 kWh
Batteries strings (parallel) 1
Batteries per string (series) 4

PV array sizing PV module Soltech 1STH − 215 − P
Max power per module 100W
Max current 7.35 A
Max voltage 65 V
Parallel Strings 6
Series Modules per string 3

DFIG Rated Power 500W
Rated Speed 360 RPM

Table 3. Parameters of the CNN-BiLSTM.

Suggested model Design parameters

CNN - BiLSTM Units1 Units = 64;
Units2 Units = 128;

Drop out Drop out = 0.2
CNN Convolution (PV) Filter = 64

Kernel size = 3
Stride = 1

Max - pooling (PV) Kernel size = 2
Stride = 1

Convolution (Wind) Filter = 128
Kernel size = 3
Stride = 1

Max - pooling
(Wind)

Kernel size = 2

Stride = 1
Drop out Drop out = 0.2
Fully connected Neurons = 512

Epoch = 140, Batch size = 200; Optimizer = Adam′ ;
Learning rate = 0.002.

Figure 11. Simulation output of actual power with the pre-
dicted power using CNNmethod.

Figure 12. Simulation output of actual power with the pre-
dicted power using LSTMmethod.

Figure 13. Simulation output of actual power with the pre-
dicted power using Bi-LSTMmethod.

Dropout layers are used to mitigate the model’s predic-
tion error, and they are applied to both the framework
and the dropout rate is considered as 0.2 and 0.1. The
learning rate is 0.001, and Adam optimizer is used. The
proposed method is compared with three conventional
DL methods to check the performance of the proposed
method. All DL models are derived from the same set
of data. Figures 11–14 presents the simulation results
of the CNN, LSTM, Bi-LSTM and the proposed hybrid
DL model.

Table 4 presents the performance of various DL
methods using error parameters under varying Solar
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Figure 14. Simulation output of actual power with the predicted power using CNN-BiLSTMmethod.

Table 4. Performance of various DL methods using error
parameters under varying solar data.

Error
parameters CNN LSTM Bi - LSTM CNN - BiLSTM

MSE 0.1030 0.1045 0.0911 0.0884
MAE 0.0517 0.0455 0.0311 0.0219
r2 0.7256897 0.8986598 0.7136045 0.9931256
Skew 0.7127638 0.8125689 0.9589671 0.9999235
Kurtosis −0.512698 −0.458634 −0.315962 −0.253674

Table 5. Performance of various DL methods using error
parameters under varying wind data.

Error
parameters CNN LSTM Bi - LSTM CNN - BiLSTM

MSE 6.3759 5.3143 6.1136 2.1432
MAE 2.6874 2.1156 1.3955 1.0125
r2 0.9918 0.9865 0.9877 0.9920
Skew 0.4352 0.6168 0.8756 0.9998
Kurtosis −0.711563 −0.636578 −0.575632 −0.246351

data and Table 5 presents the performance of vari-
ous DL methods using error parameters under varying
wind data. Figure 15 presents the graphical illustration
of performance of DL methods used in predicting the
solar output power with their respective errors.

Figure 16 presents the graphical illustration of per-
formance of DL methods used in predicting the wind
output power with their respective errors. These inves-
tigations from the findings provide strong evidence to
suggest that the suggested hybrid DLmodel is the most
effective model which has a lower MSE value of 0.0884,
lower MAE value of 0.0219, has the highest skew and
r2 value of 0.9999235, 0.9931256 and a lower kurto-
sis value of −0.253674 for solar data and the same DL
method gives lower MSE value of 2.1432, lower MAE
value of 1.0125, has the highest skew and r2 value of
0.9920, 0.9998 and a lower kurtosis value of−0.246351
for wind data. From the charts in Figures 15 and 16,
it can be observed that the curve of the CNN-BiLSTM

model is most closely matched to the real solar and
wind power output curve, with a small forecast error.
During rapidly-changing wind and solar power, this
model has the smallest prediction error. However, the
computational performance of CNN-BiLSTM is the
slowest, with a mean processing duration of 0.4752 s.
As well, CNN’s processing duration is the fastest out of
all the models, with an estimated duration of 0.0741 s.

Figure 17 presents the output waveforms of the solar
PV system. The input radiation received by the PV
panels ranges from 800w/m2 to 1000w/m2. The DC
voltage obtained from the PV panel is 200V and the
output power obtained from the PV system is about
1Kwp (10 panels of 100 watts).

Figure 18 presents the waveforms of the wind energy
conversion system. From Figure 18 it is observed that
the wind speed in the wind energy conversion system
is varied from 10m/s to 12m/s. The voltage obtained
by the DFIG (double fed induction generator) is 500V
and the DC voltage obtained at the output of the PWM
rectifier is 600V.

Figure 19 presents the output waveforms of the pro-
posed switched Z-source converter. The values of L1, L2
and C1,C2 can be determined by using the formu-
las presented in Equation (26). From Figure 19 it is
observed that the input voltage to the proposedMSZSC
is 200V. When the duty cycle is varied and fixed to a
value of 0.33, the voltage found across the capacitors C1
and C2 are 300V each and the output of the MSZSC is
600V.When the duty cycle is adjusted to 0.42, the volt-
age of capacitorsC1,C2 changes to 350V, 400V and the
output of MSZSC is 750V.

L1, L2 = 2VpvD(1 − D)

xL.Iofsw

C1,C2 = IoD
xC.fswVi(1 − 2D)

⎫⎪⎪⎬
⎪⎪⎭

(26)
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Figure 15. Comparison of (a) MAE vs iteration (b) r2 vs iteration (c) Skew vs iteration (d) MSE vs DL methods (e) kurtosis vs iteration
errors in predicting the solar output power.

Figure 16. Comparison of (a) MAE vs iteration (b) r2 vs iteration (c) skew vs iteration (d) MSE vs DL methods (e) kurtosis vs iteration
errors in predicting the wind output power.

The terminal voltage of the battery pack and the PCC
is shown in Figure 20. The SOC is efficiently regu-
lated with the help of the bidirectional controller, and
energy is observed to be transferring from the batter-
ies continuously. The SOC is generally considered to
be 70%. The SOC may vary based on changes in the

output of theMSZSC and PWM rectifier. A steady volt-
age is maintained at the PCC by the control system for a
time period of 0.2 s, and the battery returns to its orig-
inal voltage. As a result, the controller demonstrates
remarkable tracking and learning capabilities. Accord-
ing to this theory, an effective energy management
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Figure 17. Simulation output of solar PV system.

Figure 18. Simulation output of wind energy conversion sys-
tem.

system has been developed, allowing a constant PCC
voltage to be retained even when the power source
changes. ANN controller with SVPWM is utilized to
regulate the voltage of the inverter, while closed-loop
control system based on PI controller is implemented
for MSZSC to maintain a constant dc link voltage of
600V at PCC. Figure 21 presents the pulse generation
to the VSI using SVPWM. Figure 22 presents the out-
put waveforms of the grid-connected system. Figure 23
presents the grid voltage, grid current and THD of grid
current using the PI controller. Figure 24 presents the
grid voltage, grid current and THD of grid current with
the ANN controller. It is observed that the THD of
the grid current obtained using conventional PI con-
troller has more harmonics, especially the lower order

Figure 19. Simulation output of the proposed MSZSC.

Figure 20. Simulation output of DC-link and Battery voltage.

harmonics which are more dominant than the funda-
mental and give almost 6% of THD which is greater
than the IEEE 519 standard value, whereas the THD of
the grid current obtained using ANN controller is only
2.47%.

5.2. Hardware results

The solar and wind energy system including battery
storage system is built in the laboratory. Figure 25
presents the prototype of the proposed system. The
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Figure 21. Pulse generation using SVPWMmethod.

Figure 22. Simulation output of GCHS.

voltage at the PCC is used as a reference voltage by
the controller, and the control signal is fed back via
inverter and appropriate filters. To operate the inverter
with an independent gate driver, the ANN controller
needs onboard PWM circuits. Using an EM relay
and input–output contact pins, the power contactor is
operated. FPGA controller (dsPIC3050) automates the
entire system. Figure 26 presents the experimental out-
put waveforms of the PV voltage, current through the

Figure 23. Simulation Result of (a) Grid voltage (b) Grid current
(c) FFT analysis of Grid current with PI controller (d) FFT analysis
of Grid current with Fuzzy controller.
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Figure 24. (a) grid voltage (b) grid current (c) FFT analysis of
grid current using ANN controller.

inductors L1, L2 voltage across the capacitors C1,C2,
output voltage of the proposed MSZSC, output voltage
of the DFIG, rectifier output voltage.

Figure 27 presents the experimental output of bat-
tery voltage, DC-link voltage, inverter voltage, injected
grid current from the inverter and the total har-
monic distortion (THD) of the grid current. From
Figure 27(d) it is observed that the grid current is sinu-
soidal in nature and is in phase with the grid voltage
and maintains a unity power factor. Moreover, from
Figure 27(e) it is observed that the THD of the grid
current is approximately equal to 2% which is very low
and is within the IEEE-519 standard. The use of ANN
controller with space vector pulse width modulation
method gives a THD of 2.2%. Table 6 presents the per-
formance comparison of different controllers for the
proposed MSZSC. From Table 6 it is observed that the
PI controller performs well when compared with other
controllers. There is a direct correlation between duty
ratio and voltage transfer ratio as shown in Figure 28,
which compares the voltage gain of various DC-DC
converters. When using a 40% duty cycle, the voltage
gain of MSZSC reaches a maximum of 10, while the
gains for the Landsman and LUO converters are only
about 6 and 3.5 at that point. The switching losses fall
drastically as the duty cycle reduces, but the system’s
total performance stays the same.

Table 7 presents the comparison of THD of the grid
current with different controllers using the SVPWM
modulation method. From the table, it is evident that

Figure 25. (a) prototype of the proposed system (b) wind and
solar PV module (c) Wind generator set.

the proposed system performs well using ANN con-
troller and SVPWM method. Figure 29 presents the
graphical comparison of the proposed system with dif-
ferent controllers. From Figure 29 it is evident that the
performance of the system by implementing the ANN
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Figure 26. Experimental output (a) PV voltage (b) Inductor cur-
rent L1 (c) Inductor current L2 (d) capacitor voltage C1 (e) capac-
itor voltage C2 (f ) Voltage of MSZSC (g) voltage of DFIG (i)
Rectifier voltage.

Table 6. Comparative analysis of PI controller and fuzzy con-
troller in terms of risetime, peak time, settling time and steady
state error.

Controller Kp KI (tr) (tp) (ts) ess

P&OMethod 0.1812 7.1653 0.2395 0.5728 0.6321 0.67
Fuzzy controller 0.2986 11.1251 0.1296 0.2988 0.4522 0.21
PI controller 0.3238 30.1512 0.041 0.1053 0.1102 0.13

Table 7. THD Comparison of grid current using different con-
trollers.

PI Fuzzy ANN
Method Sim Sim H/W

SVPWM 5.97% 4.57% 2.47% 2.21%

controller with the SVPWM method outperforms well
in both simulation as well as prototype.

Figure 30 presents the comparison of the grid cur-
rent THD of the proposed system with other existing
works [30–33]. From Figure 30 it is observed that the
proposed system uses the ANN controller to inject har-
monic less current into the grid when compared with

Figure 27. Experimental output (a) battery voltage (b) DC-link
voltage (c) inverter voltage (d) Injected grid current (e) THD of
the grid current.

other existing work. From the above analysis, it is con-
cluded that the ANN controller produces a harmonic
less grid current and maintains the grid current within
the IEEE-519 standard. But the Fuzzy controller also
works effectively and produces an optimum harmonic
content of (4.57% in simulation). The only drawback of
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Figure 28. Comparison of voltage gain ratio of different DC-DC
converters.

Figure 29. Comparison of THD of Grid current using various
controllers.

Figure 30. Comparison of proposed work with existing similar
work.

a fuzzy controller is a slower response to any change in
the output of the system (grid voltage).

6. Conclusion

This papermainly focuses on the implementation of the
hybrid deep learningmethod for accurate forecasting of
the wind and solar power. The actual power obtained
from the renewable energy sources is compared with
the predicted power and the error is being processed
in a PI controller to switch the modified Z source con-
verter for the PV system and the conventional boost
converter for the wind power system. A 600V constant
DC voltage is obtained from the MZSC as well as the
conventional boost converter which is then fed to the

VSI. The computational performance of CNN-BiLSTM
is slightly slower, with a mean processing duration of
0.4752 s when compared with the CNN’s processing
duration of 0.0741 s. But the accuracy in prediction is
high inHDLmethod compared toDLmethod. In order
to maintain a constant power supply, a battery stor-
age system is also used to balance energy between the
source and the grid. Predicting solar power at its peak,
tracking the rectified output of wind turbine to match
peak wind power, and utilizing effective battery energy
management all work together to provide uninterrupt-
ible power supply to the grid. The developed system
provides power similar to the distributed system’s opti-
mal levels even under poor climatic conditions, and
also supplies continuous power even though the energy
from the PV and wind sources is zero. The proposed
grid-connected system is tested using a conventional
PI controller, Fuzzy controller andANN controller. The
suggested control strategy can individually control the
renewable energy sources. The grid current’s THDcon-
tent is kept far below the IEEE519 standard. The con-
ventional PI controller gives a THD content of 5.97%,
the fuzzy controller gives a THD content of 4.57% and
the ANN controller gives a THD content of 2.21%.
The use of ANN controller with the SVPWM method
outperforms well when compared with other conven-
tional controllers. The proposed work injects harmonic
less current to the grid while compared with the other
existing work.
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