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ABSTRACT

For each point P on a conic c, the involution of right an-
gles at P induces an elliptic involution on c whose center
F is called the Frégier point of P. Replacing the right an-
gles at P between assigned pairs of lines with an arbitrary
angle φ yields a projective mapping of lines in the pencil
about P, and thus, on c. The lines joining corresponding
points on c do no longer pass through a single point and
envelop a conic f which can be seen as the generaliza-
tion of the Frégier point and shall be called a generalized
Frégier conic. By varying the angle, we obtain a pencil
of generalized Frégier conics which is a pencil of the third
kind. We shall study the thus defined conics and discover,
among other objects, general Poncelet triangle families.
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Pramenovi Frégierovih konika

SAŽETAK

Za svaku točku P na konici c, involucija pravih kutova
u točki P inducira eliptičnu involuciju na konici c čije se
sredǐste F zove Frégierova točka od P. Zamjena pravih ku-
tova u točki P izmed-u označenih krakova s proizvoljnim ku-
tom φ vodi ka projektivnom preslikavanju u pramenu točke
P, a tako i na konici c. Pravci koji povezuju odgovarajuće
točke na konici c vǐse ne prolaze kroz jednu točku nego
omataju koniku f koja se vidi kao generalizacija Frégierove
točke i zvat će se generalizirana Frégierova konika. Mije-
njajući kut, dobivamo pramen generaliziranih Frégierovih
konika koji je pramen treće vrste. Proučavat ćemo tako
definirane konike i otkriti med-u ostalim i generalizirane
familije Ponceletovih trokuta.

Ključne riječi: konika, kut, projektivno preslikavanje,
Frégierova točka, Frégierova konika, Ponceletov porizam,
omotaljka

1 Introduction

1.1 Known results, contributions of the present paper

Figure 1: The Frégier point F is the center of the involu-
tion on c that is induced by the involution of right
angles at P.

FRÉGIER’s theorem in its original form says that the
chords of a conic c which are seen from a point P∈ c under
a right angle pass through one point F (cf. [1, 6, 7] and see
Fig. 1). The point F is usually called the Frégier point of
P.

If P moves along c, then F traces a conic f (see Fig. 2)
homothetic to c with similarity factor (a2− b2)/(a2 + b2)
(in the case of a non-circular ellipse, i.e., a 6= b) or (a2 +
b2)/(a2− b2) (in the case of a non-equilateral hyperbola,
i.e., a 6= b), where a and b are the semi-major and semi-
minor axes lengths. For a parabola c, the conic f is even
congruent to c. The conic f is sometimes called Frégier
conic (see [7, 14]). However, the Frégier conic f and c are
always of the same affine type.

According to [8, 13], a conic-shaped generalized offset to
a conic c with center (ellipse or hyperbola) can only be
found by applying a multiple of the cube root of the cur-
vature radius ρ at P on c’s normal at P in order to find the
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corresponding point P′ of the generalized offset. In [13] it
is shown that the distance function

k 3
√

ρ(t)

is unique up to a constant k∈R. The case of a parabola dif-
fers slightly, i.e., the distance function is no longer unique.
Surprising enough, until now it is obviously not recognized
what is illustrated in Fig. 2:

Figure 2: The Frégier conic f is a generalized offset of the
conic c.

Theorem 1 Frégier conics are conic-shaped generalized
offsets (in the sense of [8] and [13]).

Proof. We first recall that the Frégier point of a point P∈ c
lies on c’s normal at P. Let ρ denote the radius of curva-
ture of c at P and let l denote the distance between P and
its Frégier point, then it is elementary to verify that ρ and l
are bound to

8a4b4
ρ = (a2±b2)3l3,

where the plus stands for the ellipse and the minus for the
hyperbola. Hence, the offset distance equals a multiple of
the cube root of the curvature radius ρ in both cases. For
the parabola x2 = 2qy (q 6= 0) we find

8q2ρ = l3. �

FRÉGIER’s theorem can be considered a result of Eu-
clidean geometry, for it involves right angles, or a result
of projective geometry, since the Frégier point F of a point
P on a conic c is the center of the involution of right angles
in the pencil about P projected onto c, see [7].
Variants of FRÉGIER’s theorem in higher dimensions do
exist (see, e.g., [9, 17]). Further, connections to linear
2-parameter and 3-parameter families of conics are stud-
ied in [11]. FRÉGIER’s theorem is also studied in relation
to quadratic mappings recently in [17] and even earlier in
[15].

In [16], the authors define a Frégier involution using right
angles in Euclidean and non-Euclidean sense which gives
rise to a possible generalization of FRÉGIER’s theorem also
in higher dimensions, but completely different from the ap-
proach made in [9]. Conics in non-Euclidean planes with
singular Frégier conics are studied in [14]. Many relations
of the Frégier point and FRÉGIER’s theorem in Euclidean
geometry to various construction tasks in connections with
conics were disclosed, see [2, 3, 5, 12], to name just a few.
In this article, we replace the right angle which is usually
the main ingredient of FRÉGIER’s theorem by a different
Euclidean angle φ 6= 0, π

2 and study the chords cut out of c
by the legs of the rotating rigid angle (with vertex P on c).
Since the mapping that assigns to each line g the rotated
copy g′ with the fixed angle φ = <) g,g′ is a projectivity,
we first show that the chords of c that join pairs (Q,Q′)
of assigned points envelope a conic. This does not depend
on the affine type of c. These envelopes are then called
generalized Frégier conics.
Although, we have this rather general result, the equa-
tions of the generalized Frégier conics of the three different
affine types of base conics c have to be elaborated sepa-
rately. We will find that the generalized Frégier conics of a
point P ∈ c belong to a pencil of conics (of the third kind)
which also contains the initial conic c and the Frégier point
F as a limiting case. Further, the algebraic proofs of the re-
sults yield computational artifacts that allow for a geomet-
ric interpretation and give rise to general Poncelet porisms
as described in [4].
The remainder of this section is dedicated to the techni-
cal details we use in the computational proofs and in the
derivation of the equations of the generalized Frégier con-
ics. Section 2 provides some general results and it is shown
that the generalized Frégier conics form a pencil of the
third kind. The proofs in Section 2 use synthetic reasoning.
In Section 3, we shall derive the equations of the general-
ized Frégier conics. This enables us to show some more
results on the variety of generalized Frégier conics. Along
the way, we will discover some Poncelet families of trian-
gles. Although we have to treat the different affine types
of conics separately, we will lay down the computations in
detail only for the case of the ellipse. This is done in order
to make the presentation of results clear. In all other cases,
we just point out what the differences are.

1.2 General setup and technical preliminaries

In order to describe points, we use inhomogeneous Carte-
sian coordinates (x,y) in the Euclidean plane as well ho-
mogeneous coordinates x0 : x1 : x2. These are linked by
x = x1x−1

0 and y = x2x−1
0 , provided that x0 6= 0, i.e., the

point x0 : x1 : x2 is not a point at infinity, and thus, it al-
lows for a representation as (x,y). The points at infinity
(ideal points) lie on the line with the homogeneous equa-
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tion x0 = 0. Sometimes, we make use of the complex ex-
tension of the Euclidean plane. This leads to the finding
that all Euclidean circles pass through the absolute points
I and J = I of Euclidean geometry with homogeneous co-
ordinates

I = 0 : 1 : i and J = 0 : 1 :−i.

Conversely, any conic through I and J is a Euclidean cir-
cle. The tangents from any circle’s center M to the circle
are so-called isotropic lines, i.e., the joins [M, I] and [M,J]
with the absolute points. Any two concentric circles touch
each other at I and J, and thus, they span a pencil of conics
of the third kind.
We describe the three affine types of conics by their equa-
tions

E ,H :
x2

a2±
y2

b2 =1, P : x2−2qy=0, (1)

with respect to the standard frame assuming a 6= b, a,b ∈
R+, and q ∈ R\{0}. The computational proofs make use
of their rational parametrizations

e(t)=
(
a 1−t2

1+t2 ,b
2t

1+t2

)
, t ∈ R,

h(t)=
(
a 1+t2

1−t2 ,b
2t

1−t2

)
, t ∈ R\{−1,1},

p(t)=
(
2qt,2qt2

)
, t ∈ R.

(2)

At this point, we shall recall that for any conic there
exists a huge variety of equivalent rational parametriza-
tions. For example, the reparametrization t → a00+a01t

a10+a11t
turns (2) in to an equivalent parametrizations and describe
a projective mapping acting on the conic (provided that
a00a11− a10a01 6= 0). In the computations, we should see
that some geometric objects will then be described in a dif-
ferent way.
Later, we also need (Euclidean) rotation matrices. With the
substitution

cosξ =
1−x2

1+x2 and sinξ =
2x

1+x2 (3)

the rotation matrices R(φ) can be given with rational en-
tries as

R(φ)=

(
cosφ −sinφ

sinφ cosφ

)
=

 1−f 2

1+f 2
−2 f
1+f 2

2 f
1+f 2

1−f 2

1+f 2

 . (4)

In the following, we assume that φ 6= 0,±π

2 since we are
interested in generalized Frégier conics different from the
Frégier point. Further, f 6= 0,±1,±i since these values cor-
respond to φ 6= 0,±π

2 and ±i are the poles of the rational
equivalents of sine and cosine, i.e., the poles of the arct-
angent. We will not repeatedly and explicitly write these
assumptions any further.

2 Projective mappings on a conic

In this section, we shall have a closer look at projective
mappings acting on conics. This will lead to a general
and unifying result. In [7], we can find some results on
projective mappings on conics and how to treat projective
mappings on conics (especially involutive ones).

Figure 3: The perspectivity c → d can be extended to a
collineation c→ d.

Figure 4: The Frégier conic e of P∈ d of the circle d to the
angle φ is a concentric circle.
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However, we need the following (apparently new) result:

Theorem 2 Let c be a conic in a projective plane and P be
some point on c. Further, assume that γ : c→ c is the non-
involutive projective mapping acting on c induced by the
Euclidean rotation through a fixed angle φ 6= 0, π

2 ,π about
P. Then, the chords s = [X ,γ(X)] of c that join a each point
X ∈ c with its γ-image γ(X) ∈ c envelope a conic f .

Proof. We use a result from [7, p. 247]: The projective
mapping on a line or in a pencil of lines can be transferred
via a perspectivity onto a conic c, and vice versa. For that
purpose the center P of the perspectivity has to lie on the
conic c in order to guarantee for a one-to-one correspon-
dence (between line/pencil and conic). Thus, a projective
mapping on a conic c can be transferred to any other conic
d, for example, onto a circle d (of radius rd) that touches c
at P (as illustrated in Fig. 3).
Now, the rotation about P sends each line g through P to a
line g′ through P with <) g,g′ = φ. Consequently, the pro-
jective mapping on c is transferred to the projective map-
ping on d. From P ∈ c,d, each segment spanned by a point
Y and its image point Y ′ is seen under the constant angle φ,
and thus, it is seen from the center of d under the angle 2φ

(see Fig. 4). Therefore, the chords joining corresponding
points envelop a circle e concentric with d and of radius
rd cosφ.
The perspectivity from c→ d can be extended to a perspec-
tive collineation κ with center P that sends the envelope e
to a conic f , i.e., the generalized Frégier conic that touches
c′ chords of assigned points. �

We have excluded the case of involutive projectivities, be-
cause then the envelope of the chords is the center of the
involution on the conic (cf. [7, p. 251]).

Figure 5: Some generalized Frégier conics of P ∈ E (φ =
10◦, . . . ,80◦): For φ→ π

2 the conics shrink to the
Frégier point F of P.

With small modifications, Thm. 2 is valid for any projec-
tive mapping acting on c. The projective mapping c men-
tioned in Thm. 2 is elliptic. However, the above result is

true for elliptic, parabolic, and hyperbolic projectivities.
There is something more important that we can deduce
from Thm. 2:

Theorem 3 The generalized Frégier conics (for variable
φ) of a point P on a conic c form a pencil of conics of the
third kind.

Proof. We recall that the Frégier conics e of the circle d
which is a collinear image of the initial conic c form a pen-
cil of concentric circles. This pencil consist of all conics
that pass through the absolute points of Euclidean geome-
try sharing the isotropic tangents through the common cen-
ter, and therefore, they form a pencil of conics of the third
kind. The (perspective) collineation κ (defined in the proof
of Thm. 2) that sends d back to c maps all circles concen-
tric with d to the conics of a pencil of the third kind. �

It is clear that the initial conic c is also a member of the
pencil of generalized Frégier conics. Further, the Frégier
point F considered as the real intersection of a pair of com-
plex conjugate lines is also a (singular) member of the pen-
cil.
Fig. 5 shows some generalized Frégier conics of a point P
on an ellipse E . The smaller the angle φ, the shorter the
chords of assigned points are, and therefore, the general-
ized Frégier conics come closer to the ellipse E . If φ→ π

2 ,
then the conics shrink to the Frégier point F of P.

3 Equations of Frégier conics

In this section, we compute the equations of the general-
ized Frégier conics. Unfortunately, we have to treat the
three different affine types of conics separately. However,
the generalized Frégier conics of all types of conics have
some properties in common and we can simplify the de-
scription by leaving some things aside. The computational
approach yields some results that could not be shown in a
purely synthetic way.

3.1 Frégier conics of ellipses

Let an ellipse E be given by the equation (1). It means no
restriction to assume that a > b holds. The generic point
P on the ellipse E can be described by means of a real
parameter T as P = e(T ) in (2).
The lines g in the pencil shall be determined by choosing
a second point Q ∈ E is given as e(U) with U 6= T in (2).
Hence, we obtain the equation of the chord g := [P,Q] of
E as

g : b(1−TU)x+a(T+U)y=b(1+TU). (5)

If we rotate the normal vector

n = (b(TU−1),−a(T +U))
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through the angle φ ∈ (0, π

2 ) either clockwise or counter
clockwise, we obtain the normal vectors of those lines
g+,g− enclosing the angles ±φ with g. The rotation is
described by the multiplication of n with either of the ma-
trices R(φ) or R(−φ) from (4).
Now, the lines g+ and g− have the equations

g+ :(1+T 2)
(
(b(1− f 2)UT+2 f a(T+U)+b( f 2−1))x+

+(2TUb f +a( f 2−1)(T+U)−2 f b)y
)
+

+ab(1− f 2)(1+T 2)(1+TU)+

+2a2 f (T+U)(T 2−1)−4b2 f (1+TU)T =0,

and

g− :(1+T 2)
(
(b(1− f 2)UT−2 f a(T+U)+

+b f 2−b)x+(−2TUb f+a( f 2−1)(T+U)+

+2 f b)y
)
+ab(1− f 2)(1+T 2)(1+TU)−

−2a2 f (T+U)(1+T 2)+4b2 f (TU−1)T =0.

The chords’ endpoints Q+ = g+∩E and Q− = g−∩E are

Q+ =b2(a2( f 2−1)2+4b2 f 2)(1+T 2U2)+

+4ab f ( f 2−1)(a2−b2)(T +U)(1−TU)+

+a2(b2( f 2−1)2+4a2 f 2)(T 2+U2)+

+8 f 2(a2−b2)(a2+b2)TU :

:
(
ab(1−U)(1+T 2)(1− f 2)−(2b2(1+T 2)+

+2a2(T 2+U)+2(a2−b2)T (1+U)) f
)
·

·
(
ab(1+T 2)(1+U)( f 2−1)−(2b2(1−T 2)+

+2a2(T 2−U)−2(a2−b2)T (1−U)) f
)

:

:
(
abU(1+T 2)( f 2−1)−(2a2T 2+

+2(a2−b2)UT+2b2) f
)
·
(
ab(1+T 2)·

· ( f 2−1)+(2b2T 2U+2(a2−b2)T+2a2U) f
)

and Q− admits a similar representation.
Now, we can state and prove:

Theorem 4 The lines s+ := [Q,Q+] and s− := [Q,Q−] en-
velop the same ellipse FE .
The centers of all these ellipses trace an ellipse M homo-
thetic to E .

Proof. The parametrizations of Q+ and Q− enable us to
derive the equations of the lines s+ = [Q,Q+] and s− =
[Q,Q−]. The computation of the envelopes is now straight
forward: We eliminate U from the equations of s− and s+

and we can immediately see that both families of lines en-

velop the same curve with the equation

FE :b2(sφ
2cτ

2
ε

2−4a2b2)x2+

+a2((a2+b2)2−sτ
2sφ

2
ε

2)y2+

−2ab f 2sτcτ(1+cφ)
2
ε

2xy+ (6)

−2ab(a4−b4)sφ
2(bcτx−asτy)+

−a2b2(cφ(a2+b2)2−ε
2)) = 0,

where we changed back to the trigonometric representa-
tion. For the sake of simplicity, we have set

sφ := sinφ, cφ := cosφ,
sτ := sinτ, cτ := cosτ,

and ε2 := a2− b2 is the square of the linear excentricity
of the ellipse E . In order to show that the curves FE are
ellipses, we find their centers as

m(T ) =
f 2(a4−b4)

(a2 f 2 +b2)(b2 f 2 +a2)
e(−T )

(with e from (2)) which parametrizes the ellipse M men-
tioned above. Obviously, M is homothetic to E and its
semi-axes lengths are

major =
a f 2(a4−b4)

(a2 f 2 +b2)(b2 f 2 +a2)
,

minor =
b f 2(a4−b4)

(a2 f 2 +b2)(b2 f 2 +a2)
,

provided b<a. Their ratio equals a :b and they never van-
ish as long as a 6=b. �

Figure 6: Both chords s+, s− envelop the same conic FE .

The fact that the generalized Frégier conics of an ellipse
are always ellipses can also be deduced from the construc-
tion used in the proof of Thm. 2: For real rotation angles
φ, the envelopes of the chords are in the interior of the aux-
iliary circle d. The collineation d→ c with center P maps
these interior circles to conics in the interior of the ellipse c
(or E , respectively). Hence, the generalized Frégier conics
of an ellipse can only be ellipses.
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Only if we allow the rotation angle φ to be a pure imagi-
nary number, the radii of the envelopes of d’s chords can
become arbitrarily large:

rd cos(iφ) = rd coshφ≥ rd ,

and thus, there exist outer generalized Frégier conics of
any affine type but not corresponding to real angles.
The Frégier ellipses (6) constitute a pencil of conics of the
third kind (cf. Thm. 3). All conics in this pencil touch each
other in a pair of complex conjugate points

B1 =

(
a
(a2+b2)(1−T 2)+4abiT

(1+T 2)(a2−b2)
,2b

abi(1−T 2)−(a2+b2)T
(1+T 2)(a2−b2))

)
,

and B2 = B1. These points are the collinear images of the
absolute points of Euclidean geometry common to all cir-
cles concentric with the auxiliary circle d used in the proof
of Thms. 2 and 3. Since, the points B1 and B2 are each
others complex conjugates they span a real line

p : ε
2(b(1−T 2)x−2aTy) = ab(a2 +b2)(1+T 2) (7)

which is the polar line of the Frégier point

F =
a2−b2

a2 +b2

(
a(1−T 2)

1+T 2 ,
−2bT
1+T 2

)
. (8)

with pivot point P∈ c. The line p given by (7) is sometimes
called the Frégier line of P with respect to c (cf. [15]). The
Frégier line (with multiplicity two) is a singular conic in
the pencil of generalized Frégier conics.
The following can also be shown:

Theorem 5 For variable point P ∈ E , the Frégier ellipses
FE envelop two ellipses Ei, Ee which are homothetic to E .

Proof. The elimination of the parameter T from the equa-
tion (6) of FE and its derivative with respect to T yields

Eo :
x2

a2 +
y2

b2 =
(b2 f 2−a2)2

(b2 f 2 +a2)2 ,

Ei :
x2

a2 +
y2

b2 =
(a2 f 2−b2)2

(a2 f 2 +b2)2 .

Obviously, Eo and Ei are concentric with E , there axes are
parallel to those of E , and since the semi-axes lengths of
the latter ellipses are

ai = a
a2−b2 f 2

b2 f 2 +a2 , bi = b
a2−b2 f 2

b2 f 2 +a2

and

ao = a
a2 f 2−b2

a2 f 2 +b2 , bo = b
a2 f 2−b2

a2 f 2 +b2 .

The ratio of both pairs of semi-axes lengths equals a/b. �

The outer and inner envelope Eo and Ei coincide if f =±1
and become the ordinary Frégier conic being the trace (8)
of the Frégier points of E .
Fig. 7 shows the two ellipses Eo and Ei comprising the en-
velope of the Frégier ellipses of E .

Figure 7: The envelope of the generalized Frégier conics
of the ellipse E consists of an outer ellipse Eo
and an inner ellipse Ei.

The sketch of the computational proof of Thm. 4 hides a
detail: The resultant of the equation of s+ and its derivative
with respect to U turns out to be the product of a polyno-
mial of degree one (equation of a line r+) and a polynomial
of degree two (equation of FE ). This is also the case with
s− (yielding the equation of a line r− 6= r+ and the equation
of FE ). However, the two resultants share the quadratic
factor describing FE and differ in the linear parts. The
lines r+ and r− belong to the pencil about (−a,0) (the left
principal vertex of E which corresponds to the parameter
value T = ∞) and their equations are

r+,r− : b(ε2sτ sinφ±2abcφ)x+asinφ(ε2cτ+a2+b2)y+

+ab(ε2sτ sinφ±2abcφ) = 0.

Figure 8: The triangle built by r+, r−, r± already indicates
the existence of a poristic family of triangles in-
terscribed between E and the Frégier ellipses
FE and F ±E .
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From the computational point of view, the lines r+ and r−

do not have any further meaning. It is quite the opposite
from the geometric point of view as we shall see soon.
The vertex of the pencil depends on the parametrization (2)
and can be replaced with any other point on E (simply by
substituting any linear rational function for T ).
It is by no means surprising that the lines s± := [Q−,Q+]
also envelop a conic F ±E since <) g−g = <) gg+ =
1
2<) g−g+. Further, a computational proof of the latter fact
(comparable to that of Thm. 4) would also produce the
equation of a line r± which is tangent to the Frégier ellipse
F ±E .
At this point, we emphasize that the respective coefficient
matrices of the conics satisfy

F ±E = FE E−1FE ,

which identifies F ±E as the conjugate conic of E with re-
spect to FE in the sense of [10]. Also in that sense, the con-
ics E and FE span an exponential pencil of conics which
also contains F ±E . Because of the nestedness of E , FE ,
and F ±E , the exponential pencil has a point shaped limit
which equals the Frégier point F given by (8). This holds
in the like manner for the generalized Frégier conics of hy-
perbolae and parabolae.
There exists a triple (r+,r−,r±) of lines which are the sides
of a triangle interscribed between E , FE , and F ±E indepen-
dent of the choice of P ∈ E . This gives rise to the follow-
ing:

Theorem 6 The triangles bounded by the lines r+, r−, r±

form a one-parameter family of triangles interscribed be-
tween the conic E and the Frégier ellipses FE and F ±E .
The triangles form a Poncelet family.

Proof. We only have to show that the conics E , FE , and
F ±E belong to a linear pencil (cf. [7, p. 259]) in order to
meet the requirements of a general Poncelet porism (cf.
[4]).
This can either be done by referring to Thm. 3 according
to which the two Frégier conics to angles φ and 2φ belong
to a pencil of conics (of the third kind) or by means of
computation:
For that purpose, we homogenize the equations of E , FE ,
and F ±E , extract the coefficient matrices, and find that they
are linearly dependent since(

4(1− f 2)2 FE−F ±E
)
(1+ f 2)−1 =

= a4b4(3 f 2−1)( f 2−3)2(1+T 2)2 E ,
(9)

provided that f 6=±1. In the cases f =±
√

3,±1/
√

3, i.e.,
φ 6=±π

6 , the Frégier ellipses FE and F ±E coincide. �

We have shown that FE , F ±E , E belong to one pencil of
conics. This is a pencil of the third kind that contains the

two singular conics. The first of which is a line with mul-
tiplicity two:

ε
2(b(T 2−1)x+2aT y)=ab(a2+b2)(1+T 2).

The second one is a pair of complex conjugate lines con-
curring in the (real) Frégier point (8) with directions

x
y
=± ib

2a
(a2 +b2)(1−T 2)+4abiT
ab(T 2−1)− i(a2 +b2)T

.

This pair of complex conjugate lines is the image of the
isotropic lines through the center of d under the perspec-
tive collineation d→ c used in the proof of Thm. 2.

3.2 Frégier conics of hyperbolae

In analogy to the previous section, we assume that a hy-
perbola H is given by the middle equation of (1) with real
semi-axes a,b. The vertex of the rotating angle(s) is now
P = h(T ) with h from (2) where T ∈ R\{−1,1}.
Again, the point Q is obtained by assuming Q = h(U) with
T 6= U and the chords g := [P,Q] of H have an equation
similar to that of E in (5). Now, the chords’ normal vec-
tors are proportional to

n = (b(1+TU),−a(T +U)).

The normal vectors of the legs g+ and g− of the moving
angles attached to g are found by applying the linear map-
pings induced by the matrices R(φ) and R(−φ) from (4).
This allows us to write down the equations of g+ and g−,
compute the points Q+, Q−, and furthermore, to determine
the envelopes of the lines s+ := [Q,Q+], s− := [Q,Q−],
and s± := [Q−,Q+], and we find F +

H = F −H = FH with the
equation

FH :
(
(a2−b2 f 2)(a2 f 2−b2)(1+T 4)+

+2(a2b2(1+ f 2)2+ε
2 f 2)T 2)x2+

+
(
a2b2(1+ f 2)2(1+T 4)+

+2(2ε
2 f 2−a2b2(1+ f 2)2)T 2)y2+

+4a2bε
2 f 2T (1+T 2)xy+ (10)

−2ab2(a2−b2)ε f 2(1−T 4)x+

−4a2b(a2−b2)ε f 2T (1−T 2)y+

+a2b2(a2 f 2+b2) · (b2 f 2+a2)(1−T 2)2=0,

where ε2 = a2 + b2 is the square of the linear excentricity
of the hyperbola H .
Analogously to Thm. 4, we can formulate

Theorem 7 The lines s+ and s− envelop the same conic
FH , the generalized Frégier conic of the hyperbola H .
The generalized Frégier conics FH of a hyperbola H can
be conics of any affine type.
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Proof. Since the determinant of the quadratic term of (10)
equals

D12 := 4a4b4(1+ f 2)2(a2−b2 f 2)3 ·(a2 f 2−b2)3(1−T 2)4

and vanishes exactly if f = ± a
b ,±

b
a , the generalized

Frégier conics in these particular four cases coincide and
the equation of FH simplifies to

(a2 +b2)2(2bT x+a(1+T 2)y)2+

−2ab(1−T 2)(b(a4−b4)(1+T 2)x+

+2aT (a4−b4)y−ab(a4+b4)(1−T 2)) = 0.

The latter equation describes a parabola with ideal point

0 :−a(1+T 2) : 2bT

(for all four values of f ). For proper choices of f , D12
can be positive as well as negative, and therefore, the gen-
eralized Frégier conics FH of H can also be ellipses and
hyperbolae. Using the collineation applied in the proof of
Thm. 2, we can also argue that all affine types of conics
can show up here as generalized Frégier conics.
The Frégier conics of hyperbolae are regular since the de-
terminant of the homogeneous equation equals

D012 :=−8a10b10(1− f 2)2(1+ f 2)4(1−T 2)6

which vanishes only if f =±1 (right angle, Frégier point)
or if T =±1 (which can be avoided by reparametrizing H ).
�

Figure 9: Two triangles from the Poncelet family inter-
scribed between H , FH , and F ±H .

The one-parameter family of generalized Frégier conics of
a hyperbola shows a behaviour similar to that of an ellipse.
Comparable to Thm. 5, we can show:

Theorem 8 For variable point P ∈ H , the generalized
Frégier conics FH envelop two hyperbolae Hi, Ho which
are homothetic to H .

Proof. We eliminate the parameter T from the equa-
tion (10) of the generalized Frégier conics FH and of the
derivatives of (10) with respect to T . This elimination
yields besides the equations ay∓ bx = 0 of H ’s asymp-
totes, the hyperbola H , and a further hyperbola H ′ that
does not contribute to the envelope.
The two components of the envelope are two hyperbolae

Hi :
x2

a2 −
y2

b2 =
(b2 f 2 +a2)2

(b2 f 2−a2)2 ,

Ho :
x2

a2 −
y2

b2 =
(a2 f 2 +b2)2

(a2 f 2−b2)2 .

It is obvious that Hi and Ho are homothetic to H . Their
semi-axes are

ao = a
b2 f 2 +a2

a2−b2 f 2 , bo = b
b2 f 2 +a2

a2−b2 f 2

and

ai = a
a2 f 2 +b2

a2 f 2−b2 , bi = b
a2 f 2 +b2

a2 f 2−b2

(provided that f 6=± a
b ,±

b
a ) and the axes ratio equals a/b.

�

It is a rather simple task to show that the centers of the
generalized Frégier conics move on a hyperbola M homo-
thetic to H with semi-axes

principal =
a f 2(a4+b4)

(a2−b2 f 2)(a2 f 2−b2)
,

auxiliary =
b f 2(a4+b4)

(a2−b2 f 2)(a2 f 2−b2)
,

provided that f 6=± a
b ,±

b
a .

In the previous section, we have seen that the computa-
tion of the generalized Frégier conics as the envelopes
of chords of a conic produced straight lines as some by-
product. These lines depend on the parametrization of the
initial conic, but nevertheless, they allow us to conclude
that there exist general Poncelet families of triangles inter-
scribed between H and the generalized Frégier conics FH
and F ±H .
Therefore, and without repeating the similar computations,
and in analogy to Thm. 6, we can state:

Theorem 9 The hyperbola H and the pair of generalized
Frégier conics FH and F ±H admit an interscribed one-
parameter family of triangles, i.e., a one-parameter family
of billiards with two caustics.

According to Thm. 3 and because of

F ±H −4(1− f 2)3FH =

= (3 f 2−1)( f 2−3)(1+ f 2)2(1−T 2)2a4b4H

the conics H , FH , and F ±H belong to a pencil of conics.
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Figure 10: Frégier conics of a hyperbola can be ellipses. In
any case, the Frégier conics of a hyperbola H
envelop two hyperbolae Hi and He (homothetic
to H ) and with their centers on a further homo-
thetic hyperbola M .

3.3 Frégier conics of parabolae

Finally, we assume that the parabola P is given by the third
equation in (1). Now, we let P = p(T ) and Q = p(U) with
T,U ∈ R and T 6=U be two points on P spanning the line
g=[P,Q] rotating about P through φ. With (4) applied to
the normal vector

n = (T +U,−1),

we find the line g+ with the equation

g+ :((T+U)( f 2−1)+2 f )x+(2(T+U) f− f 2+1)y =

= 2pT (U( f 2−1)+2 f T (T+U)+2 f ) (11)

and the line g− admits a similar representation. The lines
g+ and g− intersect P in the points Q+,Q− 6= P where

Q+=2p
(

U( f 2−1)−2 f (T+U)T−2 f
2 f (T+U)+ f 2−1

,

(2 f (T+U)T+U(1− f 2)+2 f )2

(2 f (T+U)+ f 2−1)2

)
.

(12)

The point Q− admits a similar coordinate representation.
This yields the equations of the chords s− := [Q,Q−],
s+ := [Q,Q−], and s± := [Q−,Q+], where

s+ : 2( f (T 2−U2)+U(1− f 2)+ f )x+

+(2 f (T+U)+ f 2−1)y =

= 2pU(2 f (T+U)T+U(1− f 2)+2 f ), (13)

and the equations of the other chords s− and s± can be
given in a similar form.
We compute their envelopes and find again that the Frégier
conics F −P =F +

P =: FP are identic. An equation of the
parabola’s generalized Frégier conics can be given as

FP : (4T 2 f 2+(1+ f 2)2)x2 +4 f 2T xy+ f 2y2+

+8q f 2T (1+T 2)x−2q( f 4−2T 2 f 2+1)y+

+4q2 f 2(1+T 2)2 = 0. (14)

Now, we can state (comparable to Thm. 4 and Thm. 7):

Theorem 10 The chords s+ and s− cut out of a parabola
P by congruent angles centered at a point P ∈ P envelope
the same conic FP with the equation (14).
The generalized Frégier conics FP of a parabola P are
ellipses if φ ∈ R.

Proof. The chords’ envelope is already given in (14).
Since the determinant of the homogeneous equation of FP
equals

D012 =−8q2(1− f 2)2(1+ f 2)4,

it never vanishes (for, by assumption q 6= 0, f 6= 0,±1,±i).
Hence, the generalized Frégier conics of the parabola are
always regular. The determinant of the quadratic term in
the inhomogeneous equation (14) of FP equals

D12 = 4 f 2(1+ f 2)2

and is always positive (provided f 6= 0,±i, which is ex-
cluded from the very beginning). Hence, (14) describes
ellipses independent of the choice of f and T (since p 6= 0,
f 6=±1,±i). In order to verify the second part of the theo-
rem, just discuss the quadratic part of (14). �

The centers of the ellipses (14) showing up as general-
ized Frégier conics are located on a parabola with the
parametrization

(−2qT, f−2q(2T 2 f 2 + f 4 +1))

and the equation

Pc : x2−2qy =−2 f−2q2(1+ f 4).

Obviously, this parabola is congruent to P . This parabola
is also shown in Fig. 11.
Like in the case with the ellipse E , the elimination process
delivers two lines r+ and r−, which are parallel and tangent
to F and have the equations

r+,r− : 2 f pT ∓ p(1− f 2)+ f x = 0. (15)

The parallelity of r+ and r− depends on the parametriza-
tion (2) of P since t = ∞ in the third equation of (2) yields
the point 0 : 0 : 1 = r+ ∩ r−. A suitable linear rational
reparametrization of the parabola (2) can move the point
r+∩ r− to any other point on P .
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The double angle Frégier conic F ±P has the equation

F ±P : (16 f 2(1− f 2)2T 2+(1+ f 2)4)x2+

+16 f 2(1− f 2)2T xy+4 f 2(1− f 2)2y2+

+32p f 2(1− f 2)2T (1+T 2)x+

+(16p f 2(1− f 2)2T 2− (16)

−2p( f 8−4 f 6]+22 f 4−4 f 2+1))y+

+16p2 f 2(1− f 2)2(1+T 2)2 = 0.

which is regular as long as f 6= ±1±
√

2 and consists of
the given parabola P and the line

2pT 2 +2T x+y = 0

if f = ±1. The additional line that comes along with the
equation (16) of F ±P has the equation

r± : 2 f 2(2T x+y) = p((1− f 2)2−4 f 2T 2). (17)

The three conics P , FP , and F ±P belong to the same pencil
since the respective equations (1), (14), and (16) satisfy

(3 f 2−1)(3− f 2)(1+ f 2)2P = 4(1− f 2)2FP +F ±P . (18)

The comparison of (9) and (18) shows that the latter does
neither contain the parameter q nor the curve parameter T ,
while (9) depends on the semi-axes of E and on the point
P.

Figure 11: The generalized Frégier conics of a parabola P
envelop two parabolae Pi and Po which are con-
gruent to P .

Comparable to Thms. 5 and 8, we can show what is illus-
trated in Fig. 11:

Theorem 11 For variable point P ∈ P , the generalized
Frégier conics FP of a parabola (1) envelop a pair of con-
gruent parabolas with the equations

Po : x2 +4 f−2q2 = 2qy,
Pi : x2 +4 f 2q2 = 2qy

which are also congruent to P .

Proof. The computation of these two envelopes is straight
forward. Since their quadratic part is a multiple of x2−2qy
(as is the case with P ), they are congruent to each other and
P as well. �

Because of the existence of one interscribed triangle
bounded by the lines (15) and (17) between the conics P ,
FP , and F ±P (which belong to a pencil according to Thm.
3 and because of (18)), we have (cf. Thm. 6 and Thm. 9):

Theorem 12 The conics P , FP , and F ±P allow for a one-
parameter family of interscribed triangles.

Figure 12: Frégier conics FP , F ±P related to a parabola P.

Fig. 12 illustrates that among the triangles in the Poncelet
family described in Thm. 12 there are degenerate triangles
with one vertex at infinity. It is more than one degenerate
triangle since each vertex of the triangle can reach one of
the positions of r+∩P or r−∩P .

4 Concluding remarks

The generalized Frégier conics can be seen as a blow-up of
the ordinary Frégier point just by replacing the right angle
between assigned pairs of lines in the projective mapping
at some point P on a conic c. This blow-up “enlarges”
or blows up the ordinary Frégier conic (the trace of the
Frégier point if its pivot P ∈ c is moving along c) to the
two envelopes Eo, Ei (Ho, Ho or Po, Pi). Of course, there
are other ways to generalize or adapt Frégier’s theorem.
We shall postpone this to a future article.
The Poncelet families (one-parameter families of triangles
interscribed in between some conics from a pencil) were
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found just occasionally since the lines bounding these tri-
angles are by-products in the computation. The initial
parametrizations (2) lead to just one initial triangle in the
family. Any other (projectively equivalent) parametriza-
tion of the conics would have resulted in another triangle.
However, one is enough since it was possible to show that
the involved triple of conics (E ,FE ,F ±E ) (and also those
related to the hyperbola and the parabola) belong to the
same pencil.
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[13] SCHRÖCKER, H.-P., A Family of Conics an Three
Special Ruled Surfaces, Beitr. Algebra Geom. 42(2)
(2001), 531–545.
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