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Vol. 57(77)(2022), 185 – 201

ON THE MULTIPLICITY IN PILLAI’S PROBLEM WITH

FIBONACCI NUMBERS AND POWERS OF A FIXED

PRIME

Herbert Batte, Mahadi Ddamulira, Juma Kasozi and Florian
Luca

Makerere University, Uganda and University of the Witwatersrand, South
Africa

Abstract. Let {Fn}n≥0 be the sequence of Fibonacci numbers and let p be a prime.

For an integer c we write mF,p(c) for the number of distinct representations of c as Fk − pℓ

with k ≥ 2 and ℓ ≥ 0. We prove that mF,p(c) ≤ 4.

1. Introduction

1.1. Background. Let {Fn}n≥0 be the Fibonacci sequence given by F0 =
0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. The first few terms of this
sequence are given by

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

For fixed integers a > 1, b > 1, c, the Diophantine equation

(1.1) ax − by = c,

in nonnegative integers x, y is known as the Pillai equation, see [13]. Pillai
was interested if the above equation can have more than one solution (x, y)
and proved that if a and b are positive and coprime and |c| > c0(a, b), then the
above equation has at most one solution (x, y). Variants of the Pillai problem
have been recently considered in which one takes a to be 2 or 3 but replaces the
sequence of powers of b by some other sequence of positive integers of expo-
nential growth such as Fibonacci numbers, Tribonacci numbers, Pell numbers
and even k–generalized Fibonacci numbers where k is also unknown. In all of
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these results, it was shown that the conclusion of the original Pillai problem is
retained (so, every large integer has at most one such representation) except
for some cases where parametric families exist which are completely classified
together with the small exceptional cases with multiple such representations
which have also been computed. See, for example, [3, 5, 6, 7]. Here, we retain
the Fibonacci sequence but replace powers of 2 or 3 by powers of an arbitrary
but fixed prime p. Write

mF,p(c) := #{(k, ℓ) : k ≥ 2, ℓ ≥ 0, c = Fk − pℓ}.

We imposed the condition k ≥ 2 above because F1 = F2 = 1. Our result is
the following.

1.2. Main result.

Theorem 1.1. The inequality mF,p(c) ≤ 4 holds for all primes p and all
integers c.

We believe that the better result mF,p(c) ≤ 3 holds, but we did not
succeed in proving this. Further, quite possibly mF,p(c) = 3 holds only for
finitely many pairs (p, c), and maybe only for the following 3 pairs

(1.2)
(2,−3) : −3 = F7 − 24 = F5 − 23 = F2 − 22,
(2, 0) : 0 = F6 − 23 = F3 − 21 = F2 − 20,
(2, 1) : 1 = F5 − 22 = F4 − 21 = F3 − 20.

We leave proving that mF,p(c) ≤ 3 and classifying the pairs of integers (p, c)
with mF,p(c) = 3 as a problem to the reader. On the other hand, we believe
that mF,p(c) = 2 holds for infinitely many pairs (c, p). For that, it suffices
to look for c with two representations of the form c = Fk1

− p = Fk2
− 1,

so the two representations (k1, ℓ1) and (k2, ℓ2) have ℓ1 = 1, ℓ2 = 0. Then
p = Fk1

−Fk2
+1. A calculation revealed 2161 primes p of the above form in

the range 2 ≤ k2 < k1 ≤ 1000.
Before embarking to the proof, let us remark that it is not surprising that

mF,p(c) is bounded by an absolute constant. Indeed, letting mF,p(c) = m,
then the equation

c = Fk − pℓ

has m solutions (k, ℓ) with k ≥ 2 and ℓ ≥ 0. If c = 0, we get Fk = pℓ. The
only solution of this equation with ℓ ≥ 2 is F6 = 23 by the well-known result
concerning perfect powers in the Fibonacci sequence [4]. Thus, mF,p(0) ≤ 3,
and mF,p(0) = 3 holds only for the prime p = 2. When c 6= 0, then by using
the Binet formula for the Fibonacci sequence

(1.3) Fk =
αk − βk

√
5

, where (α, β) =

(

1 +
√
5

2
,
1−

√
5

2

)
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valid for all k ≥ 0, our equation can be rewritten as

1 =
1

c
√
5
αk − 1

c
√
5
βk − 1

c
pℓ.

This is a particular case of the equation 1 = a1x1 + · · · + asxs with s = 3,
(a1, a2, . . . , as) = (1/(c

√
5), ±1/(c

√
5),−1/c) and x1, x2, . . . , xs unknowns in

the multiplicative group Γ generated by {α, p} inside C
∗
of rank r = 2 (note

that β = −α−1). Furthermore, such a solution is nondegenerate in the sense
that no subsum

∑

i∈I aixi vanishes for some subset I ⊆ {1, 2, . . . , s} since for
us k ≥ 2. Theorem [1, Theorem 6.1] immediately gives that for a fixed choice
of nonzero coefficients (a1, a2, . . . , as) the number of such solutions is

≤ (8s)4s
4(s+r+1),

so for us
m ≤ 2 · (8 · 3)4·34(3+2+1)

and the right–hand side above exceeds 102500. Thus, while the boundedness
of m follows easily from known results on the finiteness of non-degenerate
solutions to S-unit equations, the merit of our paper is to give a bound on m
which is quite close to the best possible.

2. Methods

We use three times Baker-type lower bounds for nonzero linear forms in
two or three logarithms of algebraic numbers. There are many such bounds
mentioned in the literature like that of Baker and Wüstholz from [2] or
Matveev from [10]. Before we can formulate such inequalities we need the
notion of height of an algebraic number recalled below.

Definition 2.1. Let γ be an algebraic number of degree d with minimal
primitive polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(x− γ(i)),

where the leading coefficient a0 is positive. Then, the logarithmic height of γ
is given by

h(γ) :=
1

d

(

log a0 +

d
∑

i=1

logmax{|γ(i)|, 1}
)

.

In particular, if γ is a rational number represented as γ = p/q with
coprime integers p and q ≥ 1, then h(γ) = logmax{|p|, q}.
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The following properties of the logarithmic height function h(·) will be
used in the rest of the paper without further reference:

h(γ1 ± γ2) ≤ h(γ1) + h(γ2) + log 2;

h(γ1γ
±1
2 ) ≤ h(γ1) + h(γ2);

h(γs) = |s|h(γ) valid for s ∈ Z.

A linear form in logarithms is an expression

(2.1) Λ := b1 logα1 + · · ·+ bt logαt,

where for us α1, . . . , αt are positive real algebraic numbers and b1, . . . , bt are
nonzero integers. We assume, Λ 6= 0. We need lower bounds for |Λ|. We write
K = Q(α1, . . . , αt) and D for the degree of K. We start with the general form
due to Matveev [10].

Theorem 2.2. Put Γ := αb1
1 · · ·αbt

t − 1 = eΛ − 1. Then

log |Γ| > −1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At,

where B ≥ max{|b1|, . . . , |bt|} and Ai ≥ max{Dh(αi), | logαi|, 0.16} for i =
1, . . . , t.

We continue with t = 2. Let A1 > 1, A2 > 1 be real numbers such that

(2.2) logAi ≥ max

{

h(αi),
| logαi|

D
,
1

D

}

for i = 1, 2.

Put

b′ :=
|b1|

D logA2
+

|b2|
D logA1

.

The following result is Corollary 2 in [9].

Theorem 2.3. In case t = 2, we have

log |Λ| ≥ −24.34D4

(

max

{

log b′ + 0.14,
21

D
,
1

2

})2

logA1 logA2.

After some calculations with the above theorems, we end up with some
upper bounds on our variables which are too large, thus we need to reduce
them. We use the following result of Legendre which is related to continued
fractions (see [12, Theorem 8.2.4]).

Lemma 2.4. Let τ be an irrational number with continued fraction
[a0, a1, . . .] and convergents p0/q0, p1/q1, . . .. Let M be a positive inte-
ger. Let N be a non-negative integer such that qN > M . Then putting
a(M) := max{ai : 0 ≤ i ≤ N}, the inequality

∣

∣

∣

∣

τ − r

s

∣

∣

∣

∣

>
1

(a(M) + 2)s2
,

holds for all pairs (r, s) of positive integers with 0 < s < M .



ON THE MULTIPLICITY IN PILLAI’S PROBLEM 189

Let {Ln}n≥0 be the Lucas sequence given by L0 = 2, L1 = 1 and Ln+2 =
Ln+1 + Ln for all n ≥ 0. We need the following lemma.

Lemma 2.5. If m ≥ n and m ≡ n (mod 2), then

Fm − Fn = F(m−δn)/2L(m+δn)/2, where δ = (−1)(m−n)/2.

For a prime p let z(p) be the order of appearance of the prime p in the
Fibonacci sequence (sometimes also called the entry point of p) which is the
smallest positive integer k such that p | Fk. This exists for every prime number
p. It is well-known that p | Fk if and only if z(p) | k. Further, writing νp(m)
for the exponent of p in the factorization of m, and putting ep := νp(Fz(p)),
then it is well-known that whenever p | Fk we have νp(Fk) ≥ ep and further if
f = νp(Fk) is positive then pf−epz(p) | k. The following computational result
is due to McIntosh and Roettger ([11]).

Lemma 2.6. If p < 1014, then p‖Fz(p).

Finally, we present an analytic argument which is [8, Lemma 7]. It is
useful when obtaining upper bounds on some positive real variable involving
powers of the logarithm of the variable itself.

Lemma 2.7. If s ≥ 1, T > (4s2)s and T >
x

(log x)s
, then

x < 2sT (logT )s.

In the addition to the above results, we also used computations with
Mathematica.

3. Proof of Theorem 1.1

3.1. Notation. From now on, we work with pairs (p, c) such thatmF,p(c) ≥
3. We may assume that p ≥ 5 since the cases p = 2, 3 were treated in [6] and
[7], respectively. We write m := mF,p(c) and write

(3.1) c = Fki
− pℓi for i = 1, 2, . . . ,m.

We assume ℓ1 > ℓ2 > · · · > ℓm ≥ 0. Then,

(3.2) Fki
− Fkj

= pℓi − pℓj > 0, for 1 ≤ i < j ≤ m,

so ki > kj . Thus, k1 > k2 > · · · > km ≥ 2.

3.2. k1 ≤ 1000. Suppose that k1 ≤ 1000. We considered the Diophantine
equation Fk2

−Fk3
= pℓ2 −pℓ3 for 2 ≤ k3 < k2 ≤ 1000, p ≥ 5 and 0 ≤ ℓ3 < ℓ2.

Taking ℓ3 = 0, we get Fk2
− Fk3

+ 1 = pℓ2 . The above equation has 2161
solutions (k2, k3, p, ℓ2) in the range 1000 ≥ k2 > k3 ≥ 2 with ℓ2 = 1 and
only one solution with ℓ2 > 1 which is F14 − F11 + 1 = 172 (other interesting
formulas are F12 −F2+1 = 122 and F24 −F12+1 = 2152, but 12 and 215 are
not primes). For each one of these 2162 quadruplets (k2, k3, p, ℓ2), we checked
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whether there exists k1 ∈ [k2 + 1, 1000] such that Fk1
− (Fk3

− 1) = pℓ1 for
some positive exponent ℓ1 and did not find any such instance. This code ran
for a few hours in Mathematica.

Assume next that ℓ3 ≥ 1. We fix 2 ≤ k3 < k1 ≤ 1000. Then

(p− 1)ℓ2 < pℓ2 − pℓ3 = Fk2
− Fk3

< pℓ2 .

So, ℓ2 ≤ (log(Fk2
− Fk3

))/ log 4 and once ℓ2 is a fixed positive integer in the
above range, we have p = 1+ ⌊(Fk2

−Fk3
)1/ℓ2⌋. Having found p, we calculate

ℓ3 = ⌊log(pℓ2 − (Fk2
− Fk3

))/ log p⌋,

and check whether ℓ3 ≥ 1 and pℓ3 = pℓ2 − (Fk2
−Fk3

). This program ran for a
day or so in Mathematica and did not find any solutions. The only solutions
found for Fk1

− pℓ1 = Fk2
− pℓ2 where 1000 ≥ k1 > k2 ≥ 2 and ℓ1 > ℓ2 ≥ 1

were

F8 − 52 = F2 − 5, F10 − 72 = F7 − 7, F12 − 112 = F9 − 11.

So, our computation shows that there is no integer c having at least three
representations as Fki

− pℓi with 2 ≤ k3 < k2 < k1 ≤ 1000 and some prime
p ≥ 5. So, from now on we assume that k1 > 1000 when m ≥ 3 and k2 > 1000
when m ≥ 4.

3.3. Inequalities for ki in terms of ℓi. Recall the Binet formula (1.3)

Fn =
αn − βn

√
5

for all n ≥ 0.

It is well-known and can be easily checked by induction that the inequalities

(3.3) αn−2 ≤ Fn ≤ αn−1 hold for all n ≥ 1.

Let i ∈ {1, 2, . . . ,m− 1} and j ∈ {i+ 1, . . . ,m}. Then

αki−4 ≤ Fki−2 = Fki
− Fki−1 ≤ Fki

− Fkj
= pℓi − pℓj < pℓi

αki−1 ≥ Fki
> Fki

− Fkj
= pℓi − pℓj ≥ 0.8pℓi,

where for the last inequality we used the fact that p ≥ 5. So, we get

ki logα− 4 logα < ℓi log p < ki logα− log(α/1.25).

Since 4 logα < 2 and log(α/1.25) > 0.25, we can record the following lemma.

Lemma 3.1. For i = 1, 2, . . . ,m− 1 we have

ki logα− ℓi log p ∈ (log(α/1.25), 4 logα) ⊂ (c1, c2),

where c1 := 0.25, c2 := 2.
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3.4. Two small linear forms in logarithms. We assume that m ≥ 3. We
let (k, ℓ) := (ki, ℓi) for i = 1, 2, . . . ,m − 2 and (k′, ℓ′) := (kj , ℓj) for some
j = i+ 1, . . . ,m− 1. Then

(3.4) Fk − pℓ = Fk′ − pℓ
′

can be rewritten as
∣

∣

∣

∣

αk

√
5
− pℓ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

αk′

√
5
− βk′

√
5
+

βk

√
5
− pℓ

′

∣

∣

∣

∣

∣

≤ αk′

√
5
+ pℓ

′

+
|β|2 + |β|3√

5

=
αk′

√
5
+ pℓ

′

+
1√
5α

.

Thus,
∣

∣

∣
αkp−ℓ(

√
5)−1 − 1

∣

∣

∣
<

αk′

/
√
5 + pℓ

′

+ 1/(
√
5α)

pℓ

<
(α4/

√
5)pℓ

′

+ pℓ
′

+ 1/(
√
5α)

pℓ

<
α4/

√
5 + 1 + 1/(pα

√
5)

pℓ−ℓ′
<

4.2

pℓ−ℓ′
.

In the above, we used that αk′

< α4pℓ
′

which follows from Lemma 3.1. So,

(3.5) |αkp−ℓ(
√
5)−1 − 1| < 4.2

pℓ−ℓ′
.

We write

(3.6) Γk,ℓ := αkp−ℓ(
√
5)−1 − 1.

We have that Γk,ℓ 6= 0, since otherwise α2k = 5p2ℓ ∈ N, which is impossible.
Inequality (3.5) shows that

(3.7) (ℓ− ℓ′) log p < − log |Γk,ℓ|+ log(4.2),

and using Lemma 3.1, we also have

(3.8) (k−k′) logα < (ℓ−ℓ′) log p+(c2−c1) < − log |Γk,ℓ|+(1.75+log(4.2)).

This is the first small linear form in logarithms. We return to equation (3.4)
and use the Binet formula to rewrite it as

(3.9)

∣

∣

∣

∣

∣

αk(1 − αk′−k)√
5

− pℓ(1 − pℓ
′−ℓ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

βk

√
5
− βk′

√
5

∣

∣

∣

∣

∣

.
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The above implies that
∣

∣

∣

∣

∣

αk(1 − αk′−k)√
5

− pℓ(1 − pℓ
′−ℓ)

∣

∣

∣

∣

∣

≤ 1√
5

(

1

αk
+

1

αk′

)

=
1√
5αk′

(

1 +
1

α

)

=
α√
5αk′

.

Dividing across by pℓ(1 − pℓ
′−ℓ), we get

(3.10)

∣

∣

∣

∣

∣

∣

αkp−ℓ

(√
5(1− pℓ

′−ℓ)

1− αk′−k

)−1

− 1

∣

∣

∣

∣

∣

∣

<
α√

5αk′pℓ(1− pℓ′−ℓ)

≤ (5/4)(α4)α√
5αk′+k

<
6.2

αk+k′
,

where we used the fact that p ≥ 5 (so 1− pℓ
′−ℓ ≥ 1− 1/5), as well as the fact

that pℓ > αk/α4, which follows from Lemma 3.1. As before, we put

Γ′
k,ℓ := αkp−ℓ

(√
5(1− pℓ

′−ℓ)

1− αk′−k)

)−1

− 1;

Note that Γ′
k,ℓ 6= 0 since otherwise (3.9) gives that βk = βk′

, so k = k′ which

is impossible. Inequality (3.10) shows that

(k + k′) logα < − log |Γ′
k,ℓ|+ log(6.2),

which together with (3.8) gives

(3.11) k <
1

2 logα

(

− log |Γk,ℓ| − log |Γ′
k,ℓ|+ (1.75 + log(4.2) + log(6.2))

)

.

This is the second small linear form in logarithms.

3.5. Bounds on k and p.

Lemma 3.2. If m ≥ 3, we have:

(i) k < 7.2 · 1024(1 + log k)2(log p)2;
(ii) k < 5 · 1029(log p)2(log log p)2.
Proof. We need lower bounds on log |Γk,ℓ| and log |Γ′

k,ℓ|. We get these
bounds by Theorem 2.2. In both cases

t := 3, α1 := α, α2 := p, b1 := k, b2 := ℓ and b3 := −1.

Further,

α3 :=
√
5 for Γk,ℓ and α3 :=

√
5(1− pℓ

′−ℓ)

1− αk′−k
for Γ′

k,ℓ.
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In both cases K := Q(α1, α2, α3) = Q(
√
5) has D := 2. Further, we must take

B ≥ max{|b1|, |b2|, |b3|} = max{k, ℓ, 1},
and since

ℓ ≤ k logα

log p
<

k

3
< k (because p ≥ 5 > α3)

(see also Lemma 3.1), it follows that we can take B := k. Next, we must
choose Aj such that

Aj ≥ max{Dh(αj), | logαj |, 0.16}
for j = 1, 2, 3. So, we choose

A1 := Dh(α1) = logα, A2 := Dh(α2) = 2 log p

and for Γk,ℓ we choose A3 := Dh(α3) = log 5. Then, by Theorem 2.2, we get

(3.12)

log |Γk,ℓ| > −1.4 · 106 · 34.5 · 22(1 + log 2)(1 + log k)

× (log 5)(logα)(2 log p)

> −1.51 · 1012(log p)(1 + log k).

Inequalities (3.7) and (3.8) give

(3.13)
max{(ℓ− ℓ′) log p, (k − k′) logα} < − log |Γk,ℓ|+ (1.75 + log(4.2))

< 1.52 · 1012(log p)(1 + log k),

so, we can pass to estimate a lower bound for Γ′
k,ℓ. We only need to estimate

the height of α3:

h(α3) ≤ h(1− αℓ′−ℓ) + h(1 − pk
′−k) + h(

√
5)

≤ h(αℓ′−ℓ) + h(pk
′−k) + (1/2) log 5 + 2 log 2

≤ (1/2)(ℓ− ℓ′) logα+ (k − k′) log p+ (1/2) log 5 + log 2

< (1.52/2 + 1.52)× 1012(1 + log k) log p+ (1/2) log 5 + 2 log 2

< 2.28× 1012(1 + log k) log p+ (1/2) log 5 + 2 log 2

< 2.29× 1012(1 + log k) log p,

where we used inequality (3.13). So, we can take

A3 := 4.6× 1012(1 + log k) log p for Γ′
k,ℓ.

We get

log |Γ′
k,ℓ| > −1.4 · 106 · 34.522(1 + log 2)(1 + log k)(logα)

× (2 log p)(4.6× 1012(1 + log k) log p),

or simply

(3.14) log |Γ′
k,ℓ| > −6.91 · 1024(1 + log k)2(log p)2.
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Inserting (3.14) and (3.12) into (3.11), we get

k < 7.2 · 1024(1 + log k)2(log p)2.

This is (i). Assuming k > 1010, we get

k < 7.2 · 1024
(

1 +
1

log(1010)

)2

(log p)2(log k)2

< 7.9 · 1024(log p)2(log k)2.

Finally, we apply Lemma 2.7 with s := 2 and T := 7.9 · 1024(log p)2, to get
that

k < 22T (logT )2 < 4 · 7.9 · 1024(log p)2
(

log(7.9 · 1024) + 2 log log p
)2

< 31.6 · 1024(log p)2(2 log log p)2
(

1 +
log(7.9 · 1024)
2 log log 5

)2

< 5 · 1029(log p)2(log log p)2,
which is (ii).

3.6. An absolute bound on k1. We assume that m ≥ 4. We write inequal-
ity (3.6) in logarithmic form. Namely, we put

Λk,ℓ := k logα− ℓ log p− log
√
5.

Note that Γk,ℓ = eΛk,ℓ − 1 6= 0 so Λk,ℓ 6= 0. Further, inequality (3.6) shows
that

(3.15) |eΛk,ℓ − 1| < 4.2

pℓ−ℓ′
.

If Λk,ℓ > 0, then

|Λk,ℓ| < eΛk,ℓ − 1 <
4.2

pℓ−ℓ′
.

If Λk,ℓ < 0, then inequality (3.15) together with the fact that p ≥ 5 implies
that

e|Λk,ℓ| <
1

1− 4.2
5

= 6.25,

so

|Λk,ℓ| < e|Λk,ℓ|
∣

∣1− eΛk,ℓ
∣

∣ <
6.25× 4.2

pℓ−ℓ′
=

26.5

pℓ−ℓ′
.

Hence, inequality

(3.16) |Λk,ℓ| <
26.5

pℓ−ℓ′

holds in all cases. We write inequalities (3.16) for

(k, ℓ, k′, ℓ′) = (ki, ℓi, kj , ℓj), (ki+1, ℓi+1, kj , ℓj), where j ∈ [i+ 2,m− 1]
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getting
∣

∣

∣
ki logα− ℓi log p− log

√
5
∣

∣

∣
≤ 26.5

pℓi−ℓj
,

∣

∣

∣
ki+1 logα− ℓi+1 log p− log

√
5
∣

∣

∣
≤ 26.5

pℓi+1−ℓj
,

and take a linear combination of them to get
(3.17)

|(ki+1ℓi − kiℓi+1) logα− (ℓi − ℓi+1) log
√
5| <26.5(ℓi + ℓi+1)

pℓi+1−ℓj
<

53ℓi
pℓi+1−ℓj

.

If the left–hand side is larger than 1/2, then

(3.18)

p ≤ pℓi+1−ℓj < 106ℓi ≤ 106ℓ1 <
106k1 logα

log p

<
106(logα) · 5 · 1029(log p)2(log log p)2

log p

< 3 · 1031(log p)(log log p)2,
which implies p < 5 · 1034 and next

k1 < 5 · 1029(log p)2(log log p)2 < 7 · 1034,
which is a pretty good bound on k1. So, assume that the right–hand side of
(3.17) is smaller than 1/2. Then ki+1ℓi − kiℓi+1 is positive and

(3.19)

ki+1ℓi − kiℓi+1 <
(ℓi − ℓi+1) log

√
5 + 1/2

logα
<

ℓ1 log
√
5

logα

<
k1 logα log

√
5

logα log p
≤ k1

2
< k1,

where we used Lemma 3.1 and the fact that p ≥ 5. Let Λ be the linear form
under the absolute value in the left–hand side of (3.17). It is nonzero since

α and
√
5 are multiplicatively independent, so if it were zero we would have

ℓi − ℓi+1 = 0, which is not the case. Thus, we get

log p ≤ (ℓi+1 − ℓj) log p < − log |Λ|+ log(53ℓ1).

We need upper bounds on the left–hand side above. The second term has
already been estimated in (3.18):

53ℓ1 < 1.5 · 1031(log p)(log log p)2.
As for the first term, we use Theorem 2.3. We have

t := 2, α1 := α, α2 :=
√
5.

We have D := 2, logA1 := 1/2, logA2 := (log 5)/2. Finally,

b′ :=
ki+1ℓi − kiℓi+1

D logA2
+

ℓi − ℓi+1

D logA1
< k1

(

1 +
1

log 5

)

= 1.7k1.
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Thus,

− log |Λ| < 24.34 ·D2(1/2)((log 5)/2)(max{log b′ + 0.14, 10.5})2

< 40(max{log b′ + 0.14, 10.5})2.
If the maximum is 10.5, we get

− log |Λ| < 5000.

Thus, in this case

log p < 5000 + log(1.5 · 1031(log p)2(log log p)2).
This gives log p < 5100. If the maximum is in

log b′ + 0.14 = log(e0.14b′) < log(e0.14 · 1.7k1) < log(2k1)

< log(1030(log p)2(log log p)2),

we get

− log |Λ| < 40(log(1030(log p)2(log log p)2)2,

so in this case log p is smaller than

40(log(1030(log p)2(log log p)2)2 + log(1.5 · 1031(log p)2(log log p)2),
which gives log p < 4.1 · 105. Feeding this into Lemma 3.2, we get

k1 < 5 · 1029(log p)2(log log p)2 < 1.5 · 1043.
So, we record what we have.

Lemma 3.3. If m ≥ 4, we then have p < e4.1·10
5

and k1 < 1.5 · 1043.
3.7. There are no solutions with m = 4 and p < 1014. The main scope of

this section is to prove the following lemma.

Lemma 3.4. There are no solutions with m = 4 and p < 1014.

Proof. Well, assume that p < 1014. Lemma 3.2 gives

k1 < 5 · 1029(log(1014))2(log log 1014)2 < 1034.

We return to estimate (3.17) with the aim of bounding pℓ2−ℓ3 . If the right–
hand side in (3.17) is at least 1/2, then

pℓ2−ℓ3 ≤ 106ℓ1 < 106k1 < 1.1 · 1036.
Otherwise, the right–hand side is at most 1/2, so k2ℓ1 − k1ℓ2 is positive and
smaller than k1 as in (3.19). Now F170 > 1035 > k1. We generate the first

171 convergents of τ := logα/ log
√
5 = [0, 1, 1, . . .] = [a0, a1, a2, . . .] and get

that max{aj : 0 ≤ j ≤ 170} = 330. Hence, by Lemma 2.4, we get that the
left–hand side of (3.17) is at least

1

(330 + 2)k1
.
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Thus, we get
pℓ2−ℓ3 < 53 · 332 · k21 < 1073.

Next pℓ3 divides Fki
− Fkj

for all i > j ∈ {1, 2, 3}. There are two indices
ki, kj which are congruent modulo 2; hence,

Fki
− Fkj

= F(ki±kj)/2L(ki∓kj)/2

by Lemma 2.5. Let z(p) be the order of appearance of p in the Fibonacci
sequence. Since p < 1014, Lemma 2.6 shows that p‖Fz(p). Assume that

pa‖F(ki±kj)/2 and pb‖L(ni∓nj)/2. If a ≥ 1, then pa−1 | (ki ± kj)/2, so pa−1 ≤
k1 < 1034. Similarly, pb‖L(ki∓kj)/2 | Fki∓kj

, so pb−1 | (ki ∓ kj)/2, so pb−1 <

1034. So,
pℓ3 ≤ pa−1 · pb−1 · p2 < 1034 · 1034(1014)2 < 1096.

Thus,

Fk2−2 ≤ Fk2
− Fk3

< pℓ2 = pℓ2−ℓ3 · pℓ3 < 1096 · 1073 = 10169,

so k2 < 1000. But we have already shown that in the range k2 ≤ 1000, there
are no instances of k2 > k3 > k4 ≥ 2 and ℓ2 > ℓ3 > ℓ4 ≥ 0 such that

Fk2
− pℓ2 = Fk3

− pℓ3 = Fk4
− pℓ4

with some prime p ≥ 5. This finishes the proof of the current lemma.

3.8. The conclusion.

Lemma 3.5. We have m ≤ 4.

Proof. Assume m ≥ 5. We return to (3.17) and take i = 1, j = 4. We
have

ℓ1 − ℓ4 < ℓ1 <
k1 logα

log p
<

1.5 · 1043 logα
log(1014)

< 2.3 · 1041.

Now 2.3 · 1041 < F200. We calculated [a0, a1, . . . , a200] for the number τ =

logα/ log
√
5 obtaining max{aj : 0 ≤ j ≤ 200} = 330. Hence, the left–hand

side of (3.17) is at least
1

332k1
,

which gives that

(3.20) (ℓ2−ℓ4) log p < log(332k1ℓ1) < log(332 ·(2.3 ·1041) ·(1.5 ·1043)) < 201.

By Lemma 3.1, we get

k2 − k4 <
203

logα
< 422.

Thus, k2 − k3 =: a < k2 − k4 =: b are in [1, 421]. Fix 1 ≤ a < b ∈ [1, 421].
Then k2 = k3 + a = k4 + b, so k3 = k4 + (b− a) := k4 + c. Hence,

Fk4+b − Fk4
= pℓ2 − pℓ4 ≡ 0 (mod pℓ4);

Fk4+c − Fk4
= pℓ3 − pℓ4 ≡ 0 (mod pℓ4).
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Using the Binet formula, we get

αk4(αb − 1) ≡ βk4 (βb − 1) (mod pℓ4);

αk4(αc − 1) ≡ βk4 (βc − 1) (mod pℓ4).

In the above, for algebraic integers γ, δ, u we write γ ≡ δ (mod u) if (γ− δ)/u
is an algebraic integer. Since β = −α−1 is a unit, we get

α2k4(αb − 1) ≡ (−1)k4(βb − 1) (mod pℓ4);

α2k4 (αc − 1) ≡ (−1)k4(βc − 1) (mod pℓ4).

Multiplying both sides of the second congruence above by αb − 1 and using
also the first congruence, we get

(−1)k4(βb − 1)(αc − 1) ≡ (−1)k4(αb − 1)(βc − 1) (mod pℓ4).

Hence, pℓ4 divides
∣

∣(−1)cαb−c − αb − βc + 1− ((−1)cβb−c − βb − αc + 1)
∣

∣

=
∣

∣(αb − βb)− (αc − βc)± (αb−c − βb−c)
∣

∣ .

In particular,

(3.21) pℓ4 | Fb − Fc ± Fb−c.

We show that Fb − Fc ± Fb−c is nonzero. This is clear if the sign of Fb−c is
positive since b > c. It is also clear if max{c, b− c} ≤ b − 2 since then

Fb − Fc − Fb−c = Fb−1 + Fb−2 − Fc − Fb−c > 0.

Thus, either c = b − 1 or b − c = b− 1. If c = b− 1, we get

Fb − Fc − Fb−c = Fb−2 − F1

and this is positive unless b ∈ {2, 3, 4}. Similarly, if b− c = b− 1, so c = 1, we
get that Fb−Fc−Fb−c = Fb−2−1 and again this is positive unless b ∈ {2, 3, 4}.

If b = 2, then a = 1, k2 = k3 + 1 = k4 + 2, so pℓ4 divides

Fk2
− Fk3

= Fk3−1 = Fk4
and also Fk2

− Fk4
= Fk4+1,

and this is false since gcd(Fk4
, Fk4+1) = 1.

If b = 3, then either a = 1, or a = 2. When a = 1, we have k2 = k3 +1 =
k4 + 3. So,

pℓ3‖Fk2
− Fk3

= Fk3−1 = Fk4+1,

and also

pℓ4‖Fk2
− Fk4

= Fk4+3 − Fk4
= Fk4+2 + Fk4+1 − Fk4

= 2Fk4+1,

which implies that ℓ3 = ℓ4, and this is impossible. If a = 2, then k2 = k3+2 =
k4 + 3. Thus,

pℓ4‖Fk4+3 − Fk4
= 2Fk4+1 and pℓ4‖Fk4+1 − Fk4

= Fk4−1,

and this is impossible since gcd(Fk4+1, Fk4−1) = 1.
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If b = 4, then a ∈ {1, 2, 3}. If a = 1, then k2 = k3 + 1 = k4 + 4. Then

pℓ3‖Fk2
− Fk3

= Fk3−1 = Fk4+2

and

pℓ4‖Fk3
− Fk4

= Fk4+3 − Fk4
= 2Fk4+1,

so again p | (gcd(Fk4+2, Fk4+1) = 1, a contradiction. If a = 2, then k2 = k3 +
2 = k4+4, so p divides Fk2

−Fk3
= Fk3+1 = Fk4+3 and also Fk3

−Fk4
= Fk4+1.

Thus, p divides gcd(Fk4+1, Fk4+3) | F2 = 1, a contradiction.
Finally, if a = 3, then k2 = k3 + 3 = k4 + 4, so p divides

Fk2
− Fk3

= Fk2+3 − Fk3
= 2Fk3+1 = 2Fk4+2

and

Fk3
− Fk4

= Fk4−1

and since gcd(Fk4+2, Fk4−1) | F3 = 2, we get a contradiction.
The above argument shows that the integer which appears in the right–

hand side of (3.21) is nonzero. Its size is at most

Fb + Fb−c ≤ Fb+1 < α421.

Thus, pℓ4 < α421. Since also pℓ2−ℓ4 < e201 (see (3.20)), we get that

αk2−4 < Fk2−2 ≤ Fk2
− Fk3

< pℓ2 = (pℓ2−ℓ4)(pℓ4) < e201 · α421,

so

k2 < 4 +
201 + 421 logα

logα
< 850,

but again due to the computation that we did at the beginning, we saw that
there do not exist k2 > k3 > k4 in [1, 1000] such that Fk2

− pℓ2 = Fk3
− pℓ3 =

Fk4
− pℓ4 for some prime p and integers ℓ2, ℓ3, ℓ4. This finishes the proof.
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