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János Bolyai’s Angle Trisection Revisited

ABSTRACT

J. Bolyai proposed an elegant recipe for the angle trisec-
tion via the intersection of the arcs of the unit circle with
that of an equilateral hyperbola c. It seems worthwhile to
investigate the geometric background of this recipe and
use it as the basic idea for finding the nth part of a given
angle. In this paper, we shall apply this idea for the trivial
case n = 4, and for 5. Following Bolyai in the case 5, one
has to intersect the unit circle with cubic curve c. There,
and in the cases n ≥ 5, we find only numerical solutions,
which shows the limitation of Bolyai’s method. Therefore,
we propose another construction based on epicycloids in-
scribed to the unit circle. By this method is even possible
to construct the ( n

m )th part of a given angle.
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Ponovno razmatranje trisekcije kuta metodom
Jánosa Bolyaija

SAŽETAK

J. Bolyai je predložio elegantnu metodu za trisekciju kuta
odred-ivanjem sjecǐsta lukova jedinične kružnice s lukovima
jednakostranične hiperbole c. Vrijedno je istražiti geometrij-
sku pozadinu ovog postupka te ga koristiti kao temeljnu
ideju za pronalaženje n-tog dijela zadanog kuta. U ovom
radu primijenit ćemo navedenu ideju u trivijalnom slučaju
n = 4, te za n = 5. Slijedeći Bolyaija, u slučaju n = 5 je-
diničnu kružnicu treba presjeći kubnom krivuljom c. U tom
slučaju, kao i u slučajevima n≥ 5, nalazimo samo numerička
rješenja, što pokazuje ograničenost Bolyaijeve metode.
Stoga predlažemo i drugu konstrukciju, ovaj put utemeljenu
na epicikloidi upisanoj jediničnoj kružnici. Ovom metodom
moguće je čak konstruirati n

m -ti dio zadanog kuta.

Ključne riječi: trisekcija kuta, n-sekcija kuta, jednakos-
tranična hiperbola, kubna krivulja, epicikloida

1 Angle trisection according to János Bolyai

P. Staeckel mentions in his book [3] about the geometric
investigations of Wolfgang and Johann Bolyai on page 234
that “J. Bolyai delt with the angle trisection, as can be found
on a slip of paper dating back to the early days of him”. We
present this passage from Staeckel’s book in Figure 1a, b:

Figure 1a: Reproduction of the text concerning the angle-
trisection of [3, p.234].

A translation of the text in Figure 1a would read as follows:

The trisection of an angle
Halve the angle adb (Fig. 24) [to be divided into three
parts] by ec; make now de = 1

2 dc, (make) the (normal)

x e f = 1
3 ca and draw f l ‖ec; draw now a hyperbola

through point d and with asymptotes f l and f e; where it
intersects the arc ab, the arc ak becomes 1

3 ab.

Figure 1b: Reproduction of Fig. 24 of [3, p.234] concerning
the angle-trisection.
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Figure “Fig. 24” does not exactly correspond with the“text”,
so there are misprints, as indicated by red rectangles. In
“Fig. 24” point b, the centre of arc ab, should be labelled as
“d”, and in the text the term e f = 1

3 ca should be replaced
by e f = 1

2 ca.

Besides the mentioned recipe there is no further explanation
or justification for it. János Bolyai (∗1802,†1860) was fa-
miliar with some Projective Geometry and the properties of
conics. Therefore, one can suppose that, among geometers
and mathematicians of his time, these subjects were gener-
ally known and a detailed explanation of the recipe could
have been omitted. Nowadays, as mathematicians more or
less disregard Classical Geometry, analytical treatment of
Bolyai’s construction can prove that the recipe is correct,
but such proof does not show, why it is correct and how it
was invented. The following chapter presents one possible
idea, that J. Bolyai could have had in mind as a basis for his
recipe.

2 Presumable geometric background of
János Bolyai’s angle trisection

We start with the unit circle u in the Eucliden plane, which,
as “Gauss plane”, also models the affine line of complex
numbers C. Let an angle ∠AOB, with O the center of u
and A,B ∈ u, have the measure ]AOB = 3α, and we use
halve line OA as “real axis” in the Gauss plane. Then
the complex number z := cosα+ i.sinα describes point B,
and the cubic roots of z become 3

√
zp := cos( 3α

3 + p. 2π

3 )+

i.sin( 3α

3 + p. 2π

3 ), p = 0,1,2. These three complex num-
bers describe points P0,P1,P2 ∈ u forming an equilateral
triangle and solving the demanded trisection of ∠AOB. Hav-
ing the idea to intersect c with an algebraic curve through
P0,P1,P2 one could use a conic for this purpose. There exist
a two-parameter set of conics through P0,P1,P2, and we can
choose one, which is somehow connected with the givens.
For example, choosing orthogonal asymptote-directions in
addition to P0,P1,P2 selects equilateral hyperbolae h in that
set. Equilateral hyperbolae have the well-known nice prop-
erty, that with any three points P0,P1,P2 of such a hyperbola
h the orthocentre O of triangle P0,P1,P2 is also a point of
h, see e.g. [2, p. 54]. This theorem seems to be stated first
by Charles Brianchon (∗1783,†1864) and Jean Poncelet
(∗1788,†1867), which were contemporaries of J. Bolyai.
So, he could have been familiar with this theorem. Within
the pencil of equilateral hyperbolae h we take that one hav-
ing line OA as one of the asymptote-directions, see Figure
2. Therewith h is described by

xy−ax−by = 0. (1)

Figure 2: Equilateral hyperbolae h through vertices of an
equilateral triangle and its center O.

Because of cos3α = 4(cosα)3 − 3cosα and −sin3α =
4(sinα)3− 3sinα, what we abbreviate by V := 4x3− 3x,
resp. −W := 4y3− 3y, (x := cosα,y := sinα,V 2 +W 2 =
1,x2 + y2 = 1), it follows that the intersection of h with the
unit circle u must fulfil the conditions

(4x3−3x−V )(x−S) = 0∧(4y3−3y+W )(y−T ) = 0. (2)

Thereby the additional fourth intersection point Q has the
coordinates (S,T ) with S2 +T 2 = 1. We express y resp. x
in (1) by y = ax

x−b resp. x = by
y−a and put these expressions

into the equation of the unit circle u receiving the fourth
order equations

y4−2ay3− y2(a2 +b2−1)+2ay−b2 = 0

x4−2bx3− x2(a2 +b2−1)+2by−a2 = 0). (3)

Comparing coefficients of (3) with those of (2) delivers

T = 2b,W = 2b,S = 2a,V =−2a, (4)

such that h has midpoint M = (− 1
2 cos3α, 1

2 sin3α). The
fourth intersection point has the coordinates (S,T ) =
(−cos3α,sin3α) and is therefore diameter endpoint op-
posite to O. From the polar form of (1), and specialising
with the coordinates of the origin O = (0,0), it follows for
the tangent tO of h in O that

tO . . .by =−ax . . .y = x tan3α, (5)

such that tO has exactly the slope of the given angle, which
is trisected by h.
We collect and visualise the mentioned properties of h in
Figure 3. In connection with angle trisection we shall call
this special equilateral hyperbola h the “Bolyai-hyperbola”.
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Figure 3: Angle trisection as the intersection of the unit
circle u with the “Bolyai-hyperbola” h.

A consequence of the properties of the Bolyai-hyperbola h
follows

Theorem 1 ([2, p.55]) A circle c with its midpoint at an
arbitrary point P of an equilateral hyperbola h and passing
through the opposite point Q of P on h intersects h, besides
in Q, in vertices of an equilateral triangle.

It is not quite clear, who discovered the property of equi-
lateral hyperbolae mentioned in Theorem 1. For example,
it seems to be known already to H. Brocard in [1], but
nowadays it cannot be considered as “widely known”.

3 The n−section of an angle based on
Bolyai’s method

We follow the idea of J. Bolyai, when looking for the nth

part of a given angle α. As in chapter 2 we start with the
nth root of a complex unit number z := cosα+ i.sinα de-
scribing a point B at the unit circle u. The nth roots of z
become

n
√

zp :=cos(
α

n
+ p.

2π

n
)+ i.sin(

α

n
+ p.

2π

n
), (6)

p = 0,1, . . . ,n−1.

These n complex numbers describe points P0,P1, . . . ,Pn−1 ∈
u forming a regular n−gon. If n is the product of primes and
their powers, it is obvious that one proceeds consecutively.
For example, let n = n1 ·n2·. . . ·n j (with n1 ≥ n2 ≥. . .≥ n j),
then the first stage delivers an n1−gon with vertices Pi, the
next stage delivers n2−gons to each angle defined by Pi. In
total one receives an n1n2−gon with vertices Pi, j, and so on
until we finally get an n1n2 . . .n j−gon with vertices Pi, j,...,k.

Even so it is trivial, we shall deal with “halving an angle”
as a first example. According to (6) there will be two so-
lutions P1,P2, which are opposite points of the unit circle
u. Following J. Bolyai we need an algebraic curve, which
intersects u in the two points P1,P2. As a suitable curve of

minimal degree we can take a line g, which passes through
the centre O of u, see Figure 4. Given an angle 2α we put

g . . .y.cosα = xsinα,

cos2α = 2cos2
α−1 =: V, (7)

sin2α = 2sinαcosα =: W.

Therefore, as u . . .x2+y2 = 1, the intersection points g∩u=
{P1,P2} with

P1 =

(
+

√
1
2
(1+V ),+

√
1
2
(1−W )

)
=: (V1,W1)

P2 =

(
−
√

1
2
(1+V ),−

√
1
2
(1−W )

)
=: (−V1,−W1)

(8)

and the solution angles are α1 = ∠AOP1, α2 = ∠AOP2,
(with A = (1,0)).

Figure 4: Angle bisection as intersections of the unit circle
u with the “Bolyai-line” g.

If n = 4 = 2 ·2, we can continue applying the halving pro-
cedure for the angles α1,α2. But we could also try a direct
approach, too. We know already that the four solution
points Pj must form a square inscribed to u. As a simple
curve c, which intersects u in these points, we still can use
a conic. The square of points Pj defines a pencil of con-
centric and coaxial conics. Along the lines of case n = 3,
we can choose a “clever” conic within that pencil, namely,
the degenerate one forming the diagonals of the square, see
Figure 5.
Thus c is the product of the equations of two orthogonal
lines:

c . . .(y− kx)
(

y+
1
k

x
)
= 0, k ∈ R. (9)

From (6) we get

cos4α = 8cos4
α−8cos2

α+1 =: V

sin4α = 4sinαcosα(2cos2
α−1) =: W, (10)
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Figure 5: Angle quadri-section as the intersection of the
unit circle u with the degenerate “Bolyai-conic”
c. The intermediate angle bisection and the pen-
cil of conics through the solution points Pi, j is
shown, too.

and we immediately can see that sin4α = 2sin2αcos2α,
cos4α= cos2 2α−sin22α. Even so it could be calculated in
a much shorter way, we want to show the general principle
with this example. Rewriting (9) and (10) we get

c . . .x2 +Kxy− y2 = 0, (K := (k2−1)/k),

V = 8x4−8x2 +1

W = 4xy(2x2−1)

u . . .x2 + y2 = 1. (11)

From these four equations we calculate K resp. k:
From K =−(2x2−1)/x

√
1− x2 follows

K2 =
4x4−4x2 + 1

2 +
1
2

x2− x4− 1
8 +

1
8

=
4(V +1)

1−V
, K1,2 =±2

√
1+V
1−V

,

whereof we finally get four values for the slopes k. By con-
sidering the third equation of (11) we combine the correct
sine-values y j to the four cosine-values xi, such that the
points Pi = (xi,yi) indeed will form a square.
We see that in the case of n = 4 the calculation of the al-
gebraic problem is reducible and leads to consecutively
extracting two roots. This means that the essential proce-
dure concerns prime numbers n, as already noticed at the
beginning of this chapter.

4 Finding the fifth of a given angle with
Bolyai’s method

As a non-trivial example, we now shall deal with the case
n = 5. Here we expect a regular pentagon as the solution
inscribed to the unit circle u. As five points already de-
fine a single conic, in our case the circle u, a low-degree
curve through this pentagon surely must be at least a cubic c.
There occurs an additional intersection point Q= (S,T )∈ u,

which, for special cases of the given angle 5α, might co-
incide with a point Pi. The set of planar cubic curves is
9-dimensional. This means that cubics through a pentagon
still form a four-dimensional set and the first task would be
to find a “clever” specimen within this set for our intersec-
tion purpose.

4.1 Cubics through the origin

Let B = (cos5α,sin5α) = (V,W ), and let, as a first try, c
pass through the origin O. Let one ideal point U of c be
the that of the y−axis. This means that c has an asymptote
parallel to y. The consequences are some simplifications of
the general equation of c:

x3 +bx2y+ cxy2 + ex2 + f xy+gy2 +hx+ jy = 0. (12)

Because of

cos5α = 16cos5
α−20cos3

α+5cosα,

sin5α = 16sin5
α−20sin3

α+5sinα, (13)

and by putting cosα := x, sinα =: y, (x2 +y2 = 1, which is
the equation of u), we finally must compare (12) with

(16x5−20x3 +5x−V )(x−S) = 0

(16y5−20y3 +5y−W )(x−T ) = 0. (14)

We can eliminate y in (12) by replacing y2 in (12) by 1−x2,
by separating the terms, where y occurs linearly, from the
others, and finally squaring the resulting equation:

y(bx2 + f x+ j) =

=−x3− cx(1− x2)−g(1− x2)− ex2−hx =

= x3(c−1)+ x2(g− e)− x(c+h)−g. (15)

By squaring, and again replacing y2 by 1−x2, we receive an
equation of degree 6 in x. Thereby we abbreviate c−1 =: C,
g− e =: E, c+h =: H. The left side of (15) becomes

(1− x2)(b2x4 +2b f x3 +( f 2 +2b j)x2 +2 f jx+ j2) =

=−b2x6−2b f x5 +(b2−2b j− f 2)x4 +2 f (b− j)x3+

+( f 2 +2b j− j2)x2 +2 f jx+ j2.

The right side of (15) becomes

C2x6 +2CEx5 +(E2−2CH)x4− (2EH +2Cg)x3+

+(H2−2Eg)x2 +2Hgx+g2.

Both sides together deliver the equation

(b2 +C2)x6 +2(CE +b f )x5+

+(E2−2CH−b2 +2b j+ f 2)x4−
− (2EH +2Cg−2b f +2 f j)x3+

+(H2−2Eg− f 2−2b j+ j2)x2+

+2(Hg− f j)x+(g2− j2) = 0, (16)

55
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and now we can compare (16) with

16x6−16Sx5−20x4 +20Sx3 +5x2− (5S+V )x+V S = 0.
(17)

The same way we eliminate x in (12) and square the follow-
ing equation:

x(y2(1+ c)+ f y+h) = by3 + y2(e−g)− y(b+ j)− e.

Abbreviating g− e =: E, b+ j =: J we get

(b2 +C2)y6 +2(C f −bE)y5+

+(−C2 +E2 +2hC+ f 2)y4+

+(2EJ−2be− fC+ f h)y3+

+(2eE−2Ch+ J2− f 2 +h2)y2+

+2(eJ− f h)y+(e2−h2) = 0 (18)

and can compare it with

16y6−16Ty5−20y4+20Ty3+5y2−(5T +W )y+WT = 0.
(19)

We collect the coefficients of equations (16) to (19) in the
Table 1.
The 14 equations are not independent, the equations (0)-(6)
resp. (0’)-(6’) alone allows us to express the coefficients
b, . . . , j of the cubic c as functions of V,W and S,T .
We see that the conditions of type (0). . . (6’) are quadratic
equations in the unknowns b,c,e, f ,g,h, j,S,T and the
givens V,W . They can be interpreted as hyperquadrics Q(2)

j

in an 11-dimensional affine space A11, whereby Q(2)
0 and

Q(2)
1 are the hypercylinders with equations V 2 +W 2 = 1

resp. S2 +T 2 = 1.
When we use V,W (V ) as parameters, we finally will get a
curve as intersection Q(2)

j ∩ ·· · ∩Q(2)
k , which represents a

one-parameter set of cubics c. Obviously, to a fixed param-
eter pair V0,W (V0) there will be, in the algebraic sense, up
to 32 solutions of cubics c(V0). Figure 6 (left) shows an ex-
ample of one solution of the cubics c belonging to the given
angle 5α = 98◦. To each given angle 5α the calculations
must be performed individually.
A similar calculation is performed for cubics having the
ideal point of the y−axis as inflection point. Figure 6
(right) shows an example of this kind calculated to an angle
5α = 60◦.

Equ. No. Degr. Coeff. (16) Coef. (17) Equ. No. Degr. Coeff. (18) Coef. (19)

(6) x6 b2 +(1− c2) 16 (6’) y6 b2 +(c−1)2 16

(5) x5 2((1− c)(e−g)+b f ) −16S (5’) y5 2((c−1) f −b(g− e)) −16T

(4) x4 (e−g)2 +2(1− c)(c+h) −20 (4’) y4 −(c−1)2 +(g− e)2 −20
−b2 +2b j+ f 2 +2(c−1)(h+1)

−2b(b+ j)+ f 2

(3) x3 2(e−g)(c+h) 20S (3’) y3 2(g− e)(b+ j) 20T
+2(1− c)g−2b f +2 f j −2be−2 f (c−1)

+ f (h+1)

(2) x2 2(c+h)2 +2g(e−g) 5 (2’) y2 2e(g− e) 5
− f 2−2b j+ j2 2(h+1)(c+1)

+(b+ j)2− f 2

+(h+1)2

(1) x1 2((c+h)g− f j) −5S−V (1’) y1 2(e(b+ j)− f (h+1)) −5T −W

(0) x0 g2− j2 V S (0’) y0 e2−h2 WT

Table 1: Coefficients of (16) - (19) for the comparing procedure
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Figure 6: Numerically gained solutions of “quinti-sectioning” the given angle ∠AOB = 5α.

4.2 Cubics with three given ideal points

One of the key-conditions of Bolyai’s recipe is that all the
“Bolyai hyperbolas” have the same ideal points and there-
fore are similar. In a new approach we focus at cubics c(V )
with the same triplet of ideal points. Note that the ideal
points of c(V ) must be different from those of the unit cir-
cle. Let us try with three real ideal points U1 = (0,1,0)R,
U2 = (0,0,1)R, U3 = (0,−1,1)R, (here we use homoge-
neous coordinates (x0,x1,x2)R instead of affine coordinates
(1,x,y) =: (x,y)). The equation of the general cubic c
through these ideal points Ui becomes

x2y+ xy2 + ex2 + f xy+gy2 +hx+ jy+ k = 0. (20)

The tangents ai at Ui, i.e. the asymptotes of c, are

a1 . . .y =−e, a2 . . .x =−g, a3 . . .y =−x+ e− f +g.

(21)

When we demand that U3 shall be an inflection point of c,
i.e. a3 is an inflection asymptote, the coefficients e, . . . ,k
fulfil the conditions

e2−g2− e f + f g+h− j = 0 . . .Q(2)
a3 , (22)

g(e− f )2 +2(e− f )g2 +g2 +(e− f +g) j+ k = 0 . . .Q(3)
a3 .

We shall compare (20) with (17) based on the condition
x2 + y2 = 1. From (20) follows

(x2 + f x+ j) = x3− x2(e−g)− x(1+h)− (g+ k). (23)

We abbreviate e−g=: G, h+1=: H, g+k =: K and square
(23), we finally receive

2x6 +2( f −G)x5 +(G2−2H−1+ f 2 +2 j)x4+

+2(GH−K− f + f j)x3 +(H2 +2GK− f 2 + j2−2 j)x2+

+(2HK−2 f j)x+(K2− j2) = 0. (24)

Similarly, we shall compare (19) with (20) based on condi-
tion x2+y2 = 1. From (20) follows now−x(y2+ f y+h) =

(1−y2)y+e(1−y2)+gy2+ jy+k and when we abbreviate
again e−g =: G, j+1 =: J, e+ k =: E, we get

x(y2 + f y+h) = y3 +Gy2− Jy−E, (25)

and by squaring this it becomes

2y6 +2( f −G)y5 +(G2−2J−1+ f 2 +2h)y4+

+2(GJ−E− f + f h)y3 +(J2−2EG− f 2 +h2−2h)y2+

+2(EJ− f h)y+(E2−h2) = 0. (26)

By putting “(4)=(4’)” and “(2)=(2’)” we get h = j and g = e
such that (20) simplifies to

x2y+ xy2 + ex2 + f xy+ ey2 +hx+hy+ k = 0,

but again, we only get numerical solutions, (see Figure 7),
as we must intersect hyperquadrics (and hyperplanes) in an
11-dimensional affine space. None of the results are such
that there exists a one-parameter set of similar cubics. This
allows at least to

Conjecture 1 There is no irreducible cubic carrying a one-
parameter set of regular pentagons.

Figure 7: Numerically gained solutions of “quinti-
sectioning” the given angle ∠AOB = 5α = 105◦

with help of a cubic with three real asymptotes.
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Equ. No. Degr. Coeff. (24) Coef. (17) Equ. No. Degr. Coeff. (26) Coef. (19)

(6) x6 2 16 (6’) y6 2 16

(5) x5 2( f −G) −16S (5’) y5 2( f −G) −16T

(4) x4 G2−2H−1+ f 2 +2 j −20 (4’) y4 G2−2J−1+ f 2 +2h −20

(3) x3 2(GH−K− f + f j) 20S (3’) y3 2(GJ−E− f + f h) 20T

(2) x2 H2 +2GK− f 2 −5 (2’) y2 2(J2−2EG− f 2 −5
+ j2−2 j +h2−2h)

(1) x1 2(HK− f j) −5S−V (1’) y1 2(EJ− f h) −5T −W

(0) x0 K2− j2 SV (0’) y0 E2−h2 TW

Table 2: Coefficients of (24), (26) for the comparing procedure with (17), (19)

4.3 Reducible cubics through regular pentagons

We try now with a conic c, which should pass through four
points of the regular solution pentagon, and a line l through
its fifth point. Thereby c and l shall have the ideal point
(0,0,1)R of the y−axis in common. Here we will get, in
general, five solutions, as there are five possibilities for I
(and for c). But here, too, the explicit calculation turns
out to become lengthy and results in numerical gained so-
lutions, see Figure 8 showing solutions with a reducible
cubic splitting into a hyperbola c and a line l parallel to the
y−axis.
We note that within the pencil of conics P2, . . . ,P5 there
is a special hyperbola c passing through the origin O. It
is symmetric to OP1, its asymptotes include 120◦, and its
midpoint’s M distance from the origin is one-third of the
radius of (unit) circle u, (see Figure 9 showing c in the

standard position 5α = 0). We used it already in Figure 8,
but now we will add line OA as the linear component l of
the reducible cubic c in standard position and rotate this
cubic c according to the given angle 5α.
Hyperbola c and line l in standard position have the equa-
tions

c . . .3x2 +2x− y2 = 0, l . . .y = 0. (27)

We rotate by angle ϕ, and we abbreviate sinϕ =: s, cosϕ =:
t to get the formulas shorter and better readable. We know
already that ϕ must turn out to become the solution angle α.
The rotated version of (27) reads as

c . . .(3t2− s2)x2 +8stxy− (2s2− t2)y2 +2tx+2sy = 0,
l . . .sx− ty = 0. (28)

Figure 8: Numerically gained solutions of “quinti-sectioning” the given angle ∠AOB = 5α with help of a reducible cubic
with a line component l parallel y.
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Equ. x6 x5 x4 x3 x2. x1 x0

(17) 16 −16U −20 +20U +5 −(5U +V ) +UV

“(29)2” 16 16t . . . . . . . . . . . . −t2(16t4−20t2 +5t)

Table 3: Comparison of the coefficients of the squared equation (29) with those of (17)

Figure 9: Hyperbola c through O,P2, . . . ,P5 in standard po-
sition.

With 3t2− s2 = 4t2−1 and 3s2− t2 = 4s2−1 we find the
equation of the reducible cubic c as

s(4t2−1)x3 +3t(4s2−1)x2y−3s(4t2−1)xy2−
− t(4s2−1)y3 +2stx2 +2(1−2t2)xy−2sty2 = 0. (29)

Following the procedure used in the former chapters, we
again put y2 = 1− x2 and separate terms containing y from
those containing only xk, k = 0, . . . ,3. By squaring this
equation, we finally receive an equation of 6th degree in the
variable x and with coefficients being functions of s and t,
which are the only unknowns. Therefore, it is enough to
consider the coefficients of x6, x5, and x0 for connecting s, t
with the given cosine V of polynomial (17), see table 3.
From the coefficients of x6 follows that the proportionality
factor of the two equations (17) and “(29)2” is 1. From x5

we get U = −t, as expected, and from x0 we receive the
polynomial (13). Therefore, we end up with a tautology: To
get the rotation angle we have to solve the original equation
(13) cos5α = 16cos5 α−20cos3 α+5cosα.
All the presented attempts to get sort of a standard cubic to
solve the 5-section of an angle failed.
Result: The n−section (n ≥ 5) of an angle nα based on
Bolyai’s method to intersect the unit circle with an algebraic
curve c of suitable degree leads to calculating the coeffi-
cients of an equation of c individually to each given angle
nα.

Remark 1 Angle trisection, as one of the classical cubic
problems, is only graphically solved via intersecting the
unit circle with Bolyai’s equilateral hyperbola. An exact
solution should solve an equation of the third degree, too. In
the following chapter, we present a possibility for a graphic
solution using well-known properties of epicycloids.

5 p−sectioning an angle using epicycloids

A generally applicable graphical solution of p−sectioning
(p ∈Q) a given angle can be based on epicycloids, see e.g.
[4, p.156] and [5]. Due to a theorem of F.E. Eckhardt (c.f.
[4]) the line connecting the points B and P1, which move
along the unit circle u with speed pα resp. α envelops an
epicycloid e with the parameter representation

e . . .
(

x
y

)
=

1
p+1

(
pcosα+ cos(pα)

psinα+ sin(pα)

)
. (30)

Such a cycloid admits two kinematic generations with cir-
cles m and m′ rolling on a fixed circle f . The radii r f , rm, r′m
of fixed circle f and moving circles m and m′ are therewith

r f =
1− p
1+ p

, rm =
p

1+ p
, r′m =

1
1+ p

. (31)

The following Figures 10, 11 and 12 show examples of
such graphical angle p-sections. Thereby some additional
properties of cycloids become obvious:
In both cases shown in Figure 10, the angle bisection and tri-
section, we notice that, besides of two orthogonal tangents
t1, t2, resp. three tangents t1, t2, t3 (inclosing 120◦ angles) in-
tersect the (unit) circle u in the solution points P1, P2, resp.
P1, P2, P3. There occurs an additional tangent t with no
meaning for the bisection problem. Figure 11 shows these
properties, too. In all cases the touching points E j of t j with
the epicycloids e are the intersection points of the moving
circle m′ (center M′ ∈ OB) with t j. The intersection of m′

with the additional tangent t is not a point of epicycloid e.
The segments [E jM′] are parallel to the solution segments
[OPj]. The circle u is an “orthoptic locus” of the cardioid
e (Figure 10 (left)) and, as a consequence of the “angle at
circumference theorem”, u is a “multi-isoptic locus” of the
epicycloids e (Figure 10 (right) and Figure 11). The points
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E j form a regular n−gon inscribed to e and m′, such that
this n−gon moves along e, when B moves along the circle
u. (By the way, this well-known property of epitrochoids
has the “Wankel-motor” as a technical application, see e.g.
[6].) Figure 12 shows examples of p−sectioning an angle
for the cases p = 2

5 and p = 3
5 . Here we find in fact the

same properties as described above.
For p = 2

5 it follows from (31) that r f =
3
7 , rm = 2

7 , r′m = 5
7 ,

and for p = 3
5 we get that r f =

1
4 , rm = 3

8 , r′m = 5
8 . The cy-

cloids e have threefold resp. twofold symmetry, and again,
a regular pentagon can move in e.

We collect these results in

Theorem 2 Let ϕ = ∠AOB be the main value of a given
angle, (A, B points of the (unit) circle u), and let e be the
p−epicycloid with fixed circle f (radius 1−p

1+p ) concentric
with u and A as vertex. Then one can construct the pth

part(s) (p ∈Q) of ϕ by drawing the tangents t j from B to e
and intersect them with u. The intersection points Pj form-
ing a regular polygon define the solution angles ∠AOPj.
The circumcircle u of e is a multi-isoptic locus for the epicy-
cloid e.

Figure 10: Angle bisection and trisection with help of a cardioid resp. a nephroid.

Figure 11: Angle 4-section and 5-section with help of epicycloids.
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Figure 12: The 2
5 and 3

5 of an angle with help of epicycloids.

6 Conclusion

In this paper, we tried to “explain” Bolyai’s classical method
of angle trisection and extend it to n− resp. p−sectioning
an angle, (n ∈ N, p ∈ Q). While the trisection uses an
equilateral hyperbola in standard position, the 5−section
must use cubics (or curves of higher degree), which have
to be calculated individually to each given angle 5α. An
equilateral hyperbola c allows a “similarity-motion” of an
equilateral triangle, such that its vertices move along c. We
could not find a cubic c allowing a similarity- motion to
a regular pentagon, such that its vertices move along c.

Therefore, this extension of Bolyai’s method has no prac-
tical application and is finally adapted to replacing c with
epicycloids e in the standard position. For p ∈ Q these
epicycloids e are closed, and they admit a congruence mo-
tion of regular p−stars, such that their vertices move along
e, a well-known property, which is basic for Wankel motors.
Obviously, because of the theorem of the angle at circum-
ference, the circumcircle u of e is a “multi-isoptic locus”
for e. Finally, one might add that this “epicycloid-method”
also works for p ∈ R, but in such cases, one should restrict
the construction to the main value P1 ∈ u.
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