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ABSTRACT
To improve the performance of the conventional grey model, emphasis should be based on the
“new information prior using” principle. This paper presents detailed work on improving the
precision of the conventional grey model by combining a data grouping technique with modifi-
cationof initial condition toestablish anoptimizedgreymodel. Thedatagrouping techniqueand
modification of initial condition methods have the advantage of adhering to the “new informa-
tion prior using” principle. An empirical example of short-term traffic flow forecasting shows that
the proposed optimized grey model, that is the modified initial condition grouped grey model,
outperforms the existingmodels in both fitting and short-term forecasting.Moreover, the results
demonstrate our claim that the distribution characteristic of the fitting error influences future
short-term forecast accuracy. Now the proposed model can be of help in intelligent transporta-
tion systems for optimizing the use of existing infrastructure to enhance urban transportation
systems in averting issues such as traffic congestion.
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1. Introduction

Expansion of road capacity is a common but a “lengthy-
term” approach to managing traffic congestion [1,2].
However, intelligent transportation systems (ITS) have
solved and managed traffic problems by providing var-
ied and advanced modes of transport [3–5]. For smart
implementation of ITS, real-time traffic information is
vital [4]. However, the provision of accurate real-time
traffic information is an inherent problem in ITS [6].
Consequently, much effort to study on safety and effi-
ciency of ITS has been intensified and devoted [3,7].
To improve the performance of ITS, agent-based evi-
dential reasoning and “ZigBee” approaches have been
proposed [6,7]. Furthermore, Amin et al. [8] intro-
duced big data in shaping ITS. In this paper, we propose
a combination of the data grouping technique (DGT)
with modification of initial condition (MIC) to develop
an optimized grey model (GM) which we refer to as
the single-variable first-ordermodified initial condition
grouped grey model and denote it as MICGGM(1,1).
Where the first 1 stands for first-order and the second
1 stands for 1 variable under consideration in the grey
differential equation. This optimized model can find
application in advancing ITS. The Original GreyModel
(OGM(1,1)), which we optimize in this paper, is well
known and has been applied in modelling real-time
events in other domains such as hepatitis B incidence
and beef consumption forecasting [9,10].

Many intellectuals have investigated on enhancing
the accuracy of the conventional GM(1,1) from vari-
ous perspectives. For example, the function transfor-
mation technology, initial condition and background
value modification have been considered to improve
the accuracy of the OGM(1,1) [11–16]. Additionally,
Thành [17] demonstrates that the application of the
Fourier series in revising the greymodel residual values
provides more accuracy than the conventional model.
From the grey system theory, to improve the preci-
sion of the grey model, emphasis should be based on
the “new information prior using” principle [18]. Con-
sequently, we note that most of the authors’ efforts
to improve the performance of the grey model have
not concentrated on modification of the initial condi-
tion in adhering to the “new information prior using”
principle. This has motivated us in proposing a combi-
nation of the DGT and MIC methods, which adheres
to this principle, in improving the performance of the
OGM(1,1). Therefore, this paper institutes and proves
a new perspective of amalgamating the DGT and MIC
in optimizing the accuracy of the OGM(1,1) [19,20].

The novelty of this paper is the proposed combin-
ing of the DGT with MIC in order to optimize the
OGM(1,1). Getanda et al. [21] discussed the DGT
and MIC in improving the OGM(1,1)’s accuracy but
they never combined the two methods. This new
strategy takes the advantage of the two methods in
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adhering to the “new information prior using” principle
and in combination the accuracy of the proposed
MICGGM(1,1) is generally good compared with exist-
ing models as shown later in this paper. And that is the
crucial difference between the work of Getanda et al.
[21] and the result of this paper. Thus, the proposed
strategy is an extension of previous results [19,22]. Fur-
ther, in this paper, we unveil the insight of the DGT as
in how the grouping of raw data is done and how simu-
lated data are superimposed to obtain overall fitted data.
More importantly, we clearly show the adherence to the
“new information prior using principle” by the DGT.
Moreover, we analyze the relative fitting error andmake
judgment on its influence on future forecast results.
Finally, we graphically demonstrate how the accuracy
of the OGM(1,1) is improved from a lower accuracy
range to an improved higher accuracy range by this new
approach.

2. The grey system

The GM(1,1) is based on the grey system theory which
was introduced in 1982 and has undergone several
modifications being applied in numerous fields for
analyzing, estimating, forecasting and modelling grey
systems [9,10,23–26]. The system extracts a govern-
ing relationship of a system and covers areas such as
grey generating space, grey forecasting, grey control etc.
[24,26–28].

2.1. Grey generating operations andmodelling
algorithm

In grey modelling, the grey generating techniques
develop a systematic series from a raw data series. In
this paper, we present the raw data series as [9,26]:

X(0) = {x(0)
(1), x

(0)
(2), x

(0)
(3), · · · , x(0)

(m)} (1)

wherem is the total number of data points. Accumula-
tion of the series in (1) by:

X(1)
(r) =̂

{ r∑
i=1

x(0)
(i)

}
, r = 1, 2, · · · ,m, (2)

results in the following equation:

X(1) =̂{x(1)
(1), x

(1)
(2), · · · , x(1)

(m)} (3)

which is the Accumulated Generating Operation
(AGO). The AGO is a pre-processing technique which
reduces the randomness of the actual data to improve
data regularity and smoothness.

From adjacent AGO neighbours, a Mean value Gen-
erating Operation (MGO) can be obtained as [24,26]:

z(1)
(k) = 0.5(x(1)

(k) + x(1)
(k−1)), k = 1, 2, · · · ,m, (4)

where z(1)
(k) is the background value.

The grey modelling algorithm has a unique charac-
teristic of the first-order differential equation given as
[26,29,30]:

d
dt
X(1)(t) + aX(1)(t) = b, (5)

where X(1)(t) is a background grey value at time t, and
a and b are the developing coefficient and grey input,
respectively [9]. The parameters a and b are optimized
and obtained as discussed in Section 2.2 [19,26]. The
time response function of (5) is deduced as [29]:

x̂(1)
(r+1) =̂

(
x(0)
(1) −b

a

)
e−ar +b

a
, r = 0, 1, 2, · · · ,m − 1,

(6)

where x̂(1)
(r+1) is the prediction of the AGO and x(0)

(1) of
(6) is the initial conditionwhich causes prediction error
[18].

And from (1) and (3), the following equation can be
obtained [24]:

x(0)
(k) +a z(1)

(k) = b, k = 1, 2, · · · ,m, (7)

This is a grey differential model, called “Grey Model
(first-order, single-variable)”, GM(1,1), where x(0)

(k) is a
grey derivative [26,28,30].

Now, a systematical sequence of the original series is
obtained by retrogressing through inverse accumulated
generating operation (IAGO) given by [27,29]:

x̂(0)
(r+1) = x̂(1)

(r+1) − x̂(1)
(r) , x̂

(0)
(1) = x̂(1)

(1),

r = 1, 2, · · · ,m − 1. (8)

2.2. Estimatingmodel parameters

The grey model parameter values a and b are such that
the best-fit result minimizes the sum of squared errors
or residuals which are the differences between the
observed or experimental values and the corresponding
fitted value given in themodel. Thus, the ordinary least-
square method best estimates these parameters which
are calculated as [19,26,29]:[

a
b

]
= [AT A]−1

AT y, (9)

where A is the data matrix and y is the measured vector
and are given as:

A =

⎡
⎢⎢⎢⎢⎣

−z(1)(2) 1
−z(1)(3) 1
...

...
−z(1)(m) 1

⎤
⎥⎥⎥⎥⎦ (10)
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and

y =

⎡
⎢⎢⎢⎢⎣
x(0)
(2)
x(0)
(3)
...

x(0)
(m)

⎤
⎥⎥⎥⎥⎦ (11)

And as long as the matrix A has a full rank and the
inverse of ATA exists, then it is possible to compute
“good” values of the parameters a and b that minimizes
the sum of squared errors.

3. Proposed accuracy-improvingmethods

In this paper, we propose a combination of the DGT
and MIC methods in boosting the accuracy of the
OGM(1,1). Based on DGT, a Grouped Grey Model
(GGM(1,1)) exists [22]. Furthermore, a modified ini-
tial condition grey model (MICGM(1,1)) based on
MIC also exists [21]. Now in combination, the DGT
and MIC methods result in an optimized Modi-
fied Initial Condition Grouped Grey Model referred
to as MICGGM(1,1). Then the proposed model,
MICGGM(1,1), is adopted for modelling short-term
traffic flow forecasts and compared with the existing
models for validation purposes. An additional exist-
ing model considered in this paper is the Modified
Background Value Grey Model (MBVGM(1,1)) [23].

3.1. Data grouping technique

In this paper, we adopt the Strong Grouping (SG) tech-
nique in which the number of formed groups is given
by [19,23]:

N = n − [k − 1], (12)

where N is the number of groups, n is the total num-
ber of data used, and k is the number of data points
in a group and it should be consistent throughout the
grouping process. Figure 1 illustrates the SG in 4s (i.e.
four data points per group) to form 19 groups as can be
identified by 19 rectangles. Because of the dropping of
old data and adding of new data in the grouping pro-
cess, the SG technique has the advantage of adhering
to the “new information prior using” principle [20,23].
The procedure of grouped grey modelling entails the
repeated application of the conventional grey model on
each group of data and averaging the predicted values
at points of overlap [21]. Thus, grouped grey modelling
inherently modifies the initial condition of (6) and this
promotes accuracy improvement.

3.2. Modification of the initial condition (MIC)

As mentioned earlier, the initial condition of (6) is a
cause of the precision error of the conventional grey
model [18]. Thus, modification of this initial condition
to enhance the model’s accuracy is important and it is
achieved as follows. As in Getanda et al. [20,21], MIC
is adopted and by applying IAGO on x̂(1)

(r) of (8), the
restored (predicted) value of the raw data is obtained
as:

x̂(0)
(r) = x̂(1)

(r) − x̂(1)
(r−1)

= C∗(1 − ea)∗e−ar

= C∗(e−ar − ea∗e−ar)

= C∗(e−ar − e−a(r−1)), r = 2, 3, ...m, (13)

where Cis the optimized initial condition given as:

C =
∑m

r=2(e
−ar − e−a(r−1)) ∗ x(0)

(r)∑m
r=2(e−ar − e−a(r−1))2

(14)

Now by incorporation of this MIC into the OGM(1,1),
an optimized model is established which has the
advantage of improved accuracy compared with the
OGM(1,1).

Thus, the process of time series grey prediction
based on MIC can be outlined in the following four
steps:

(a) Calculation of the background value from the
AGO sequence of (3) by (4),

(b) Computation of the developing coefficient and
grey input parameters by (9),

(c) Computation of the optimized value of C by (14)
and finally,

(d) Computation of the restored (predicted) values by
(13).

3.3. The proposedMICGGM(1,1)

Now to improve the OGM(1,1)’s accuracy in short-
term traffic flow forecast, we combine the DGT and
the MIC methods in conventional grey modelling. The
combination process involves the incorporation ofMIC
in each formed group data set. In other words, the
raw time series data of Figure 2 is grouped before
fitting and forecasting and the four-step process out-
lined above is adopted in the simulation processes. As
illustrated by Figure 1, the DGT drops an old data
point and adds a new data point in the formation of a

Figure 1. Strong grouping (SG). The 22 data points have been grouped in 4s to form 19 groups.



AUTOMATIKA 181

Figure 2. Time series traffic flow raw data. This is the number of vehicles passing a point of study every 5 min.

new group. This process keeps on modifying the ini-
tial condition of each formed group. Overall, the two
methods have the advantage of modifying the initial
condition as a requirement by the “new information
prior using” principle, and in combination, we estab-
lish the proposed model denoted as MICGGM(1,1).
Moreover, MICGGM(1,1) can achieve high accuracy
compared with the existing models as demonstrated in
Sections 5–7 of this paper. With this high accuracy, the
MICGGM(1,1) can be used in advancing ITS by opti-
mizing the use of existing infrastructure to enhance
urban transportation systems in averting issues such as
traffic congestion.

The proposed model can be applied in both uni-
variate and multivariate data prediction capturing the
non-linear features of the traffic data, unlike other sta-
tistical methods such as the Autoregressive Integrated
Moving Average (ARIMA) model which is univariate
and does not support seasonal data. However, Seasonal
Autoregressive Integrated Moving Average, SARIMA
or Seasonal ARIMA, is an extension of ARIMA that
explicitly supports univariate time series data with
a seasonal component. Neural networks such as the
recurrent neural networks have a short-term memory
and this “forgetfulness”makesmodel trainingmore dif-
ficult and time-consuming. With the proposed model,
no data gets lost even though the modification of the
initial condition may literally mean loss of informa-
tion, but this is compensated by the adoption of the
“new information prior using” principle. Generally,
grey models require small amount of data to predict a
system. Other models such as the ARIMA model and
the long short-term memory neural network require
large amount of historical traffic data to achieve short-
term traffic flow forecasting [31]. Further, the pre-
dictive effect of the ARIMA model depends on its
parameters and orders. Thus, the proposed model is
more advantageous in time-series data modelling and
forecasting.

4. Vehicle traffic forecast data

4.1. The origin of the data set

The two-hour vehicle traffic data set used in this paper
was obtained from Ref. [19] as simulated in MITRAM
[32,33]. The data are graphically presented in Figure 2.
The number of vehicles is seen to have a trending pat-
tern from six o’clock in the morning to the peak hour
at around 7:20 AM. This is the morning peak when
the traffic jam is high. Thereafter, the flow of traffic
decreases to a lower value at around eight o’clock AM.
These types of data are suitable for this research as our
objective is to forecast by the proposed model for the
purpose of its incorporation in ITS to avert traffic con-
gestion. Thus, it is desirable that we subject our new
model to such traffic congestion data.

4.2. Training and validation data sets

The original traffic flow data set of Figure 2 was sub-
divided into training and validation data sets as pre-
sented in Figure 3 for estimating and evaluating the
proposed grey models, respectively [34]. The goal is to
develop a trained (fitted) model for good generaliza-
tion to new, unknown data. Then the fitted model is
evaluated using “new” data from the held-out dataset
(validation dataset) to estimate the model’s accuracy in
classifying the new data. The reason for sub-dividing
the original data set is to reduce the risk of issues such

Figure 3. Data split in two parts.



182 V. B. GETANDA ET AL.

as overfitting and, therefore, the data in the validation
dataset are not used to train the models. Thus, in this
paper, we employed the classical hold-out method.

5. Empirical application review

For analysis of the performance of the proposed grey
model, we simulated a numerical example in MATLAB
R2014a. The time series data of Figure 2was subdivided
into two parts as illustrated in Figure 3. Data from 6:00
AM to 7:45 AM are used for training the grey mod-
els, whilst data from 7:50 AM to 8:00 AM are used for
testing the models.

5.1. Training the greymodels

Based on the grey generating operations, we trained
the OGM(1,1), MBVGM(1,1) and the MICGM(1,1)
and tabulated their simulation values in Table 1.
Figure 4 shows the plots for the real, simulated
and residual data curves. The residual curve indi-
cates the difference between the simulated and actual
values.

In training for the proposed model, we adopt the
DGT and MIC in the simulation as follows. First, we
group the first 22 data points shown in Figure 2 into 19
groups of 4s based on (12) and Figure 1. These groups

Table 1. Original and modified grey models’ simulation data.

Rawdata Grey models

K Real OGM(1,1) MBVGM(1,1) MICGM(1,1) MICGGM(1,1)

Training Simulated Values

1 0 0 0 0 0
2 14 71.2956 71.4918 69.5654 15.9281
3 35 75.0718 75.2683 73.2499 35.1083
4 54 79.0479 79.2444 77.1295 50.8452
5 55 83.2346 83.4305 81.2147 60.9350
6 95 87.6431 87.8377 85.5162 88.8117
7 83 92.2851 92.4777 90.0455 86.2782
8 89 97.1729 97.3628 94.8147 87.3272
9 98 102.3196 102.5060 99.8365 102.5789
10 134 107.7389 107.9209 105.1242 122.9481
11 103 113.4452 113.6218 110.6921 119.5043
12 173 119.4538 119.6239 116.5548 153.5545
13 110 125.7805 125.9430 122.7281 128.7178
14 167 132.4424 132.5959 129.2283 156.4133
15 160 139.4572 139.6003 136.0728 158.9242
16 150 146.8434 146.9747 143.2798 159.0757
17 210 154.6209 154.7386 150.8685 202.3187
18 200 162.8103 162.9127 158.8592 200.9595
19 172 171.4335 171.5185 167.2731 171.9366
20 149 180.5133 180.5790 176.1326 153.0167
21 154 190.0741 190.1180 185.4613 148.3897
22 140 200.1413 200.1610 195.2842 143.2855

Testing Short-term Forecasted Values

23 157 210.7416 210.7345 205.6273 122.4716
24 146 221.9034 221.8666 216.5182 130.0599
25 145 233.6564 233.5866 227.9860 131.0204

Figure 4. Vehicle flow fitting. The first 22 data points have been used for training the grey models.
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Table 2. Actual data (AD) grouping based on SG in 4s.

Groups 1–19

DP AD G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 10 G 11 G 12 G 13 G 14 G 15 G 16 G 17 G 18 G 19

1 0 0
2 14 14 14
3 35 35 35 35
4 54 54 54 54 54
5 55 55 55 55 55
6 95 95 95 95 95
7 83 83 83 83 83
8 89 89 89 89 89
9 98 98 98 98 98
10 134 134 134 134 134
11 103 103 103 103 103
12 173 173 173 173 173
13 110 110 110 110 110
14 167 167 167 167 167
15 160 160 160 160 160
16 150 150 150 150 150
17 210 210 210 210 210
18 200 200 200 200 200
19 172 172 172 172 172
20 149 149 149 149
21 154 154 154
22 140 140

are formed and tabulated as in Table 2 where DP stands
for the data point.

Second, we introduce MIC in the OGM procedure
[9] and apply it to each group to obtain fitted data (FD)
for each group as tabulated in Table 3. Note that each
group will have unique values of the parameters a and b
[19]which have not been provided in this paper. Conse-
quently, the corresponding time functions are different.
Also note that in Table 3, the FD for groups 6–14 is not
shown because of wanting to reduce the size of Table 3.

Third, the overall simulation data sequence is
obtained by superimposing the group simulation data
at points of overlaps and this overall (final) sequence
is as indicated in Table 3. For instance, groups 1 and 2
overlap once at data point 2 and, thus, the final FD is

obtained as (17.8561+ 14)/2 = 15.9281 and groups 1,
2 and 3 overlap twice at data point 3 resulting to a final
fitted value computed as (31.2975+ 39.0274+ 35)/3
= 35.1083.Also, groups 1, 2, 3 and 4 overlap three times
at data point 4 and the final fitted value is obtained as
(54.8572+ 47.4416+ 47.082+ 54)/4 = 50.8452. This
sequence of computations is continued to generate the
final simulation sequence (i.e. final FD) which is also
tabulated in Table 1.

Lastly, this proposed model, MICGGM(1,1), resul
ted in simulation values tabulated in Table 1 and
plotted in Figure 4. A close observation of the
error curves in Figure 4 reveals that the proposed
MICGGM(1,1) is the most accurate model in this
fitting.

Table 3. Group and final fitted data.

Groups 1–5 and 15–19 fitted data

AD G1 G2 G3 G4 G5 G15 G16 G17 G18 G19 Final FD

0 0 0
14 17.8561 14 15.9281
35 31.2975 39.0274 35 35.1083
54 54.8572 47.4416 47.082 54 50.8452
55 57.6698 65.4726 65.5975 55 60.9350
95 91.0465 77.0809 92.1196 88.8117
83 90.5745 88.9628 86.2782
89 85.9141 87.3272
98 102.5789
134 122.9481
103 119.5043
173 153.5545
110 128.7178
167 156.4133
160 160 158.9242
150 163.8034 150 159.0757
210 185.7543 212.9778 210 202.3187
200 210.6468 193.412 199.7791 200 200.9595
172 175.6437 172.4208 167.6817 172 171.9366
149 148.809 158.1476 152.0936 153.0167
154 149.1556 147.6238 148.3897
140 143.2855 143.2855
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In Sections 6 and 7 of this paper, we further evaluate
the fitting errors and accuracies of the models as shown
in Figures 7–9.

5.2. Validating the fitted greymodels by
short-term forecast

For forecasting in the near term (6) is extrapolated three
points into the future. In testing the grey models, these
short-term forecasting results are recorded in Table 1
and their accuracies are shown in Figure 9. Plotted in
Figure 5 are the real, simulated and residual curves
for the three grey models. The last three time sample
points in Figure 5 (i.e. at 7:50, 7:55 and 8:00 AM) are
the extrapolated points of focus. Hence to clearly show
this short-term forecast, Figure 6 is an extracted part of
Figure 5.

6. Error analysis

Our goal is to find the model that has the best per-
formance on new data and the simplest approach is
to evaluate the time-series fitting error involved in the
models. The error of any particular model in forecast-
ing future trends of a system is much influenced by its
error in fitting the past data of that particular system. To
validate this claim, we examine the distribution charac-
teristic of the relative fitting errors over the full range of
the data set under consideration.

Table 4 is a record of OGM(1,1)’s, MBVGM(1,1)’s,
MICGM(1,1)’s and MICGGM(1,1)’s relative fitting
errors. MICGGM(1,1)’s relative errors are smaller.
However, its large error part concentrates at the cen-
tre (middle) of the data set, whereas the errors of the
OGM(1,1) are larger and distributed over the full range
of the data set (Figure 7). At either ends of the data

Figure 5. Short-term vehicle flow forecast-extrapolation. The last three instants show traffic flow estimation.

Figure 6. Short-term vehicle flow forecast. This figure clearly illustrates three extrapolated points of focus.
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Table 4. Model simulated relative errors.

OGM(1,1) MBVGM(1,1) MICGM(1,1) PROPOSED MICGGM(1,1)

Real Data Fitted Data Relative Error Fitted Data Relative Error Fitted Data Relative Error Fitted Data Relative Error

0 0 0 0 0 0 0 0 0
14 71.2956 −57.2956 71.4918 −57.4918 69.5654 −55.5654 15.9281 −1.9281
35 75.0718 −40.0718 75.2683 −40.2683 73.2499 −38.2499 35.1083 −0.1083
54 79.0479 −25.0479 79.2444 −25.2444 77.1295 −23.1295 50.8452 3.1548
55 83.2346 −28.2346 83.4305 −28.4305 81.2147 −26.2147 60.935 −5.935
95 87.6431 7.3569 87.8377 7.1623 85.5162 9.4838 88.8117 6.1883
83 92.2851 −9.2851 92.4777 −9.4777 90.0455 −7.0455 86.2782 −3.2782
89 97.1729 −8.1729 97.3628 −8.3628 94.8147 −5.8147 87.3272 1.6728
98 102.3196 −4.3196 102.5060 −4.5060 99.8365 −1.8365 102.5789 −4.5789
134 107.7389 26.2611 107.9209 26.0791 105.1242 28.8758 122.9481 11.0519
103 113.4452 −10.4452 113.6218 −10.6218 110.6921 −7.6921 119.5043 −16.5043
173 119.4538 53.5462 119.6239 53.3761 116.5548 56.4452 153.5545 19.4455
110 125.7805 −15.7805 125.9430 −15.9430 122.7281 −12.7281 128.7178 −18.7178
167 132.4424 34.5576 132.5959 34.4041 129.2283 37.7717 156.4133 10.5867
160 139.4572 20.5428 139.6003 20.3997 136.0728 23.9272 158.9242 1.0758
150 146.8434 3.1566 146.9747 3.0253 143.2798 6.7202 159.0757 −9.0757
210 154.6209 55.3791 154.7386 55.2614 150.8685 59.1315 202.3187 7.6813
200 162.8103 37.1897 162.9127 37.0873 158.8592 41.1408 200.9595 −0.9595
172 171.4335 0.5665 171.5185 0.4815 167.2731 4.7269 171.9366 0.0634
149 180.5133 −31.5133 180.5790 −31.5790 176.1326 −27.1326 153.0167 −4.0167
154 190.0741 −36.0741 190.1180 −36.1180 185.4613 −31.4613 148.3897 5.6103
140 200.1413 −60.1413 200.1610 −60.1610 195.2842 −55.2842 143.2855 −3.2855

Figure 7. Error analysis. These are the distribution characteristics of the relative fitting errors.

set range, the accuracy of the proposed MICGGM(1,1)
is high meaning that it can forecast the future trend
of a system with good accuracy. For the OGM(1,1),
MBVGM(1,1) and MICGM(1,1), the Lager error trend
is likely to distribute into the future forecasting of a
system and these models can forecast the future with
lower accuracy. The role played by the DGT is to con-
centrate the fitting errors in the middle of the time
series rather than spreading it along the entire data set.
The fitting accuracy at the middle is lower, whereas
at the extreme ends, it is good and this is advanta-
geous in forecasting the system behaviour at the ends.
This is why the MICGGM(1,1) has a high fitting and
good/reasonable forecasting accuracies compared with
OGM(1,1), MBVGM(1,1) and MICGM(1,1).

Similarly, we considered the relative fitting errors
of the MICGM(1,1). Observe Figure 7 and note
that MICGM(1,1), MBVGM(1,1) and OGM(1,1) have
similar error distribution characteristics. Thus, they

have almost the same fitting accuracies, see Figure
8. Although MICGM(1,1) and MBVGM(1,1) are
improved grey models, their accuracies are much lower
compared with that of the proposed model.

7. Accuracy improvement analysis

Measures of model performance, namely root mean
square percentage error (RMSPE), mean absolute per-
centage deviation (MAPD), root mean square error
(RMSE) and the mean absolute error (MAE) are
adopted to evaluate the accuracy improvement of the
proposed grey model [19].

In MATLAB R2014a, we computed the simulation
errors, and in Excel, we plotted the fitting accuracies of
each model as shown in Figure 8. Similarly, we plot-
ted the short-term forecasting accuracies in Figure 9.
It is evident from Figure 8 that the OGM(1,1) has
lower fitting accuracy compared with MICGGM(1,1).
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Figure 8. Model fitting accuracy analysis.

Figure 9. Model shot-term forecasting accuracy analysis.

Note that the proposed MICGGM(1,1) has the high-
est fitting accuracy of 94.6987%. Thus, the OGM(1,1)’s
accuracy of 77.802% has been improved to an accuracy
of 94.6987% by MICGGM(1,1) as indicated by MAPD.
See Figure 8. On the other hand, MICGM(1,1) and
MBVGM(1,1) have fitting accuracies of 77.9812% and
77.7807 respectively.

Short-term forecast accuracy analysis is shown in
Figure 9 in which the OGM(1,1) has lower short-
term forecast accuracy. On the other hand, the pro-
posed MICGGM(1,1) has good forecast accuracy at
85.6143%, as computed by MAPD. Worthy is the
improvement of the OGM(1,1)’s fitting and short-term
forecast accuracies as shown in Figures 8 and 9, respec-
tively.

Table 5. Criteria for MAPD and RMSPE.

MAPD and RMSPE Forecasting power

Less than 10% High accuracy
10–20% Good
20–50% Reasonable
More than 50% Inaccurate

The criteria of MAPD and RMSPE are as tabulated
in Table 5 [19,35,36] and it shows that the fitting accu-
racy of the proposedMICGGM(1,1) is high, whereas its
short-term forecasting accuracy is good.

8. Computation time

We did the simulations in MATLAB R2014a environ-
ment and tomeasure the performance of ourMATLAB
code, we used the tic and toc performance functions
to time how long the code takes to run. We ran the
code multiple times and averaged and recorded the
time in seconds as tabulated in Table 6. The fitting
and forecasting time for the MICGGM(1,1) is longer
compared with those of the OGM(1,1). This is because
of the increased number of statements to be executed
in the proposed model’s MATLAB code. Nevertheless,
the MICGGM(1,1) is more accurate and the increased
computation time is insignificant. Moreover, timing is
merely a performance metric, not a system correctness
criterion. Thus, the proposed model can perform well
in automated systems.



AUTOMATIKA 187

Table 6. MATLAB code computing time.

Computing time

Grey model Fitting Forecasting

OGM(1,1) 0.3791 0.3586
MBVGM(1,1) 0.3824 0.3698
MICGM(1,1) 0.3834 0.3739
MICGGM(1,1) 0.4092 0.3924

9. Conclusions and future focus

In this paper, we have analyzed and presented a new
approach of amalgamating the DGT and MIC in opti-
mizing the conventional GM(1,1) to establish a newly
optimized model denoted as MICGGM(1,1). Further,
with a numerical example, we did a performance anal-
ysis and the results have shown that the newly improved
model, i.e., theMICGGM(1,1) has high fitting accuracy
and good short-term forecasting accuracy as compared
with the existingmodels.Moreover, we have shown that
when large errors tend to concentrate at the middle of
the data set, the near future can forecast with high accu-
racy meaning the new model has the best performance
on new data. Thus, the distribution characteristic of the
fitting error influences the future forecast accuracy of
the model. We note that the proposed MICGGM(1,1)
combines the advantage of DGT and MIC by adher-
ing to the “new information prior using” principle in
boosting the accuracy of the OGM(1,1).

The proposed optimizedGMcan enhance the design
of useful ITS’s architecture through grey control and
this is of help to transport management decision-
makers. Thus, it enriches and widens the application
scope of the greymodel. For instance, it can be useful in
real-time proactive traffic control for large-scale adap-
tive traffic networks (such as those of city or mega-city
scale) and this calls for multiple measurement points of
data to be processed.

Our future work is to continue refining and devel-
oping the GM by combining the DGT with Fourier
Series to ascertain their capability in enhancing the
OGM(1,1)’s forecasting accuracy.
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