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ABSTRACT

We revisit constructions based on triads of conics with foci
at pairs of vertices of a reference triangle. We find that
their 6 vertices lie on well-known conics, whose type we
analyze. We give conditions for these to be circles and/or
degenerate. In the latter case, we study the locus of their
center.

Key words: triangle, conic, Carnot, Soddy circles

MSC2010: 51M04, 51N20, 51N35, 68T20

Trijade konika pridruženih trokutu

SAŽETAK

Podsjećamo na konstrukcije temeljene na trijadama konika
sa žarǐstima u parovima vrhova referetnog trokuta. Nalazi-
mo da njihovih 6 vrhova leži na dobro poznatim konikama
čiji tip analiziramo. Za ove konike dajemo uvjete da budu
kružnice i/ili degenerirane konike. U slučaju degeneriranih
konika proučavamo geometrijsko mjesto njihovog sredǐsta.

Ključne riječi: trokut, konika, Carnot, Soddyjeve kružnice

1 Introduction

Paraphrasing a passage in [13], “new tools of interactive
geometry enable the discovery of properties in a way math-
ematicians in the past could only have dreamed about”.
Aided by interactive simulation (mostly Mathematica and
GeoGebra), and inspired by a construction by Paul Yiu [17,

Sec. 12.4, p. 148], we tour curious dynamic phenomena
manifested by triads of ellipses (or hyperbolas) naturally
associated with a triangle. Namely, we attach their foci to
a pair of vertices and impose that the conic pass through
either (i) the remaining vertex, or (ii), some chosen point P.
We call these “V-” or “P”-conics, respectively, see Figure 1.

Figure 1: Left: A4ABC, and a V-triad of ellipses passing through a vertex and with foci on the remaining pair. Right: in
the P-triad case, ellipses still have foci on pairs of vertices but now pass through a given point P.
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Some of our main results include:

• The 6 vertices of V-ellipses always lie on a conic;
this conic is degenerate iff the reference triangle is a
right triangle.

• The conic passing through the 6 P-ellipse vertices is
degenerate iff P lies on the circumcircle.

• The locus of the center of the 6-point conic over the
degenerate family is a quartic in the V-ellipse case,
and the union of three arcs of ellipses in the P-ellipse
case; we derive expressions for them.

• We specify the regions such that various 6-point con-
ics are of a given type (hyperbola, ellipse, parabola,
or degenerate).

• We derive conditions such that various 6-point conics
are a circle.

• We derive conditions (and loci) under which the co-
vertices of conic triad lie on a conic.

Some of the above are done for the case of hyperbola triads
as well. Most of our results have been obtained through
experimentation with dynamic geometry software first, and
later confirmed geometrically and/or algebraically. See [6]
for details.

Some long, symbolic proofs are omitted, with some expres-
sions appearing in Section 6. Throughout the paper we will
be using Xk notation for triangle centers, after [8].

Related Work

We have been inspired by the idea of erecting identical geo-
metrical objects to the sides of a triangle, e.g., [3, 5, 10, 11].
Triads of “Artzt” parabolas, conceived in the XIX century,
have been revisited in [4, 9, 15]. In [13], new properties of
Artzt parabolas are detected via dynamic geometry software.
Properties of conic triads with a shared focus are studied in
[1]. A 6-point conic passing through the tangency point of
the excircles (which turns out to coincide with the vertices
of V-ellipses) is described in [2, 18]. A Construction of 3
“Soddy” hyperbolas (called here V-hyperbolas) with foci on
vertices appears in [17, Sec. 12.4, p. 148]. Properties of a
triad of circles tangent to the nine-point circle are studied
in [12].

Article organization

Properties of triads of V-ellipses, P-ellipses, V-hyperbolas,
and P-hyperbolas, are covered in Sections 2 to 5, respec-
tively. In last section we pose to the reader a few open
questions. The last section contains some long-form sym-
bolic expressions for a construction appearing in Section
2.

2 A triad of V-ellipses

Referring to Figure 1:

Definition 1 (V-ellipses) Given a triangle4ABC, a triad
of V-ellipses Ea,Eb,Ec have foci on (B,C), (C,A), (A,B)
and pass through A, B, and C, respectively.

Proposition 1 The V-ellipses Ea,Eb,Ec are centered at
the midpoints of 4ABC’s sides. Their vertices1 are the
(external) tangency points of the excircles with triangle’s
sidelines and lie on a conic, Y .

Proof. Let a,b,c be the sidelengths of 4ABC. Let
(Ia),(Ib),(Ic) the escribed circles and let A1, A2, B1, B2,
C1, C2 their (external) tangency points with the lines BC,
CA, AB, as shown in Figure 2. We shall prove that these
points are the intersection of the V-ellipses with their focal
axis BC, CA, AB, hence their vertices. Elementary proper-
ties of tangents from a point to a circle yield:

AC2 =AB1 = BA2 = BC1 =CA1 =CB2 = p,

BA1 =CA2 = p−a,

AB2 =CB1 = p−b,

AC1 =BC2 = p− c, (1)

where p = (a+b+ c)/2 is the semi-perimeter. Hence:

A1A2 = A1B+BC+CA2 =

= (p−a)+a+(p−a) = 2p−a = b+ c.

Since A1B = A2C, and since points A1, A2, B and C are
collinear, the former are precisely the two vertices of Ea.
Furthermore, the segments BC and A1A2 share their mid-
point, the center of Ea. The proof for Eb and Ec is similar.

In order to prove that their six vertices are on a conic, by
Carnot’s Theorem, it is enough to check that

AC1

BC1
· AC2

BC2
· BA1

CA1
· BA2

CA2
· CB1

AB1
· CB2

AB2
= 1. (2)

This claim is obtained by substituting (1) into (2). �

1These refer to the intersection of a conic with the focal axis.
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Remark 1 The fact that a conic passes through the six ex-
ternal tangency points with the excircles was discovered by
Paul Yiu [18]. In [8] its center is labeled X478.

It can be shown that the Yiu conic Y can never be a circle
except when4ABC is an equilateral.

Proposition 2 Each V-ellipse Ea,Eb,Ec is respectively
tangent at A,B,C to the sides of the excentral triangle.

Proof. Referring to Figure 2, since Ia, Ib, Ic are the centers
of the escribed circles, the lines IbIc, IcIa, IaIb are the ex-
ternal bisectors of ∠BAC, ∠ACB, and ∠BCA; thus AIa, BIb
CIc are altitudes in 4IaIbIc as well as (internal) bisectors
of4ABC. By the optic propriety of conics, lines IbIc, IcIa,
IaIb are also the tangents in A, B, C to the ellipses Ea, Eb,
Ec. �

Referring to Figure 2, let (A′,A′′), (B′,B′′), and (C′,C′′) de-
note the pairwise intersections between (Eb,Ec), (Ea,Ec),
and (Ea,Eb), respectively.

Figure 2: Properties of a V-ellipses Ea,Eb,Ec (red, green,
blue) with respect to a 4ABC (black). (i) Its vertices are
at the tangency points of the excircles (dashed gold) with
the sidelines; hence they lie on the Yiu conic (magenta)
[18]. (ii) Each ellipse is tangent at A,B,C to a side of the
excentral triangle 4IaIbIc. (iii) The 3 chords A′A′′, B′B′′,
and C′C′′ between the intersections of (Eb,Ec), (Ec,Ea),
(Ea,Eb) pass through Ia, Ib, Ic, and concur at X20.

Proposition 3 The lines through A′,A′′, B′,B′′, C′,C′′ pass
through the 3 excenters Ia, Ib, Ic, respectively, and concur at
the de Longchamps’ point X20.

Proof. It can be shown that the Ea is given by the following
implicit equation in barycentric coordinates [x,y,z]:

Ea : 4c(b+ c)xy− (a−b− c)(a+b+ c)y2 +

+ 4b(b+ c)xz+2(a2 +b2 +2bc+ c2)yz−
− (a−b− c)(a+b+ c)z2 = 0

Eb,Ec can be obtained cyclically on a,b,c. The
barycentrics for the vertices of Ea are A1 = [0,a+b+c,a−
b− c] and A2 = [0,a−b− c,a+b+ c]. Let S be twice the
area of 4ABC. The two real intersections A′,A′′ between
Eb,Ec are given by:

A′ =[(a−b− c)(a+b− c)(a−b+ c) ·

· (3a2 +2ab−b2 +2ac+2bc− c2)+

+4(−2a3−a2b−b3−a2c+b2c+bc2− c3)S,

(a−b− c)(a−b+ c)(a+b+ c) ·

· (a2−2ab−3b2 +2ac+2bc+ c2)+

+4(a3 +ab2 +2b3 +a2c−b2c−ac2− c3)S,

(a−b− c)(a+b− c)(a+b+ c) ·

· (a2 +2ab+b2−2ac+2bc−3c2)+

+4(a3 +a2b−ab2−b3 +ac2−bc2 + c3)S
]

and A′′ is obtained as above but with S→−S. The inter-
sections B′,B′′ and C′,C′′ are obtained cyclically. The line
A′A′′ is then given by:

− (b− c)(a+b+ c)2x− (a+b− c)2(a+ c)y+

+(a+b)(a−b+ c)2z = 0

It can be shown this line passes through excenter Ia. The
other lines can be obtained cyclically. It can also be shown
these meet at X20, whose first barycentric coordinate is
given by [8]: [−3a4 +2a2(b2 + c2)+(b2− c2)2], with the
other two obtained cyclically. �

Referring to Figure 3:

Proposition 4 When 4ABC is a right triangle, the V-
ellipses pass through the reflection of the orthocenter on
the circumcenter, the de Longchamps point X20.

Proof. Let C denote the right-angle vertex of4ABC, and C′

its reflection about the circumcenter X3. We shall prove that
each V-ellipse passes through C′. Due to central symme-
try, this is trivially true for Ec. Consider Ea: since its foci
are B,C and it passes through A, its major axis has length
|AC|+ |AB|. Since ACBC′ is a rectangle, |AC|= |BC′|, and
|BC| = |C′A|. Hence |C′B|+ |CC′| = |AC|+ |AB|, which
ensures that C′ ∈ Ea. Similarly C′ ∈ Eb. �
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Figure 3: If 4ABC is a right triangle, the Yiu conic Y
(magenta) is degenerate, and the V-ellipses intersect at X20.
Furthermore, over all C on a semicircle with AB as a di-
ameter, the locus of the center X478 of Y is an arc (solid
gold) of a quartic (dashed gold). The lines through A,B
perpendicular to AB (dotted gold) are tangent to the locus
at its endpoints A′, B′, and |AA′|= |BB′|= |AB|.

Degenerate six-point conic:

Still referring to Figure 3:

Proposition 5 Y is degenerate iff 4ABC is a right trian-
gle.

Proof. Let A1,A2,B1,B2,C1,C2 the intersection points of
the ellipses, with the lines BC, CA, AB, as in Figure 3. We
shall prove that A1,B1,C1 are collinear iff 4ABC is right-
angled. To do so, by Menelaus’ theorem, we need to check
that
A1C
A1B
· C1B
C1A
· B1A

B1C
= 1. (3)

Let x =CA1 = BA2, y = AB1 =CB2, z = AC1 = BC2.

Since the V− ellipses pass through one of triangle’s ver-
tices and have their foci into the other two, a + 2x =
b+ c, b+2y = a+ c, c+2z = a+b, hence

x = p−a, y = p−b, z = p− c,

where p = a+b+c
2 is the semi-perimeter. Substituting this

into (3), we obtain:

x
p
· p

z
· y

p
= 1

hence (p−a) · (p−b) = p · (p− c), which is equivalent to
c2 = a2+b2. The result follows by Pythagoras’ theorem. �

Assume, without loss of generality, that A = (1/2,0) and
B = (−1/2,0).

Proposition 6 Over C on the semicircle whose diameter is
AB, y > 0, the locus of the center of the degenerate Y is the
arc of a quartic given by:

4(x2 + y2)2−8y3− x2 +2y2 = 0, y > 1

The semicircle with y < 0 produces a locus which is sym-
metric about the x-axis.

Proof. The claim was obtained via manipulation and sim-
plification with a Computer Algebra System (CAS). �

Figure 4: With A,B fixed, the solid (resp. dashed) pur-
ple lines are the locus of C such that the Yiu conic Y is
a parabola (resp. degenerate). As indicated, in between
said boundaries, the conic is either an ellipse or a hyper-
bola. A particular 4ABC is shown with C interior to the
circumcircle, where Y is a hyperbola (magenta).

Referring to Figure 4:

Proposition 7 With A, B fixed, the Yiu conic Y of 4ABC
is (i) degenerate if C lies on the union of the circumcircle
with the two lines tangent to it at A and B; (ii) a parabola if
C lies on a curve whose barycentrics satisfy the following
degree-8 implicit equation:

a8 +b8 + c8−2(a4b4 +a4c4 +b4c4)+

+4abc(a5 +b5 + c5−a4b−ab4−a4c−ac4−
−bc4−b4c+a3bc+ab3c+abc3) = 0.

19



KoG•26–2022 R. Garcia, L. G. Gheorghe, P. Moses, D. Reznik: Triads of Conics Associated with a Triangle

Proof. The claim was obtained via manipulation and sim-
plification with a Computer Algebra System (CAS). �

What about the co-vertices?

It turns out that for A,B fixed, there is a locus of C such that
the 6 co-vertices of the V-ellipses lie on a conic. Without
loss of generality, let A = (−1,0), and B = (1,0). Referring
to Figure 5:

Proposition 8 The locus of C such that the 6 co-vertices of
Ea, Eb, and Ec lie on a conic is given by:(

x6− (2y2 +3)x4− (3y4−8y2−3)x2 +11y4−6y2−1
)

ρ1 ρ2+

+
(
−2x6− (22y2−6)x4− (14y4−36y2 +6)x2 +6y6 +22y4−

−14y2 +2
)
(ρ1 +ρ2)+

+2x
(

x6 +(3y2−3)x4 +(3y4−2y2 +3)x2 + y6−7y4− y2−1
)
·

· (ρ1−ρ2)+

+2(x2 + y2−1)
(

5x4 +2(y2−5)x2−3y4−14y2 +5
)
(x2−1) = 0

where ρ1 =
√

x2 + y2 +2x+1,
and ρ2 =

√
x2 + y2−2x+1.

Proof. Computer algebra system-based manipulation. �

Figure 5: A4ABC is shown, as well as its 3 P-ellipses (red,
green, blue) with co-vertices A+,A−, B+,B−, C+,C−. Also
shown is the locus of C (yellow) such that the co-vertices
lie on a conic. Notice that for the triangle shown, C does
lie on said locus. For illustration, a hyperbola is shown
(dashed magenta) which passes through 5 co-vertices but
misses B−.

Figure 6: Four choices for C on the locus (yellow) such that
the co-vertices A+,A−, B+,B−, and C+,C− of V-ellipses
(red, green, blue) of4ABC lie on a conic (dashed magenta).
In the top two cases (resp. bottom two), the co-vertices are
split 3x3 (resp. 5x1) on each branch of the conic.
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Notice that a full 8 branches of the locus converge on either
A or B. Also note that if one attempts to eliminate the square
roots in the implicit, one obtains a degree-36 polynomial.

Examples of the 6-point co-vertex conic for different loca-
tions of C on the above locus appear in Figure 6, suggesting
that (i) this conic is always a hyperbola, and that (ii) depend-
ing on the branch of the locus of C is on, co-vertices are
split as 3:3 or 5:1 along the two branches of the hyperbola.

3 A triad of P-ellipses

Referring to Figure 7:

Definition 2 (P-ellipses) A triad of P-ellipses E∗a ,E∗b ,E∗c
have foci on (B,C), (C,A), (A,B) and pass through a given
point P.

Consider a triad of P-ellipses as in Definition 2.

Theorem 1 The six vertices of a triad of P-ellipses lie on
a conic Y ∗.

Proof. Referring to Figure 7, let A1,A2 (resp. B1,B2, and
C1,C2) denote the vertices of E∗a (resp. E∗b and E∗c ). Note
that A1A2 shares its midpoint with BC, and so on cyclically.
Therefore: AC2 = BC1, BA2 = A1C, and CB1 = B2A. To fin-
ish the proof, we apply Carnot’s theorem as in Proposition
1. �

Let a,b,c denote the sidelengths of 4ABC. Let δa =
|PB|+ |PC|, δb = |PC|+ |PA|, δc = |PA|+ |PB|. Referring
to Figure 8 (left).

Figure 7: The six vertices A1, A2, B1, B2, C1, and C2 of
P-ellipses E∗a ,E∗b ,E∗c are on a conic Y ∗. For reference, the
circumcenter X3 of4ABC and the center O∗ of Y ∗ are also
shown.

Proposition 9 There is a unique point P∗ such that Y ∗ is
a circle given by:[
(a2−δ

2
a)(c

2−b2 +δ
2
b−δ

2
c)
]2
+[

(b2−δ
2
b)(a

2− c2 +δ
2
c−δ

2
a)
]2
+[

(c2−δ
2
c)(b

2−a2 +δ
2
a−δ

2
b)
]2

= 0

Furthermore, Y ∗ is concentric with the circumcircle of
4ABC.

Level curves of the above function for a particular trian-
gle are shown in Figure 8 (left). Interestingly, there is a
straightforward way to construct a triangle whose Y ∗ is a
circle.

Definition 3 (anticevian triangle) Given 4ABC and a
point Q, the Q-anticevian4A′B′C′ is such that4ABC is its
Q-cevian [16].

Referring to Figure 8 (right), a first “needle in a haystack”
find is:

Proposition 10 Given a reference triangle 4ABC, its X3
is the P∗ of its X3-anticevian4A′B′C′. Furthermore, (i) Y ∗
of the the latter is concentric with its circumcircle, and (ii)
its center lies on the X4X6 line of4ABC.

Proof. This needle-in-a-haystack phenomenon was discov-
ered experimentally and then verified using CAS. �

Barycentric coordinates for the circumcenter X ′3 of the X3-
anticevian appear in Section 6.

While it can be shown that given a generic4A′B′C′, there
is always a triangle4ABC which is the former’s X3-cevian
(map is invertible), we don’t yet have a geometric construc-
tion for the latter.

A degenerate 6-point conic:

As shown in Figure 9 (left), a simple condition renders Y ∗
degenerate, namely:

Proposition 11 If P is on the circumcircle of 4ABC, Y ∗
is degenerate (two straight lines).

Proof. Via CAS, it can be verified that the 3x3 discriminant
of the homogeneous equation for the conic vanishes. �

Referring to Figure 9 (left):

Proposition 12 Over P on the circumcircle, the locus of
the center O∗ of Y ∗ is the union of arcs of three distinct
ellipses La,Lb,Lc, all of which pass through the midpoints
of ABC. The endpoints of La are one vertex of V-ellipse
Eb and one of Ec, and so on cyclically for the endpoints of
Lb, Lc.
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Figure 8: Left: Given a triangle, there is a unique P∗ such that the 6-point conic (magenta) of a triad of P-ellipses is
a circle. The latter is concentric with the circumcircle (dashed black). Also shown are level curves of the functional in
Proposition 9: P∗ is its unique zero. Right: The vertices of a P-ellipse with foci on vertices of the X3-anticevian4A′B′C′

of4ABC, and passing through the latter’s X3 lie on a circle (magenta). The latter is concentric with the circumcircle of
4A′B′C (dashed black) at X ′3.

Figure 9: Left: If P lies on the circumcircle of4ABC, the Yiu conic Y ∗ (magenta) is degenerate. Over P on the circumcircle,
the locus (gold) of the center O∗ of the degenerate conic (magenta lines) is the union of three arcs of ellipse La,Lb,Lc. Right:
Over all P on the circumcircle of an equilateral4ABC, the locus of the center O∗ of the degenerate 6-pt conic (magenta) is
the union of 3 elliptic arcs (solid gold) centered on A,B,C, whose major axes are the altitudes of4ABC. The major (resp.
minor) semi-axes measure |AB|=

√
3/2 (resp. |AB|=

√
3/6).

Proof. Referring to Figure 10, that the endpoints of Lc are a
vertex A′′ of Ea and a vertex B′′ of Eb can be seen from the
fact that the limit of E∗a (resp. E∗b ) as P approaches A (resp.
B) is Ea (resp. Eb) and that the center O∗ of the degenerate
Y ∗ will approach the intersection of AA′′ and BC. The same
argument applies for the endpoints of La,Lb, cyclically. To
show that the locus of O∗ is the union of three elliptic arcs,
we (i) restrict P to a given “third” of the circumcircle, e.g.,
the arc between A and B. Then (ii) we obtain, via a CAS, a
(rather long) symbolic expression for the implicit function
f (x,y) representing the ellipse which passes through the
5 proposed points, namely, two vertices of V-ellipses and

the midpoints of the sides of 4ABC. We then (iii) obtain
a parametric expression for O∗ as a function of P and plug
it into f (x,y), and notice via a CAS, that this simplifies
to zero, independent of P. (iv) The same can be repeated
cyclically for the other 3 portions of the circumcircle. �

Referring to Figure 9 (right):

Corollary 1 Let4ABC be an equilateral of side 1. Over
P on the circumcircle, the locus of the center O∗ of the
degenerate Y ∗ is the union of arcs of three congruent el-
lipses with semi-axes a =

√
3/2 and b =

√
3/6, centered

on A,B,C.
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Figure 10: Definitions used in Proposition 12. The lo-
cus of O∗ is the union of three arcs of ellipse (solid gold)
La,Lb,Lc, each of which passes through the 3 midpoints
Am,Bm,Cm of 4ABC. The endpoints A′′,B′′ of Lc are ver-
tices of V-ellipses Ea and Eb (dashed red, green). The
major axes (dashed gold) of the three loci nearly concur,
though not exactly.

Let Ca and Cb denote the endpoints of the elliptic locus of
O∗, over P on the arc of the circumcircle below AB. Let C′

denote the locus’ top vertex. Referring to Figure 9 (right),
the following can be shown:

• Ca and Cb are the reflections of the midpoints of AC
and BC about C

• lines ACa and BCb are tangent to the locus. Let Cab
denote their intersection.

• C′ is the midpoint between C and Cab.

• Therefore, CaCb is the mid-base of 4ACabB, there-
fore the latter is 3 times the area of4ABC.

Regions of conic type:

It turns out the type of Y ∗ (ellipse, parabola, hyperbola,
degenerate) depends on the position of P. The case of an
equilateral4ABC is illustrated in Figure 11.

Remark 2 If4ABC is an equilateral, it can be shown that
the portions of the locus of P such that Y ∗ is: (i) degenerate
(deltoid interior to4ABC) are branches of 3 regular cubics;
(ii) a parabola: branches of a degree-20 polynomial on x,y.

Remark 3 If Y ∗ is a hyperbola it can never be a rectangu-
lar one.

Figure 11: For4ABC an equilateral, the figure illustrated
regions of P such that the Y ∗ conic is of a given type.

What about the co-vertices?

Figure 12: Given an equilateral (black), the locus for P
such that the 6 co-vertices of the 3 P-ellipses lie on a conic
is a degree-10 algebraic curve (gold) woven symmetrically
about the equilateral (there is an isolated point at the cen-
troid as well). The three P-ellipses (red, green, blue) are
shown for a specific choice of P on said locus. Also shown
are (i) the conic Y ∗ (solid magenta, center O∗) through
the major vertices, and (ii) the conic Y † (dashed magenta,
center O†) through the 6 co-vertices (highlighted by small
gold circles). Notice that if P is on the locus, O† lies on the
incircle of the equilateral.
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It turns out that for given4ABC, there is a 1d locus for P
such that the 6 co-vertices lie on a conic. As before, let Let
δa = |PB|+ |PC|, δb = |PC|+ |PA|, δc = |PA|+ |PB|.
Referring to Figure 12:

Proposition 13 If4ABC is an equilateral, the locus for P
such that the 6 co-vertices lie on a conic Y † is given by:

δ
2
aδ

2
b +δ

2
aδ

2
c +δ

2
bδ

2
c−8(δ

2
a + δ

2
b + δ

2
c)+48 = 0

Furthermore, the center O† of Y † lies on the incircle of the
equilateral.

Note: if one eliminates all square roots involved in comput-
ing δa,δb,δc, the above becomes a degree-10 equation on
x,y.

4 A triad of V-hyperbolas

Figure 13: A triad of V-hyperbolas Ha,Hb,Hc (red, green,
blue) is shown with foci on (B,C), (C,A), and (A,B) pass-
ing through A,B,C, respectively. Notice (i) their vertices
taken as triples A1B1C1 and A2B2C2 are the vertices of the
extouch (dashed brown) and intouch (solid brown) trian-
gles; (ii) these 6 points are known to lie on the Privalov
conic (magenta), whose center O is X5452 on [8]; (iii) the
3 hyperbolas pass through both the “isoperimeteric” and

“equal detour” points, i.e., X175 and X176, respectively. Note:
these coincide when the outer Soddy circle is external to
the three mutually tangent circles.

In this section we describe properties – some old, some
new – of a special triad of hyperbolas, described in [17, Sec.
12.4, p. 148] where they are called “Soddy” hyperbolas.
Referring to Figure 13:

Definition 4 (V-hyperbolas) Given a triangle 4ABC, a
triad of V-hyperbolas Ha,Hb,Hc have foci on (B,C), (C,A),
(A,B) and pass through A, B, and C, respectively.

Let A1,A2 be the vertices of Ha. Define B1,B2 and C1,C2
for Hb,Hc, respectively. Recall the extouch (resp. intouch)
triangle is where the 3 excircles (resp. incircle) touch a
triangle’s sides.

Remark 4 Let λa = |AB| − |AC|. In barycentric coordi-
nates for the vertices of Ha are given by: A1 = [0,a+λa,a−
λa], and A2 = [0,a−λa,a−λa], with the others computed
cyclically.

Corollary 2 4A1B1C1 (resp. 4A2B2C2) is the extouch
(resp. intouch) triangle of4ABC.

Recall that for any triangle, the intouch and extouch trian-
gles have the same area [16, extouch triangle]. Referring to
[8, X(5452)]:

Corollary 3 A1,A2,B1,B2,C1,C2 lie on the Privalov conic
centered on X5452, and whose barycentric coordinates x,y,z
satisfy:

k1k2k3(x2 + y2 + z2)+

+2 [k2(k4−2ab)xy+ k3(k4−2ac)xz− k1(k4−2bc)yz] = 0

where a,b,c are the sidelengths of4ABC, k1 = (a−b−c),
k2 = (a+b− c), k3 = (a−b+ c), and k4 = a2 +b2 + c2.

Remark 5 When 4ABC is isosceles, one of the V-
hyperbolas is degenerate, namely, a pair of coinciding lines
at the perpendicular bisector of the base. In this case, the
Privalov conic is tangent to the base at its midpoint.

Intersections between V-hyperbolas:

Referring to Figure 15, recall that given a triangle, one can
construct2 three “kissing” circles CA, CB, and CC centered
each on each vertex, and externally tangent to each other
[14].

The Apollonius’ problem for this triple has (as usual) eight
distinct solutions, two of which have the same tangency
type (tangent externally or internally to all three circles).

Definition 5 (Soddy circles of a triangle) The two solu-
tions for the Apollonius’ problem with the same tangency
type are the so-called “Soddy circles”. The inner Soddy
circle is the one whose center is inside the triangle and
whose interior does not intersect any of the three kissing
circles; the other one is the outer Soddy circle.

2These pass through the vertices of the intouch triangle.
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Note that the outer Soddy circle, always tangent to the 3
kissing circles, can either (i) contain them (see Figure 15),
(ii) be a line tangent to them, or (iii) be externally tangent
to them. For (ii) and (iii) see Figure 16.

The centers of Soddy circles correspond to a pair of triangle
centers found in [8] and derived in [7]. Namely:

Definition 6 (Isoperimetric point) The center of the
outer Soddy circle (X175 in [8]). Equivalently, the unique
point X such that:

|XB|+ |XC|± |BC|= |XC|+ |XA|± |CA|= |XA|+ |XB|± |AB|

where the positive (resp. negative) sign is chosen if the
outer Soddy circle contains (resp. is external to) the three
mutually tangent circles in Definition 5. As derived in [7],
containment corresponds to:

tan
A
2
+ tan

B
2
+ tan

C
2
< 2.

In [7] it is shown that if the sum of half-tangents is exactly 2,
then the outer Soddy circle degenerates to a line. Referring
to Figure 14, it can be shown that:

Figure 14: When A and B are fixed, the locus of C (red)
such that the outer Soddy circle degenerates to a line (ma-
genta) is given by the degree-6 implicit equation in Propo-
sition 14. This line is also tangent to the 3 circles (dashed
black) whose diameters are the sides of4ABC.

Proposition 14 Without loss of generality, let A = (−1,0),
B = (1,0), the locus of C such that the sum of half-tangents
of4ABC is 2 is given by the union of the following degree-6
polynomial and its reflection about the x-axis:

−4x6−4x4(2y2 +2y+1)−4x2(y4 + y3−4y−5)+

+4y5 +13y4 +20y3 +8y2−8y−12 = 0.

Definition 7 (Equal detour point) The center of the inner
Soddy circle (X176 in [8]), always internal to a triangle.
Also the unique point X in4ABC such that:

|XB|+ |XC|− |BC|= |XC|+ |XA|− |CA|= |XA|+ |XB|− |AB|.

Proposition 15 The three V-hyperbolas intersect at the
centers of the two Soddy circles, i.e., X175 and X176, re-
spectively.

Proof. Assume that a > c > b as in Figure 13. Then
ra < rc < rb. Ca and Cb are two circles centered at A and
B and of radii ra < rb, which are externally tangent at C2.
The locus of the centers of the circles that are externally tan-
gent to both Ca and Cb is the branch of the hyperbola with
foci on A and B, that passes through their tangency point
C2. The other branch contains the centers of the circles
that are internally tangent (i.e., contain both). The inter-
nal Soddy circle is externally tangent to the three circles
Ca, Cb, and Cc; hence its center is necessarily the intersec-
tion of the three branches of hyperbolas passing through
A2,B2,C2, the vertices of the intouch triangle. Since
ra < rc < rb, we may specify those branches as H +

a = {P :
|PB|− |PC|= rb− rc}, H +

b = {P : |PC|− |PA|= rc− ra},
and H +

c = {P : |PA|− |PB|= ra− rb}.

Thus, if a point P ∈ H +
a

⋂
H +

c then PA− PC = ra − rc

hence it is on H +
b as well. Since rc+ra = b and rb+ra = c,

P verifies the equal-detour definition of X176.

The points on the other branches contain centers of circles
that are internally tangent to the other two; therefore, if two
branches, say H −a and H −b have a common point P, then,
as above, P is also on the third branch and is the (unique)
center of an external Soddy circle, that contains Ca, Cb, and
Cc. In this case, P verifies the isoperimetric definition of
X175.

In contrast, if H −a and H −b do not intersect, then there will
be no “negative branch” intersection. In this case, the three
positive branches will intersect in two distinct points: the
centers of the inner and outer Soddy circles. Note that each
pair (Ha,Hb), (Hb,Hc), and (Hc,Ha) have one common
focus C, A, B respectively; hence they necessarily have four
(real) intersections. This guarantees the existence of both
detour and isoperimetric points. �
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Figure 15: A construction found in [17, Sec. 12.4, p. 148]:
3 mutually-tangent circles (red, green, blue) of4ABC touch
at the contact points of the incircle (dashed gray) with the
sides. In turn, these coincide with a vertex of each the 3
V-hyperbolas. Notice the latter intersect at the centers X176
and X175 of the inner (shaded purple), and outer (dashed
purple) Soddy circles, respectively.

Referring to Figure 17:

Proposition 16 The Ha V-hyperbola passes through the
intersections A′ and A′′ of V-ellipses Eb, and Ec. The same
holds for Hb,Hc, cyclically.

Proof. Referring to Figure 17, let A′′ denote an intersection
of Eb with Ec. Then:

|A′′A|+ |A′′B|= |CA|+ |CB|, |A′′A|+ |A′′C|= |BA|+ |BC|.

Subtracting, |A′′C|− |A′′B|= |BA|− |CA|, meaning that A′′

lies on the branch of hyperbola Ha not containing A. �

Still referring to Figure 17, let A1 and A2 denote the two
2-branch intersections between Hb and Hc, define B1,B2
and C1,C2 cyclically.

Proposition 17 The three lines A1A2, B1B2 and C1C2 con-
cur at the Nagel point X8 of4ABC.

Proof. Let a,b,c denote the sidelines. The barycentrics of
A1 are given by:

A1 : [ (L−2a)(3a2 +2ab−b2 +2ac−2bc− c2 +2(b− c)γ),

(L−2c)(3a−3b+ c)L+2(a2− c2−2b2 +ab−bc)γ,

(L−2b)(3a+b−3c)L−2(a2−b2−2c2 +ac+bc)γ ]

where L= a+b+c and γ= 3a2+2ab−b2+2ac−2bc−c2.
The barycentrics of A2 are obtained by replacing γ with −γ.
The barycentrics of points on A1A2 satisfy:

(−2a2 +ab+b2 +ac−2bc+ c2)x+

+(a− c)(L−2a)y+(a−b)(L−2a)z = 0

and cyclically for B1B2 and C1C2. It can be shown that the
3 lines pass through X8, whose barycentric coordinates are
[b+ c−a,a+ c−b,a+b− c], see [8]. �

Figure 16: Two cases of4ABC such that the external Soddy circle (dashed purple) is: (left) a straight line ( ∑ tan(θi) = 2),
and (right) does not contain the three kissing circles. Notice that in both cases the three V-hyperbolas (red, green and blue)
intersect at the center X176 of the inner Soddy circle (shaded purple), interior to the triangle. In the first case their second
intersection is at infinity (in the direction perpendicular to the Soddy line), while in the second case they intersect along the
same branches where their X176 intersection lies.
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Figure 17: Each V-hyperbola passes through the two
intersections between pairs of V-ellipses. As an example,
consider A′′, common to Ha, Eb, and Ec. Also shown is
the fact that the 3 segments A1A2, B1B2, and C1C2 connect-
ing opposing 2-branch intersections of the 3 V-hyperbolas
concur at X8.

Referring to Figure 18:

Remark 6 On side BC there lie the 2 vertices of Ea and
the 2 of Ha. Consider the degenerate cubic which is the
union of the sidelines of4ABC. It is a 15-point cubic since
it passes through (i) the three vertices of the triangle, (ii)
the 6 vertices of the V-ellipses, and (iii) the 6 vertices of the
V-hyperbolas.

Figure 18: Given a triangle (black), the union of the 3
sidelines (dashed black) can be regarded as a 15-point de-
generate cubic. It passes through (i) the triangle vertices,
(ii) the 6 points on the Yiu conic (magenta), and (iii) the
6 points on the Privalov conic (orange). Just for fun, also
shown are branches of the 14-point quartic (green) that
passes through the 12 points on the Yiu+Privalov as well
as their centers X478 and X5452, respectively.

Referring to Figure 14:

Proposition 18 When the external Soddy circle degener-
ates to a line, the three circles whose diameters are the
sides of4ABC are also tangent to it.

Proof. Let AT , BT be the tangency points of the degenerate
Soddy circle L (a line) with circles Ca,Cb, and let T be
the tangency point between the latter two. The perpendic-
ular dropped from T onto line AB meets L at M. Then,
owing to properties of tangents from a points to a circle,
|MT | = |MAT | = |MBT |. Since BT ,M,AT are collinear,
then ∠AT T BT = 90◦. On the other hand, since MT and
MAT are tangents from M to Ca, MA⊥ TAT and similarly,
MB ⊥ T BT . ∠AMB = 90◦. Hence, if O is the midpoint
of AB then OM = AO = OB. Finally, the quadrilateral
[ABBT AT ] is a trapezium (AAT , BBT are perpendicular to
L) and OM is its mid-base. Hence OM is also perpendicu-
lar to L at the midpoint M of AT BT . Therefore the circle of
diameter AB is tangent to L at M, and so on cyclically for
(Cb,Cc) and (Ca,Cc). �

5 A triad of P-hyperbolas

We now extend V-hyperbolas to a trio with respect to a point
P. Referring to Figure 19:

Definition 8 (P-hyperbolas) A triad of P-hyperbolas
H ∗a ,H ∗b ,H ∗c with respect to 4ABC have foci on (B,C),
(C,A), (A,B) and pass through a given point P.

Figure 19: Given a point P, (i) the triad of P-hyperbolas
H ∗a ,H ∗b ,H ∗c has a second common point P′; (ii) their ver-
tices A1,A2,B1,B2,C1,C2 lie on a conic P ∗ (magenta), not
necessarily an ellipse; (iii)4A1B1C1 has the same area as
4A2B2C2.

Still referring to Figure 19:
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Proposition 19 Besides P, the triad of P-hyperbolas meets
at a second real point P′.

Proof. Let H ∗+a , H ∗+b , H ∗+c denote the three branches
that pass through P. We need to prove that the other three
branches H ∗−a , H ∗−b , H ∗−c also meet at some point.

First, let us show that two other branches H ∗−b and H ∗−c
must intersect. To prove it, we perform a polar dual with
respect to a circle centered at their common focus A, as
shown in Figure 20. The polar dual of each hyperbola will
be a circle, whose diameter is delimited by the inverses of
hyperbola vertices. By polarity, the intersection points of
the original hyperbolas are sent to the common tangents of
their reciprocal circles and vice-versa; since, by hypothesis,
H ∗b and H ∗c intersect at a point P, these reciprocal circles
admit (at least) one common tangent. Hence, they are either
externally tangent or secant. Therefore, these circles admit
at least two common tangents. One of these tangents is
precisely the polar of P; the other one, passing through the
same homothety center, is the polar of a point P′ which is
the intersection of the other two branches, H ∗−b and H ∗−c .
Similarly, branches H ∗−a and H ∗−c also intersect. Now, as
in Figure 19, if a point P′ ∈ H ∗−b

⋂
H ∗−c , then it satisfies

P′C−P′A=B1B2 and P′A−P′B=C1C2. Hence, by adding
these two relations, we obtain P′C−P′B = B1B2 +C1C2.
Nevertheless, by hypothesis P is the common point of three
branches: H ∗+a ,H ∗+b ,H ∗+c . Then three similar relations
can be written for P : PA−PC = B1B2, PB−PA = C1C2,
and PB− PC = A1A2. By adding the first two, we ob-
tain PB−PC = B1B2 +C1C2, hence B1B2 +C1C2 = A1A2.
The later relation ensures that P′C−P′B = A1A2, hence
P′ ∈H ∗−a finishing the proof. �

Proposition 20 The 6 vertices of the 3 P-hyperbolas lie on
a conic P ∗.

Proof. Referring to Figure 19, by definition, the center of
the P-hyperbola H ∗a is at the midpoint of BC, and so on
cyclically. Hence:

|A1C|= |A2B|= x, |B1A|= |B2C|= y, |BC1|= |AC2|= z.

(4)

We obtain the claim using Carnot’s theorem. �

Recall the classic result that for any triangle, the intouch
and extouch triangles have the same area (we saw this in
Colloraly 2 in the context of V-hyperbolas). The analogous
result for P-hyperbolas still holds:

Proposition 21 Let A1,A2 denote the vertices of H ∗a , and
B1,B2, C1,C2, those of H ∗b and Hc∗, respectively. Then
4A1B1C1 and4A2B2C2 have the same area.

Figure 20: Two P-hyperbolas (green, blue) sharing a fo-
cus at A are shown as well as their reciprocals (shaded
green and blue circles) with respect to an inversion circle
centered at A (dashed black). The branches closer (resp.
further) to A always intersect; their intersection points P
and P′ are the poles of the common external tangents to
their reciprocal circles. When these circles are disjoint (as
in the figure), the poles of the internal common tangents are
intersections between alternate branches.

Proof. This is again a consequence of (4). Specifically, let
~a =
−→
BC,~b =

−→
CA,~c =

−→
AB. Let α, β, and γ be such that:

−−→
BA1 = α~a,

−−→
CB1 = β~b,

−−→
AC1 = γ~c;

In order to prove that SA1B1C1 = SA2B2C2 , we simply show
that they represent the same fraction of S = SABC. In
fact, SA1B1C1 = S− [SA + SB + SC], where SA = SAB1C1 ,
SB = SBA1C1 , and SC = SCA1B1 . A direct computation yields:

SA = SAB1C1 =

=
1
2
‖−−→AB1 ×

−−→
AC1‖=

1
2
‖(1−β)~b× (γ~c)‖= γ(1−β)S.

Cyclically, SB = α(1−γ)S, and SC = β(1−α)S. Therefore:

SA1B1C1 = S−
[
SA +SB +SC

]
=

= S
[
1− γ(1−β)−α(1− γ)−β(1−α)

]
.

Similarly:

SA2B2C2 = S−
[
S′A +S′B +S′C]
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where S′A = SAB2C2 , S′B = SBA2C2 , S′C = SCA2B2 . Then:

S′A = SAB2C2 =

=
1
2
‖−−→AB2 ×

−−→
AC2‖=

1
2
‖β~b× ((1− γ)~c)‖= β(1− γ)

and cyclically for S′B, S′C. Thus, the area of SA2B2C2 can
be computed as SA1B1C1 , where α,β,γ are replaced at each
occurrence by (1−α), (1−β), (1− γ). Thus:

SA2B2C2 = S−
[
S′A +S′B +S′C

]
=

= S
[
1− (1− γ)β− (1−α)γ−α(1−β)

]
.

Referring to Figure 21:

Proposition 22 Given a 4ABC there is a unique pair of
distinct points P∗ and Q∗ such that the 6-point conic P ∗ is
a circle. These are a pair of common intersections of the
triad of P-hyperbolas. It can be shown their barycentrics
satisfy:[
(c2−λ

2
c)(−a2 +b2 +λ

2
a−λ

2
b)
]2

+[
(b2−λ

2
b)(−a2 + c2 +λ

2
a−λ

2
c)
]2

+[
(a2−λ

2
a)(−b2 + c2 +λ

2
b−λ

2
c)
]2

= 0

where λa = |PB| − |PC|, λb = |PC| − |PA|, and λc =
|PA|− |PB|.

Figure 21: Given4ABC, there is a pair P∗ and Q∗ such
that P ∗ (magenta) is a circle. Furthermore the latter is
concentric with the circumcircle (dashed black) of4ABC.

Definition 9 (reflection triangle) The reflections A′,B′,C′

of a point Q on the sides of 4ABC are the vertices of the
Q-reflection triangle.

Surprisingly, we can construct a triangle such that the ver-
tices of the 6 P-hyperbolas lie on a circle. In [8], center
X55 is the internal center of similitude of the incircle and
circumcircle.

Referring to Figure 22, experimental evidence supports the
following “needle in a haystack” phenomenon:

Conjecture 1 Let T ′ be the X55-reflection triangle of a ref-
erence triangle T . The 6 vertices of the P-hyperbolas of T ′

passing through X55-of-T lie on a circle, concentric with the
circumcircle of T ′ which coincides with X7-of-T

,

Figure 22: The vertices of P-hyperbolas H ∗a , H ∗b , and H ∗c
(red, green, blue) passing through X55 of4ABC, with foci
on pairs of vertices of the X55-reflection triangle4A′B′C′

(gold), lie on a circle (magenta), concentric with the cir-
cumcircle (dotted brown) of4A′B′C′, whose circumcenter
is the Gergonne point X7 of the reference. Note that said 3
hyperbolas meet at a second mystery point “???”.

Referring to Figure 23:

Proposition 23 The H ∗a P-hyperbola passes through the
non-P intersection A′ between P-ellipses E∗b , and E∗c . The
same holds for H ∗b ,H ∗c , cyclically.

Proof. Referring to Figure 23, let A′ ∈ E∗b ; then A′A+
A′C = PA + PC. If A′ is also contained in E∗c , then
A′A+A′B = PA+PB. Subtracting A′B−A′C = PB−PC,
i.e., both A′ and P lie on the same branch of ∈H ∗a . �

As before, let a,b,c be the sidelengths, and λa, λb, and λc
as above. As shown in Figure 24, the plane of a4ABC can
be split into zone where P ∗ is an ellipse, a hyperbola, or a
parabola. In particular:
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Figure 23: The 3 P-hyperbolas (solid red, green, blue) also
pass through the 3 non-P intersections A′,B′,C′ between
pairs of P-ellipses, e.g., H ∗a passes through the intersection
A′ of E∗b and E∗c . The triangle with vertices on A′,B′,C′ is
shown (purple).

Proposition 24 The conic P ∗ through the 6 vertices of the
P-hyperbolas is a parabola if:

(c2
λ

2
aλ

2
b)

2 +(b2
λ

2
aλ

2
c)

2 +(a2
λ

2
bλ

2
c)

2+

+µ(µ(−3+4(λ2
a/a2 +λ

2
b/b2 +λ

2
c/c2))+

+2λ
2
aλ

2
bλ

2
c(6−λ

2
a/a2−λ

2
b/b2−λ

2
c/c2)−

−6(c2
λ

2
aλ

2
b +b2

λ
2
aλ

2
c +a2

λ
2
bλ

2
c)) = 0

where µ = (abc)2. Furthermore, P ∗ is degenerate if P lies
on either (infinite extension) of the sidelines of the triangle.

6 Open Questions

• Figure 4: what is the locus of the focus of the Yiu
conic over C along the parabola locus?

• Figure 6: prove the 6-point co-vertex conic is always
a hyperbola and explain why there are two (3:3 and
5:1) distributions of co-vertices over the branches of
the conic.

• Figure 8 (left): Prove P∗ is unique.

• Figure 8 (right): given4A′B′C′ can one always find
an inscribed 4ABC such that the former is its X3-
anticevian triangle?

• Figure 11: how do the zones of 6-vertex conic type
deform as one moves C away from the equilateral
configuration? What is the locus of the center O∗ of
the degenrate conic over P on the 3 branches of the
inner deltoid? What is the locus of the focus of the
conic over the 6 arcs where the conic is a parabola?
Prove if a hyperbola, said conic can never be rectan-
gular.

• Figure 12: Prove that if P is on the locus, the center
O† of the co-vertex conic is on the incircle. What
does the locus of P look like if4ABC is not an equi-
lateral? Over P on said locus, what is the locus of
O†?

Figure 24: The 6-point conic P∗ (magenta) through the vertices of P-hyperbolas (red, green, blue) is an ellipse if P lies in
the yellow (resp.) purple region. It is degenerate if P is on any sideline (dashed black). In the left (resp. right) P is in the
yellow region (at the interface) and therefore P∗ (magenta) is an ellipse (resp. parabola).
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• prove Conjecture 1. Provide an expression for the
second triple intersection point of the 3 P-hyperbolas.

• Figure 18: What are interesting loci for C (with A,B
fixed) with respect to properties and/or degeneracies
of the 14-point quartic?

• Figure 19: describe the map P→ P′ and/or P→ O∗?
What is the image of a lattice under it?

• Figure 22: given 4A′B′C′ can one always find a
4ABC such that the former is its X55-reflection trian-
gle?
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Long Barycentric Equations

Here we provide barycentric equations and coordinates
(with respect to the reference 4ABC) of various associ-
ated objects. Let a,b,c be the reference’s sidelengths. Let
E†

a denote the ellipse with foci on B′C′, and through A of
the reference. Note: the long expression below were kept
verbatim so as to facilitate copy-paste.

A-ellipse:

The barycentrics [x,y,z] of E†
a satisfy:

8*b^4*c^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6*b^4-3*a^4*b^6+
3*a^2*b^8-b^10+3*a^4*b^4*c^2-6*a^2*b^6*c^2+3*b^8*c^2+a^6*c^4+
3*a^4*b^2*c^4+6*a^2*b^4*c^4-2*b^6*c^4-3*a^4*c^6-6*a^2*b^2*c^6-
2*b^4*c^6+3*a^2*c^8+3*b^2*c^8-c^10)*x^2+4*b^2*c^4*(a^2+b^2-
c^2)^2*(a^2-b^2+c^2)*(a^8*b^2-2*a^6*b^4+2*a^2*b^8-b^10-a^8*c^2-
2*a^6*b^2*c^2+10*a^4*b^4*c^2-10*a^2*b^6*c^2+3*b^8*c^2+4*a^6*c^4+
4*a^4*b^2*c^4+10*a^2*b^4*c^4-2*b^6*c^4-6*a^4*c^6-6*a^2*b^2*c^6-
2*b^4*c^6+4*a^2*c^8+3*b^2*c^8-c^10)*x*y+a^2*c^4*(a^2-b^2-c^2)*
(a^2+b^2-c^2)*(a^12-7*a^8*b^4+16*a^6*b^6-21*a^4*b^8+16*a^2*b^10-
5*b^12-6*a^10*c^2-4*a^8*b^2*c^2+12*a^6*b^4*c^2+24*a^4*b^6*c^2-
38*a^2*b^8*c^2+12*b^10*c^2+15*a^8*c^4+16*a^6*b^2*c^4+6*a^4*b^4*
c^4+32*a^2*b^6*c^4-5*b^8*c^4-20*a^6*c^6-24*a^4*b^2*c^6-20*a^2*
b^4*c^6-8*b^6*c^6+15*a^4*c^8+16*a^2*b^2*c^8+9*b^4*c^8-6*a^2*c^10-
4*b^2*c^10+c^12)*y^2-4*b^4*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)^2*(a^8
*b^2-4*a^6*b^4+6*a^4*b^6-4*a^2*b^8+b^10-a^8*c^2+2*a^6*b^2*c^2-
4*a^4*b^4*c^2+6*a^2*b^6*c^2-3*b^8*c^2+2*a^6*c^4-10*a^4*b^2*c^4-
10*a^2*b^4*c^4+2*b^6*c^4+10*a^2*b^2*c^6+2*b^4*c^6-2*a^2*c^8-
3*b^2*c^8+c^10)*x*z-2*a^2*b^2*c^2*(a^2-b^2-c^2)*(a^2+b^2-c^2)*
(a^2-b^2+c^2)*(a^10-3*a^8*b^2+2*a^6*b^4+2*a^4*b^6-3*a^2*b^8+
b^10-3*a^8*c^2+8*a^6*b^2*c^2-14*a^4*b^4*c^2+16*a^2*b^6*c^2-7*
b^8*c^2+2*a^6*c^4-14*a^4*b^2*c^4-26*a^2*b^4*c^4+6*b^6*c^4+2*a^4*
c^6+16*a^2*b^2*c^6+6*b^4*c^6-3*a^2*c^8-7*b^2*c^8+c^10)*y*z+a^2*
b^4*(a^2-b^2-c^2)*(a^2-b^2+c^2)*(a^12-6*a^10*b^2+15*a^8*b^4-
20*a^6*b^6+15*a^4*b^8-6*a^2*b^10+b^12-4*a^8*b^2*c^2+16*a^6*b^4*
c^2-24*a^4*b^6*c^2+16*a^2*b^8*c^2-4*b^10*c^2-7*a^8*c^4+12*a^6*
b^2*c^4+6*a^4*b^4*c^4-20*a^2*b^6*c^4+9*b^8*c^4+16*a^6*c^6+24*a^4*
b^2*c^6+32*a^2*b^4*c^6-8*b^6*c^6-21*a^4*c^8-38*a^2*b^2*c^8-5*b^4*
c^8+16*a^2*c^10+12*b^2*c^10-5*c^12)*z^2 = 0

Major vertices:

Let S be twice the area of the reference and:

rt = sqrt(a^6-3*a^2*b^4+2*b^6+6*a^2*b^2*c^2-2*b^4*c^2-
3*a^2*c^4-2*b^2*c^4+2*c^6))

The two major vertices of E†
a are given by:

[(a*(a^2-b^2-c^2)*((b^2-c^2)*(a^4*b^2-2*a^2*b^4+b^6+a^4*c^2
+4*a^2*b^2*c^2-b^4*c^2-2*a^2*c^4-b^2*c^4+c^6)+/-2*a^3*S*rt))/
(a*(a^4*b^2-2*a^2*b^4+b^6+a^4*c^2+4*a^2*b^2*c^2-b^4*c^2-
2*a^2*c^4-b^2*c^4+c^6)+/-2*(b^2-c^2)*S*rt),b^2*(-a^2+b^2-c^2),
-(c^2*(-a^2-b^2+c^2))]

P-ellipse 6-point circle

The center X ′3 of the 6-point circle of Proposition 10 lies
on the Van Aubel line (X4X6) of the reference. It can be
regarded as the circumcenter of the X3-anticevian and is
given by barycentrics [ f (a,b,c), f (b,c,a), f (c,a,b)] where
f (a,b,c) is given by:

(a^14-5*a^12*b^2+9*a^10*b^4-5*a^8*b^6-5*a^6*b^8+9*a^4*b^10-
5*a^2*b^12+b^14-5*a^12*c^2+10*a^10*b^2*c^2-13*a^8*b^4*c^2+
28*a^6*b^6*c^2-31*a^4*b^8*c^2+10*a^2*b^10*c^2+b^12*c^2+
9*a^10*c^4-13*a^8*b^2*c^4-30*a^6*b^4*c^4+22*a^4*b^6*c^4+
21*a^2*b^8*c^4-9*b^10*c^4-5*a^8*c^6+28*a^6*b^2*c^6+
22*a^4*b^4*c^6-52*a^2*b^6*c^6+7*b^8*c^6-5*a^6*c^8-
31*a^4*b^2*c^8+21*a^2*b^4*c^8+7*b^6*c^8+9*a^4*c^10+
10*a^2*b^2*c^10-9*b^4*c^10-5*a^2*c^12+b^2*c^12+c^14)*a^2

P-hyperbolas

Let La = |PB|− |PC|, Lb = |PC|− |PA|, and Lc = |PA|−
|PB|. Points on the H ∗a P-hyperbola satisfy:

(2*(b^2-c^2-La^2)*p*q+(a^2-La^2)*q^2-2*(b^2-c^2+La^2)*p*r-
2*(a^2+La^2)*q*r+(a^2-La^2)*r^2)*x^2-2*(b^2-c^2-La^2)*p^2*x*y-
(a^2-La^2)*p^2*y^2+2*(b^2-c^2+La^2)*p^2*x*z+2*(a^2+La^2)*p^2*y*z-
(a^2-La^2)*p^2*z^2 = 0

The conic P ∗ throught the vertices of the 3 P-hyperbolas is
given by:

x^2+y^2+z^2-(2*(a^2+La^2)*y*z)/(a^2-La^2)-(2*(b^2+Lb^2)*z*x)/
(b^2-Lb^2)-(2*(c^2+Lc^2)*x*y)/(c^2-Lc^2)=0

The first barycentric coordinate for its center X5452 is given
by:

(a^2*((-2*La^2)/(a^2-La^2)+(b^2+Lb^2)/(b^2-Lb^2)+(c^2+Lc^2)/
(c^2-Lc^2)))/(a^2-La^2)

With the other two computed cyclically.
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