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Abstract: When designing geotechnical structures, there is a need to adopt a particular 
model to represent the soil we observe under a particular load. The parameters we set for 
this soil are sometimes incomplete, which is caused by various problems such as incomplete 
data from laboratory or field research. The choice of the correct model depends on how 
accurate the calculation we want to get, or how much risk plays a role for us and to what 
extent we can accept some solutions that do not give a true picture of soil behavior under 
load. That is why the proper model selection is the first step in solving geotechnical 
problems, on which all further work will depend. 
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Trenutno stanje modela mehanike tla 
 
 
Sažetak: Prilikom projektiranja geotehničkih građevina, postoji potreba za usvajanjem 
određenog modela kojim ćemo predstaviti tlo koje promatramo pod određenim opterećenjem. 
Parametri koje zadajemo tome tlu ponekad su nepotpuni, čemu su uzrok razni problemi 
poput nepotpunih podataka iz laboratorija ili terenskog (“in situ”) istraživanja. Odabir 
pravilnog modela ovisi o tome koliku točnost izračuna želimo dobiti, odnosno koliku nam 
ulogu igra rizik i do koje granice možemo prihvatiti možda neka rješenja koja ne daju pravu 
sliku o ponašanju tla pod opterećenjem. Zato je pravilan odabir modela prvi korak pri 
rješavanju geotehničkih zadaća, o čemu će nam ovisiti sav daljnji rad. 
 
Ključne riječi: konstitutivni model, mehanika tla, naprezanja, elastičnost, plastičnost 
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1. INTRODUCTION    
 
A model is an attempt to represent a natural phenomenon, physical process and other 
events in nature in such a way that their behavior can be established and a solution to a 
specific problem from the real world can be found. If the definition of the model is limited to 
the field of soil mechanics, or to the constitutive model, its definition, according to Liu, 2005, 
is that the constitutive model describes the change in the stress state of the material element 
resulting from the loads acting on the element. The constitutive model provides information 
on the strength and deformation of the material in the infinitesimal element on which the 
stress acts. According to Nordal, 2008, the soil model is a mathematical relationship between 
stresses and strains, or between changes in stresses and strains. This relationship is often 
called the constitutive equation. 

 The actual soil behavior is very complex. There are different soil models that describe 
the relationships between stresses and strains and their failure behavior. In general, the 
criterion for the application of a soil model should always be a balance between the 
requirements of continuum mechanics, the requirement of realistic representation of soil 
behavior from the laboratory testing aspect, practicality in relation to changes in parameter 
values and simplicity of application within software packages (Ti et al., 2009). 

In the paper of Roje-Bonacci et al., 2006, soil mechanics models are divided into elastic, 
plastic and elasto-plastic ones. According to Nordal, 2008, a division is made into linear-
elastic models, elasto-plastic models, simple total stress models and simple effective stress 
models. 

Soil models differ from each other in the number and type of parameters, their purpose, 
complexity and applicability, or in their description and possibilities (Lade, 2005). The 
development of constitutive models for soft soils over the past 30 years is shown in Figure 1, 
while the development of constitutive models for tunnels over the past 30 years is shown in 
Figure 2. 

 

 
 

Figure 1. Development of constitutive soil models for soft soils over the past 30 years 
(Ti et al., 2009) 
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Figure 2. Development of constitutive soil models for tunnels over the past 30 years  

(Ti et al., 2009) 
 

In the following, the paper presents models of soil mechanics according to the 
classification from the paper Roje-Bonacci et al., 2006. This classification includes models 
related to practical application. 
 
2. ELASTIC SOIL MODELS 
 
2.1 Linear-elastic models 
 
In this model, the relationship between stress and strain is linear, or it is directly proportional 
to the strain (Roje-Bonacci et al., 2006; Brinkgreve, 2005). This relationship for the triaxial 
stress state and the triaxial strain state is expressed by equation (1), while the model for the 
uniaxial strain state and the plane stress state is shown in Figure 3. 

 
 

Figure 3. Linear-elastic soil model for the uniaxial strain state and plane stress state 
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(1)

 
 The principal stresses are marked with σଵ and σଷ and are located on the principal stress 

directions of a body. The soil model for the uniaxial stress state from Figure 3 is defined by 
two parameters: Young's modulus or modulus of elasticity E and Poisson's ratio ν. It should 
be noted that this model is also called Hooke's law, or linear isotropic elasticity (Brinkgreve, 
2005). Using the known relationships from Šimić, 2002, this model can be further described 
using four parameters. So, in addition to the mentioned two parameters, there is also the 
shear modulus G and the volume deformation modulus K: 

 

G ൌ
E

2ሺ1  νሻ
, K ൌ

E
3ሺ1 െ 2νሻ

 
 

     (2)
 

Compared to other soil models, this model has the simplest relationship between stress 
and strain, but it is not very suitable for covering important features of soil behavior. 
Regardless of that, Hooke's law still plays an important role in more complex calculation 
(modeling) procedures, since it is often incorporated into the elastic part of more complex 
elastoplastic models. However, a modification of this model includes stiffness anisotropy, so 
that Young's modulus E and Poisson's ratio ν are defined in two directions, and an additional 
shear modulus G, thus with five included parameters (Brinkgreve, 2005; Wood, 1994). 

Through this modification with increase in parameters, this model can be used for stiff 
soils, thin concrete walls or slabs, or rocks, and for areas that do not have pronounced 
plasticity. This model is not generally suitable for soils (Brinkgreve, 2005). However, Lade, 
2005, states that this model can be used for sand, clay and cemented soils. Wood, 1994, 
mentions the use of this model in the calculation of deformations of geotechnical structures 
loaded with working loads and in the calculation of stresses in corresponding laboratory 
tests. 
 
2.2 Duncan-Chang model 
 
This model is based on the stress-strain curve, first presented in 1970 by Duncan and 
Chang. It was obtained from a drained triaxial compression test, and can be described by a 
hyperbolic function: 
 

ε
σଵ െ σଷ

ൌ a െ bε  (3)

 
a and b are determined by: 

 

a ൌ
1
E୧

,
1
b

ൌ ሺσଵ െ σଷሻ 
   (4)

 
In Figure 4, the above model is shown as a combination of presentations from 

Brinkgreve, 2005, Roje-Bonacci et al., 2006, and Ti et al., 2009. 
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Figure 4. View of the Duncan-Chang model  
(Brinkgreve, 2005; Roje-Bonacci et al., 2006; Ti et al., 2009) 

 
This model consists of three moduli: initial modulus E୧, tangent modulus E୲ and 

unloading-reloading modulus E୳୰ (Mitchell and Gardner, 1971; Roje-Bonacci et al., 2006). 
ሺσଵ െ σଷሻ is the difference of principal stresses at failure, while ሺσଵ െ σଷሻୟ is the asymptotic 
difference of principal stresses with respect to the hyperbolic curve relating stress and strain. 
R is the failure parameter (ratio). 

The advantage of the Duncan-Chang model is that it is widely used because its 
parameters (specified moduli) can be obtained from a standard triaxial test. The 
disadvantage of this model is that it is not suitable for computations where failure is 
calculated for soil that behaves fully plastically (Ti et al., 2009). According to Roje-Bonacci et 
al., 2006, this model poorly describes the decrease of shear modulus from the initial state to 
failure, depending on the shear strain. 
 
2.3 Anisotropic-elastic model 
 

Different properties of a material in different directions is called anisotropy. When 
incorporating anisotropy into a specific model, elastic anisotropy and plastic anisotropy are 
considered separately. Elastic anisotropy refers to the use of elastic stiffness parameters in 
different directions. Plastic anisotropy means the use of different stress/strain parameters in 
different directions, which is analyzed below in the Jointed Rock Model (Plaxis b.v., 2002) 
(Figure 5). 

 
Figure 5. Concept of the Jointed Rock Model (Plaxis b.v., 2002) 
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The assumption is that this rock without discontinuities behaves as a transversely 
anisotropic elastic material, quantified by five parameters and with a direction of anisotropy. 
A maximum of three sliding directions/planes can be defined, of which the first plane is 
assumed to coincide with the direction of elastic anisotropy. Each plane may have different 
shear strengths. 

The elastic material behavior in the Jointed Rock Model is described by an elastic 
material stiffness matrix, D∗. Matrix D* in the Jointed Rock Model is transversely anisotropic. 
Different stiffnesses can be used normal to and in a predefined direction ("plane 1"). This 
direction may correspond to the stratification direction or to any other direction with 
significantly different elastic stiffness properties. Consider a horizontal stratification, where 
"plane 1" is parallel to the x-z plane, and the following relations shown in equation (5) are set: 
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(5)

 
A dot above the mark for a particular quantity indicates an infinitesimal value. The 

inverse of the anisotropic elastic material stiffness matrix, ቀD∗ቁ
ିଵ

, is obtained from the 

relations determined in equation (5). The matrix D* can only be obtained by numerical 
inversion. 

In general, the stratification plane will not be parallel to the global x-z plane. However, 
the relations from equation (5) will hold for a local n-s-t coordinate system, where the 
stratification plane is parallel to the s-t-plane. The orientation of this plane is defined by the 
dip angle and dip direction. As a consequence, the local material stiffness matrix has to be 
transformed from the local to the global coordinate system. A transformation of stresses and 
strains is considered first: 

 
σ୬ୱ୲ ൌ Rσ୶୷, σ୶୷ ൌ R

ିଵσ୬ୱ୲ (6)

ε୬ୱ୲ ൌ Rகε୶୷, ε୶୷ ൌ Rக
ିଵε୬ୱ୲ (7)

 
It holds that: 
 
R

க
=Rିଵ


, Rି


ൌ Rିଵ

க
   (8)
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Relationships can be transformed from the local n-s-t coordinate system to the global x-
y-z coordinate system: 

 
 
σ୬ୱ୲ ൌ D∗

 ୬ୱ୲
 ε୬ୱ୲ 

 
σ୬ୱ୲ ൌ R  σ ୶୷ 

 
ε୬ୱ୲ ൌ R க ε ୶୷ 

 

 
 
 
             R க σ ୶୷ ൌ D∗

୬ୱ୲ 
R க ε ୶୷ 

 
 
 

(9)

 
This model makes it possible to model the anisotropy of the rock mass. The big 

advantage of this model is that it uses the usual parameters for the rock mass (Equation (5)). 
The values of these parameters can also be determined for the direction that is intended to 
be analyzed (Hack et al., 2010). The same authors recommend the use of this model when 
modeling stresses and strains in tunnels. 
 
3. PLASTIC SOIL MODELS 
 
The concept of plasticity theory consists of three basic relationships: yield conditions, the law 
of yielding and hardening, and failure conditions. Plastic constitutive models differ in the 
assumed yield function. 

According to Thakur and Nordal, 2005, the total soil deformation can generally be 
expressed as: 

 
ε ൌ εୣ  ε୮ (10)

 
The following relation (Roje-Bonacci et al., 2006) also applies: 

 
dε ൌ dεୣ  dε୮ (11)

 
where ε is the total relative deformation, εୣ is the elastic relative deformation, while ε୮ is 

the plastic deformation. 
The Mohr-Coulomb model, the Drucker-Prager model, the von-Mises model and the 

Tresca model will be described below. 
 
3.1 Mohr-Coulomb soil model 
 
The model is simple and applicable to the 3D stress state, where only two strength 
parameters (cohesion c and internal friction angle φ) are needed to describe the plastic 
behavior (Ti et al., 2009). 

The theory is based on the fact that failure is controlled by maximum shear stresses that 
depend on normal stresses, which is shown by Mohr's circle (Figure 6) for the stress state at 
failure for the maximum and minimum principal stress. 
 
 

 



e-ZBORNIK      24/2022 
 
 
Đurin, B., Kancijan, M., Aniskin, A., Soldo, B. 
The current state of soil mechanics models  

 

 
                         

19 

 

 
Figure 6. Mohr-Coulomb failure criterion for plane stress 

 
According to Figure 6, Mohr-Coulomb's law is represented by: 
 
τ ൌ c  σ ∙ tgφ (12)

 
From the same figure, it is evident that: 
 
τ ൌ q ∙ cosφ and σ ൌ p െ q ∙ sinφ (13)

 
If the expressions for 𝜏 and 𝜎 from equation (13) are substituted in equation (12), the 

Mohr-Coulomb criterion can be written in the form: 
 

q െ p ∙ sinφ െ c ∙ cosφ ൌ 0 (14)
 

where: 
 
q ൌ ሺσଵ െ σଷሻ/2 and p ൌ ሺσଵ  σଷሻ/2 (15)

 
The soil behavior at failure is well covered by this model (Brinkgreve, 2005). It is 

established that the combination of stresses that causes failure in soil samples fits the shape 
of the failure surface, which is in the form of a regular hexagonal prism (Roje-Bonacci et al., 
2006; Ti et al., 2009). Figure 7 shows the yield surface for the Mohr-Coulomb model. 

 
Figure 7. Yield surface for the Mohr-Coulomb model for the case when cohesion is c=0 kPa 
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In Ti et al., 2009, the authors state that the soil behavior is well described by this model 
for the drained condition, but that it is preferable to use undrained parameters (c and φ) for 
undrained analysis. Also, for perfectly plastic behavior, the model does not include the effect 
of hardening or softening of the soil. 
 
3.2 Drucker-Prager soil model 
 
This model represents a simplified Mohr-Coulomb model, in the way that the yield surface is 
replaced by a cone shape (Brinkgreve, 2005) (Figure 8). 

 

 
 

Figure 8. Yield surface for the Drucker-Prager model (Brinkgreve, 2005) 
 

The model is defined through the expression for the yield function f: 
 
f ൌ ඥJଶ െ αIଵ െ k ൌ 0 (16)

 
where f is the yield function, Jଶ and Iଵ are the corresponding stress invariants, while 

α and k are the material parameters (Table 1). These parameters are shown for three 
possible cases from Figure 9. (Nordal, 2008). 

 
Table 1. Value of parameters α and k for three possible cases (Nordal, 2008) 

 
Possible cases α k 

Triaxial pressure 
ሺσଶ ൌ σଷሻ 

2sinφ

√3ሺ3 െ sinφሻ
 

6c cosφ

√3ሺ3 െ sinφሻ
 

Triaxial tension 
ሺσଶ ൌ σଵሻ 

2sinφ

√3ሺ3  sinφሻ
 

6c cosφ

√3ሺ3  sinφሻ
 

Internal  
tangent circle 

sinφ

√3ሺ3  sinଶφሻ
 

6c cosφ

√3ሺ3  sinଶφሻ
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Figure 9. Comparison of Drucker-Prager yield surface with Mohr-Coulomb yield surface in 
plane view (Nordal, 2008) 

 
Because of its simplicity, the Drucker-Prager model is often used in geotechnical 

engineering. However, it was found that the circular shape of the Drucker-Prager yield 
surface in the deviatoric stress plane does not match well with experimental data. For the 
above reason, caution is needed when the Drucker-Prager model is used in geotechnical 
engineering (Yu, 2006). 
 
3.3 Tresca model 
 
This model is considered a particular case of the Mohr-Coulomb failure criterion. The yield 
surface is a regular hexagonal prism (Figure 10) (Taiebat and Carter, 2008). 

 

 
 

Figure 10. Yield surface for the Tresca model (Taiebat and Carter, 2008) 
 

The model is defined through the expression for the yield function f: 
 
f ൌ ඥJଶ ∙ cosθ െ s୳ ൌ 0  (17)
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where Jଶ is the second stress invariant, θ is the Lode angle, which determines the 
orientation of the stress plane with respect to the direction of principal stresses, s୳ is the 
undrained shear strength of the soil (Taiebat and Carter, 2008, Yu, 2006). 
 
3.4 Von-Mises model 
 
The von-Mises model is primarily conceived as an approximation and mathematically more 
suitable simplification of the Tresca model (Nordal 2008). Furthermore, it holds that yielding 
occurs when the second stress invariant reaches a critical value (Yu, 2006), i.e. when the 
yield function f is equal to 0: 
 

f ൌ ඥJଶ ∙ cosθ െ k ൌ 0 (18)

 
where Jଶ is the second stress invariant, and k is the undrained shear strength of the soil 

in pure shear. The yield surface for the von-Mises model is a cylinder (Figure 11) 
 

 
 

Figure 11. Yield surface for the von-Mises model (Nordal, 2008) 
 

Figure 12 shows the yield surface for the Tresca model and the yield surface for the 
von-Mises model in a plane view. 

 

 
Figure 12. Yield surface for Tresca model and yield surface for von-Mises model  

in plane view (Yu, 2006) 
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If the undrained shear strength of the soil in pure shear, k, is suitably chosen so that the 
circle representing the failure surface of the von-Mises model passes through the corners of 
the hexagons representing the failure surface of the Tresca model (Figure 12), the following 
relation holds: 

 

k ൌ
s୳

cos θ
  (19)

 
According to equation (19) and Figure 12, i.e. by comparing the functions of the von-

Mises model and the Tresca model, it is evident that the von-Mises criterion generally implies 
a slightly higher undrained shear strength. The difference depends on the Lode angle θ (Yu, 
2006). Yu, 2006, also recommends using this model in cohesive soils. 
 
4. ELASTO-PLASTIC SOIL MODELS 
 
4.1 Linear elastic-perfectly plastic model 
 
Figure 13 shows the linear elastic-perfectly plastic behavior of the soil. 

 

 
 

Figure 13. Linear elastic-perfectly plastic soil behavior (Mouazen and Neményi, 1998) 
 

The model that describes this soil behavior consists of two parts. In the first part, marked 
with 1 in Figure 13, the behavior of the soil is linear elastic, while in part 2 the behavior is 
perfectly plastic (Mouazen and Neményi, 1998). 

According to the equations, the relative deformation can be divided into elastic and 
perfectly plastic components. The elastic component has its constitutive equation where: 

 
σ ൌ C ∙ ε (20)
 
where C is the elastic constant of the system (Roje-Bonacci, 2003). 
 
The yield function, f, is determined by: 
 
f ൌ f ሺσ୶, σ୷, σ, τ୶୷ሻ (21)
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Thus, for f ൏ 0, the stress is in the area of elastic deformations, and for f ൌ 0 the yield 
function describes the strength law. This model is used when considering shear failure in soil 
due to exceeding the shear strength (Roje-Bonacci, 2003). 
 
4.2 Cam-Clay (original) model and modified Cam-Clay model of soil 
 

Cam-Clay is a model integrated into the Plaxis 8.0 software package, an illustration of 
the Cam-Clay model is given in Figure 14 in the pᇱ െ q coordinate system. pᇱ is the mean 
effective stress, q is the stress deviator, pୡ is the overconsolidation stress, M is the critical 
state parameter. 

 
Figure 14. Cam-Clay (original) model in the pᇱ െ q coordinate system (Baxter, 2000) 

 
In order to describe this model, the presented Figure 15 in the ln pᇱ െ ν coordinate 

system describes the laboratory results of oedometer tests and isotropic compression tests, 
performed in order to obtain some parameters (data) to be used for modeling the Cam-Clay 
model. ν is the specific volume, determined using the pore coefficients e, where ν ൌ 1  e 
(Baxter, 2000). 

 
Figure 15. Representation of the results of the oedometer test and isotropic compression test 

(Baxter, 2000) 

Sp
ec
if
ic
 v
o
lu
m
e 
v 



e-ZBORNIK      24/2022 
 
 
Đurin, B., Kancijan, M., Aniskin, A., Soldo, B. 
The current state of soil mechanics models  

 

 
                         

25 

 

The "url" line (unloading-reloading line) and the "icl" line (isotropic compression line) 
describe the compressibility of the soil and are assumed to be linear. The parameter κ is the 
gradient of the "url" line, while the parameter λ is the gradient of the "icl" line. The "csl" line 
represents the critical state line and is parallel to the "icl" line. With this curve, plastic shear 
deformation occurs without the formation of plastic volumetric stresses. The parameter N 
indicates the position of the "icl" line in the ln pᇱ െ ν coordinate system. The parameter N is 
also the value of the specific volume ν on the "icl" line with the value pᇱ ൌ 1 (Baxter, 2000). 

For the Cam-Clay (original) model, the changes (increments) of relative elastic 
volumetric strain δε୮

ୣ and relative elastic shear strain δε୯
ୣ can be expressed as: 

 

δε୮
ୣ ൌ

κ
νpᇱ δpᇱ and δε୯

ୣ ൌ 0 (22)

 
The modified Cam-Clay model is shown in Figure 16. 
 

 
Figure 16. Modified Cam-Clay model (Baxter, 2000) 

 
For the modified Cam-Clay model, the changes (increments) of the relative elastic 

volumetric strain δε୮
ୣ and the relative elastic shear strain δε୯

ୣ can be expressed as: 
 

δε୮
ୣ ൌ

κ
νpᇱ    δpᇱ and δε୯

ୣ ൌ
1

3G
δq 

(23)

 
Relative volumetric strains can also be expressed through the volumetric strain 

modulus, K: 
 

K ൌ
δpᇱ

δε୮
ୣ 

(24)

 
For the Cam-Clay (original) model and for the modified Cam-Clay model, the modulus K 

is equal to: 
 

K ൌ
νpᇱ

κ
 

(25) 
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The yield function f defines the boundary between elastic and elasto-plastic deformation. 
At stresses below the yield surface, defined by the yield function f, only elastic deformations 
occur. Above the yield surface, elastic and plastic deformations occur (Baxter, 2000). 

The yield function for the Cam-Clay (original) model is given by the expression: 
 

f ൌ
q

Mpᇱ  ln
pᇱ

pᇱ
୶

െ 1 
(26)

 
The parameter pᇱ defines the size of the yield surface. 
The shape of the yield surface for the modified Cam-Clay model is an ellipse. For the 

Cam-Clay model, the yield surface intersects the M line at pᇱ
ୡ/2,72, and for the modified 

Cam-Clay model at pᇱ
ୡ/2. 

In Baxter, 2000, the Cam-Clay (original) model and the modified Cam-Clay model were 
used to model the behavior of bentonite clays used for seepage control diaphragms and it 
was concluded that their application was justified. According to Brinkgreve, 2005, the 
modified Cam-Clay model is most suitable for soft soils such as normally consolidated clays. 
 
4.3 Deformation-softening model 
 
In this model, the concept of deformation softening means the formation of plastic 
deformations with reduction of stresses that cause the material to yield. This model is shown 
in Figure 17. 

 
 

Figure 17. Deformation-softening soil model 
 

This model consists of three linear parts. The first is the linear part that increases to the 
highest shear strength (point 1), the second part is the softening part in which the shear 
strength decreases to the highest residual strength (point 2), while the third part is from point 
2 onwards, where the shear strength c୳୰ does not change. Consequently, this model is 
elastic-softening-plastic (Roje-Bonacci et al., 2006). 

The yield function f for this model is given by shear stresses q and undrained shear 
strength c୳: 

 
f ൌ q െ ඥ3c୳  (31)

 
Failure at shear strength, c୳, is equal to: 

residual undrained 
shear strength cur 

peak undrained strength cur 

un
dr

ai
ne

d 
sh

ea
r 

st
re

ng
th

 c
u 

deformation 



e-ZBORNIK      24/2022 
 
 
Đurin, B., Kancijan, M., Aniskin, A., Soldo, B. 
The current state of soil mechanics models  

 

 
                         

27 

 

 

C୳ ൌ
σଵ െ σଷ

2
 

 

(32)

Figure 18 also shows an example of an extreme softening situation for sensitive clays, 
which can occur, shown in the σ െ ε coordinate system. 

 

 
Figure 18. Extreme situation of softening of sensitive clay in the deformation-softening soil 

model (Thakur and Nordal, 2005) 
 
5. CONCLUSION 
 
Soil mechanics models have the role of representing the stress-strain relationship of different 
soil types for different load cases. The purpose of these models is to present the actual soil 
behavior as faithfully and realistically as possible, based on data obtained from field and 
laboratory tests. A model of soil mechanics should simulate the real behavior of the soil and 
it should have such properties that the parameters needed for its description and definition 
can be obtained from the simplest possible tests, be it laboratory tests or field tests (Lade, 
2005). 

It is appropriate to choose a soil model that allows fitting (adjustment) to the data 
obtained in laboratory tests. It is very important to include calculations from as many 
experimental measurements as possible in order to obtain the highest degree of reliability of 
the model, which ultimately allows a greater applicability of that model. Furthermore, such a 
model provides the "right" answer to the problem being solved, despite the fact that such an 
answer involves some degree of assumptions with a certain level of accuracy (Ti et al., 
2009). 
 
REFERENCES 
 
1. Baxter, D. Y.: Mechanical Behavior of Soil-Bentonite Cutoff Walls, doctoral thesis, Faculty 
of the Virginia Polytechnic Institute and State University, Virginia, USA, 2000 
2. Brinkgreve, R. B. J.: Selection of Soil Models and Parameters for Geotechnical 
Engineering Application, GeoFrontiers 2005 Congress: Soil Constitutive Models: Evaluation, 
Selection, and Calibration, Austin, USA. 
3. Hack, R., Azzam, R., Charlier, R.: Engineering Geology for Infrastructure Planning in 
Europe: A European Perspective (Lecture Notes in Earth Sciences), New York, USA, 2010 



e-ZBORNIK      24/2022 
 
 
Đurin, B., Kancijan, M., Aniskin, A., Soldo, B. 
The current state of soil mechanics models  

 

 
                         

28 

 

4. Kavitha, P. E., Narayanan, K. P., Beena, K. S.: A review of soil constitutive models for soil 
structure interaction analysis, Proceedings of Indian Geotechnical Conference, Kochi, India, 
2011 
5. Lade, P. V.: Overview of Constitutive Models for Soils, ASCE Geotechnical Special 
Publication No.128, Soil Constitutive Models: Evaluation, Selection, and Calibration, Austin, 
USA, 2005 
6. Liu, M. D.: Soil Plasticity and the Structured Cam Clay Model, lectures as part of the 
undergraduate study in civil engineering at Suranaree University of Technology (SUT), 
Nakhon Ratchasima, Thailand, 2005 
7. Mitchell, J. K., Gardner, W. S.: Analysis of Load-Bearing Fills over Soft Subsoils, 
Proceeding of The American Society of Civil Engineers, Oklahoma, USA, 1971 
8. Mouazen, A. M., Neményi, M.: A review of the finite element modelling techniques of soil 
tillage, Mathematics and Computers in Simulation, 48, 1998 
9. Nordal, S.: Soil Modeling, written materials as part of the doctoral study "Soil Modeling", 
Geotechnical Department, Norwegian University of Science and Technology, Trondheim, 
Norway, 2008 
10. Plaxis b.v., Plaxis Version 8, Material Models Manual, Delft, The Netherlands, 2002 
11. Roje-Bonacci, T., Mehanika tla, drugo dopunjeno i izmijenjeno izdanje, Faculty of Civil 
Engineering, University of Split, IGH d.d. Zagreb, Geotechnical Faculty Varaždin, Split, 
Croatia, 2003 
12. Šimić, V.: Otpornost materijala I, Školska knjiga Zagreb, II. Izdanje, Zagreb, Hrvatska, 
2002 
13. Taiebat, H. A., Carter, J. P.: Flow rule effects in the Tresca model, Computers and 
Geotechnics, 35, 2008 
14. Thakur, V., Nordal, S.: Rate Dependent Elasto Plastic Deformation of Shear Bands in 
Sensitive Clays, Electronic Journal of Geotechnical Engineering (EJGE), Oklahoma, USA, 
2005 
15. Ti, K. S., Huat, B. B. K., Noorzaei, J., Jaafar, M. S., Sew, G. S.: A Review of Basic Soil 
Constitutive Models for Geotechnical Application, Electronic Journal of Geotechnical 
Engineering (EJGE), Oklahoma, USA, 2009 
16. Wood, D. M.: Soil behaviour and critical state soil mechanics, Cambridge University 
Press, 2. Reprint, Melbourne, Australia, 1994 
17. Yu, H.: Plasticity and Geotechnics, Springer Science+Business Media, New York, USA, 
2006 
18. http://www.answers.com/topic/sensitive-clay, McGraw-Hill Science & Technology 
Dictionary: sensitive clay, accessed on 22.09.2022. 
19. http://www.itascacg.com/pdf/flac/Models500.pdf, Itasca International Inc. (2005), 2. 
Constitutive Models: Theory and Implementation, instructions for the FLAC 5.0 software 
package, accessed on 22.09.2022. 
20.http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id
=10931, United States Department of Labor, accessed on 22.09.2022. 
 
 
 
 
 

 
 
 


