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FIXED POINTS OF THE SUM OF DIVISORS FUNCTION

ON F2[x]

Luis H. Gallardo

University of Brest, France

Abstract. We work on an analogue of a classical arithmetic problem over polynomials.

More precisely, we study the fixed points F of the sum of divisors function σ : F2[x] 7→ F2[x]

(defined mutatis mutandi like the usual sum of divisors over the integers) of the form

F := A2 · S, S square-free, with ω(S) ≤ 3, coprime with A, for A even, of whatever degree,

under some conditions. This gives a characterization of 5 of the 11 known fixed points of σ

in F2[x].

1. Introduction

We have all heard once in our careers that there are few positive integers
n with the property that the sum of all positive divisors of n is a multiple
of n. Let us write the sum as σ(n). Our claim then becomes the following.
There are a few solutions n of the following equation

(1.1)
σ(n)

n
∈ N.

For example, when n ∈ {6, 120} we have σ(6)
6 = 2 and σ(120)

120 = 3. In fact, this
happens since we have divisors(6) = {1, 2, 3, 6} so that σ(6) = 1+2+3+6 =
12, and

divisors(120) = {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}

so that σ(120) = 1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 =
360. Already here we see that we can compute σ(120) more efficiently as
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follows: Since 120 = 23 · 3 · 5 and σ(x · y) = σ(x) · σ(y) provided that x, y has
no common factors, we can compute:

σ(120) = σ(8) · σ(3) · σ(5) = (1 + 2 + 4 + 8) · (1 + 3) · (1 + 5) = 360.

In a nutshell, in this paper we study some arithmetic properties of an analogue
of the function n 7→ σ(n), in which we replace n by a polynomial A(x) with
coefficients 0 and 1 only, and compute with 0, 1 as usual, besides the rule
1 + 1 = 0 that replaces the usual rule 1 + 1 = 2. The field F2 = {0, 1} in
which we compute the coefficients of A(x) is the simplest of all finite fields.

For readers less familiar with finite fields, we recommend to look first at
Section 2 for a simple computation with binary polynomials. Then, look at
Subsections 1.1, and 1.2 below. And, finally, come back to look at the rest of
this Introduction.

For all readers, we added some information about our choice of the finite
field F2 for the coefficients of our polynomials (see Subsections 1.1, and 1.2)
at the end of this Introduction. We also added a few comments about the role
of some small degree irreducible binary polynomials as prime factors of our
perfect polynomials. This comes from an observation of one of the referees.

The paper is a little technical, so we hope the following considerations
will be helpful for the reader.

We now introduce some definitions and notation to explain the original
arithmetic problem over the integers that motivated the study of our variant
over the binary polynomials in F2[x], and the link between them as well.

Let A ∈ F2[x] be an irreducible polynomial, then we say that A is prime.
A polynomial M ∈ F2[x] is Mersenne (an analogue of a Mersenne number:
2n − 1) if M + 1 is a product of powers of x and powers of x + 1. We say
that M +1 splits. When a Mersenne polynomial M is irreducible, we say that
M is a Mersenne prime. Given a binary polynomial B, a binary polynomial
A in the sub-ring F2[B] of F2[x] is complete in B ([11]), if all coefficients of
A are equal to 1; when B = x, we say simply that A is complete. A binary
polynomial B is odd if B(0) = B(1) = 1, otherwise B is even. More standard
notation follows. We let ω(P ) denote the number of pairwise distinct prime
factors of P ∈ Fq[x]. Likewise, we let vP (A) denote the valuation of the
prime P in the binary polynomial A, i.e., the least positive integer m, such
that Pm | A but Pm+1 ∤ A, we also write this as Pm||A. Finally, we let F2

denote a fixed algebraic closure of F2.
We recall that a binary perfect polynomial A (see [11, 14, 16, 19, 26, 29,

31, 32, 33]) is defined by the equality σ(A) = A, where σ(A) =
∑

D|A D ∈

F2[x] is the sum of all divisors of A, including 1 and A. For coprime binary
polynomials X,Y one has, as over the integers Z, σ(XY ) = σ(X)σ(Y ). The σ
function, that maps polynomials into polynomials, is more complex than the
usual sum of divisors function σ1 : F2[x] 7→ N given by σ1(A) =

∑
D|A 2deg(A).
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For instance, some divisors D of A can sum up to 0, while always a sum over
D of 2degD is > 0.

It is easy to check that 0 and 1 are perfect polynomials, and that for
any non-negative integer n, the polynomial T (n) = (x(x + 1))2

n−1 is (triv-
ial) perfect. There are only 11 non-trivial (known) binary perfect polynomials
(sporadic), and all of them are even (see list in Lemma 3.2). Some recent com-
putations ([14]), show that new sporadic perfects must have degree exceeding
200.

Coming back to the integers, we observe that the binary perfect poly-
nomials are a polynomial analogue of the multiperfect numbers over Z. A
multiperfect number is a positive integer n such that

(1.2) σ(n)/n ∈ Z.

Of course, we know very little about these numbers. One can see, by easy
degree considerations, that for A ∈ F2[x],

(1.3) σ(A)/A ∈ F2[x]

is equivalent to A = σ(A). Thus, this explains our interest in the fixed points
of σ on F2[x].

Technically, observe that the following problem has attracted some inter-
est (see [1, 2, 3, 9, 10, 12, 13, 35, 36, 38, 39, 40, 41]). Given an irreducible
polynomial f over a finite field Fq, given a polynomial g(x) over the same
field. How to describe the prime (irreducible) factors of f(g(x))?

We contribute (in a special case) to this problem in the present paper,
since our study of the fixed points of σ implies that some relations exist
between the prime factors P of the square-free polynomial S in Lemma 3.3
and the prime factors Φ2(P ) = 1 + P of σ(S). Namely, we have

(1.4) A = σ(A),

in which we take A of a special form:

(1.5) A = B2 · S = B2 ·

r∏

j=1

Pj = σ(A) = σ(B2) ·

r∏

j=1

(1 + Pj).

Therefore, equation (1.5) gives some information about the prime factors of
Φ2(P ) = 1 + P when P is an odd prime divisor of S. See [34] for related
results obtained using the cyclotomic polynomial Φ3(P ) = 1 + P + P 2.

More generally, solving equation (1.4) is a non-trivial problem of polyno-
mial factorization in F2[x]. See Lidl, Niederreiter ([37]), and Swan ([42]) for
known results about this problem.

The contribution of the present paper consists of giving a simple gener-
alization of some properties of five of these 11 known sporadic perfect poly-
nomials. These polynomials share a special property not shared by the other
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six sporadic perfect polynomials. More precisely, (see Lemma 3.3), we char-
acterize these 5 sporadic perfect A from some special properties of their fac-
torization A = B2 · S, with B even, and S square-free, coprime with B.

Observe that we do not fix a bound on ω(B) (so that potentially we
consider many possible new even perfects (if any exists) A of degree ≥ 200
(see again [14])), nor on the degrees of prime factors P of S. Moreover, P is
not necessarily Mersenne (as was considered, e.g., in [26, 29, 31]). Thus, we
are discarding in Theorem 1.1 much more non-perfect polynomials than in
previous work (without a single computer computation).

Throughout the paper, the 1941 work of Canaday ([11]) (see Lemma 3.1
and Remark 1.5), is important.

Our main result is as follows.

Theorem 1.1. Let B ∈ F2[x] be an even polynomial. Assume that
gcd(B2, σ(B2)) = 1. Let A := B2P1 · · ·Pr, with r ≥ 1 pairwise distinct
odd prime Pj such that Pj ∤ B. Assume that r ≤ 3. Then A perfect implies
that

(1.6) A ∈ {M5a,M5b,M16,M20a,M20b},

where
M5a := x(x+ 1)2(x2 + x+ 1), M5b := M5a(x+ 1),

M16 := x4(x+ 1)4(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1),

and

M20a := x4(x+ 1)6(x3 + x+ 1)(x3 + x2 + 1)(x4 + x3 + x2 + x+ 1),

M20b := M20a(x+ 1).

Remark 1.2. For all five perfect polynomials considered in the theorem,
one has the following two conditions.

(1.7) B is even,

and

(1.8) gcd(B2, σ(B2)) = 1.

Moreover, observe the following.

Remark 1.3. An even polynomial square B2 cannot be perfect [11, The-
orem 14] so that B2 6= σ(B2). This also follows from Lemma 3.1(a), since
σ(B2) is odd. In Theorem 1.1 we need the stronger condition (1.8) on B.

Furthermore, consider the following two remarks.

Remark 1.4. By computations, it seems that for each degree d there
are many polynomials B of degree d that satisfy conditions (1.7), and (1.8).
More precisely, a quick computation of all even polynomials B up to degree
21 shows that more than 68 percent of them do satisfy (1.8). Thus, our result
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applies to many polynomials A, as in the statement of the theorem. Therefore,
our result covers many new cases, in which we do not know if the polynomial
A of the theorem is perfect or not, without checking with the computer all
the possible primes Pj that could divide A. Unfortunately, we do not see
how to use our result, or our proof of the result, to obtain new even perfect
polynomials (if they exist) by computations.

As one of the referees, we believe that conditions (1.7), and (1.8) are so
strong that it should imply, regardless of the value of r, the following. If B
satisfies the conditions, then A = B2P1 · · ·Pr should be one of the 5 sporadic
polynomials in the conclusion of Theorem 1.1. This, if true, seems to be a
non-trivial fact. We were just able to prove it under the conditions of our
theorem.

Remark 1.5. For being able to get some progress on the remaining cases
not considered in the theorem (i.e., the cases in which r > 3) it should be
necessary to generalize the results of Canaday in Lemma 3.1. This alone is
a non-trivial task. Moreover, even if this task could be done, we will not
be able to deduce anything about a characterization of the six other known
sporadic perfects. The reason is that these 6 polynomials are not of the form
B2P1 · · ·Pr (see Lemma 3.3). Moreover, the 6 remaining known sporadic
perfects do not seem to share some other interesting common property. In
other words, the more general problem to characterize all 11 sporadic perfects
is highly non-trivial. After several years of work, we have (with Rahavandrainy
[20, 26, 29, 31, 32]), merely obtained a characterization of all 11 sporadic
perfect in a very particular case. Namely, in the case in which every odd
prime divisor Pj of an even perfect polynomial A, is of the special form

Pj = xaj (x + 1)bj + 1

for some coprime exponents aj , bj (i.e., each Pj is a Mersenne polynomial).
Of course, prime divisors of A need not be Mersenne polynomials.

Theorem 1.1 is a first (modest) step to study the new case in which we
assume that the prime divisors Pj of an even perfect polynomial A are not
necessarily Mersenne polynomials.

Now, let us come back to the case r > 3 of our approach. We know that
this approach works to characterize the 5 known sporadic perfects of the form
B2P1 · · ·Pr . But fails to characterize all known sporadic perfects.

However, we may add the following. Essentially, (in the proof of the
theorem) we use properties of the prime factors of general (not necessarily
prime) Mersenne polynomials M , i.e., polynomials with the property that
M + 1 has all its roots in F2. Now consider binary polynomials Mg, with
the property that all roots of Mg + 1 belong to an appropriate non-trivial
extension field of F2 (e.g., belong to F4). We believe that understanding the
factorization of these general Mersenne polynomials Mg can help to get some



226 L. H. GALLARDO

progress in the case when r > 3. However, even a simple preliminary study
of this special case, appears to be a difficult non-trivial problem.

Finally, we discuss the following two matters suggested by a referee.

1.1. Choice of F2 as ground field for the coefficients of our polynomials.
The first reason for the choice is that the ring F2[x] is considered as the closest
analogue to the ring of integers Z to work arithmetic problems.

The second (and more important) reason for the choice is the following.
We have no analogue of Canaday’s results ([11]) over F2[x] for other rings
Fp[x], for p an odd prime, nor for more general rings Fq[x] with q a power of
a prime. One reason for this is that the general problem of factorization into
irreducible polynomials is much more complex when the characteristic of the
ring is > 2. This happens, regardless of the existence of many papers on the
subject (see [4, 5, 6, 7, 8, 15, 17, 18, 22, 21, 23, 24, 25, 27, 28, 30]).

1.2. Role of small degree prime factors of even perfect polynomials in the
present paper. First, observe that the irreducible polynomials of degree 5 or
more of F2[x] do not play any role in the paper. For which reason? The
simple reason is that the only known perfect polynomials over F2 are all even
and have irreducible factors of degrees 1, 2, 3, 4 only (see Lemma 3.2). Of
course, it may exist unknown binary perfect polynomials A with irreducible
factors of any degree, but none such A is known with degree ≤ 200 (see [14]).
Moreover, ω(A) ≥ 5 (see [19, 20]). Furthermore, the main results used in the
proof, namely the results in Lemma 3.1, have the following property. They
reduce the study of irreducible factors of an even perfect polynomial of any
degree to the study of small degree irreducible factors that all have degree
less than 5.

Even perfect polynomials, by definition, should have at least one linear
factor. Indeed, they are divisible by both linear factors x and x + 1. In
particular, if they are divisible only by two irreducible factors they must be a
product of a power of x by a power of x + 1. It is easy to prove that in fact
the exponents must be equal, and of the form 2n−1. Thus, these polynomials
coincide with the trivial perfects T (n) (see also Section 2).

The linear factors x, x+1 appear everywhere in the proof of the theorem.
The reason is the following. For each odd irreducible factor P that divides
exactly a binary even perfect A (i.e., such that P divides A but P 2 do not
divide A) we have that σ(P ) = P + 1 divides also σ(A) = A. Thus, by
definition of odd polynomial it is easy to see that P + 1 is even, so that
x(x + 1) divides P + 1.

2. A simple computation with binary polynomials

We will work with polynomials over the smallest finite field. Namely,
F2 = {0, 1}. First, let us observe that since the list of all divisors of x is
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[x, 1], one has σ(x) = x + 1. By translation x 7→ x + 1, we deduce that
σ(x + 1) = (x + 1) + 1 = x + (1 + 1) = x + 0 = x. Now, the property,
σ(AB) = σ(A)σ(B), provided that A,B are coprime, implies that

(2.1) σ(x(x + 1)) = σ(x)σ(x + 1) = (x+ 1)x = x(x + 1).

We have then found the perfect polynomial with the smallest degree greater
than zero, namely T (1) = x(x + 1). We can write T (1) as follows:

T (1) = x21−1(x+ 1)2
1−1. Following the same lines of computation, one proves

easily by induction that if T (n) = x2n−1(x+ 1)2
n−1 is perfect, then the same

holds for T (n+ 1).
Thus, we have infinitely many even perfect polynomials (that we call triv-

ial perfect). Unfortunately, we cannot obtain more perfect polynomials with
similar methods. The list of all known perfect polynomials (see Lemma 3.2)
was obtained by computer computations. We believe that this list cover all
perfect polynomials. However, we are very far to build a proof (or a disproof)
of this. The present paper explores a small part of this problem, using ele-
mentary methods, like the preceding computation. We have no choice, there
is no (known) more sophisticated methods to treat this problem.

3. Tools

The following lemma contains a simple (new) observation in part (a), and
summarizes some useful results of Canaday ([11]) in parts (b) to (f).

Lemma 3.1. (a) Let P be prime, and let n be a positive integer. Then
σ(P 2n) is odd. In particular, σ(C2) is odd, for any binary polynomial
C.

(b) If A = xh−1+xh−2+· · ·+1 is a complete polynomial and (x+1)r divides
A but (x + 1)r+1 does not, then r = 2n − 1 and A = (x + 1)2

n−1B2n

where B is complete.
(c) The only complete and irreducible polynomials of the form x(x+1)β+1

are x2 + x+ 1 and x4 + x3 + x2 + x+ 1.
(d) The only complete A = x2m + · · ·+ 1 whose irreducible factors are of

the form xα(x+1)β +1 are x2 + x+1, x4 + x3 + x2 + x+1, (x3 + x+
1)(x3 + x2 + 1).

(e) It is impossible to have σ(x2k) = σ(P 2) or, more generally, σ(Q2m) =
σ(P 2n) for irreducible polynomials P,Q ∈ F2[x].

(f) The polynomial P = x(x + 1)2
m−1 + 1 is irreducible only for m = 1

and m = 2.

Proof. We prove (a). One sees that S := σ(P 2n) is a sum of 2n + 1
nonzero monomials P k. If deg(P ) > 1, we have P (0) = P (1) = 1 since P is
prime, thus S(0) = S(1) = 1. If P = x then S(0) = P (0) = 1, S(1) = 2n+1 =
1 in F2. Similarly, if P = x+ 1 then S(1) = P (1) = 1, and S(0) = 2n+ 1 = 1
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in F2. Put C =
∏

j P
nj

j , for some primes Pj , thus σ(C
2) =

∏
j σ(P

2nj

j ) is odd
as product of odd polynomials.

Part (b) is [11, Lemma 1]. Part (c) is [11, Corollary]. Part (d) is [11,
Theorem 8]. Likewise, part (e) is [11, Lemma 14], and part (f) is [11, Lemma
2].

The list of all known ([11]) sporadic perfect polynomials follows. Gallardo
and Rahavandrainy ([19, 20]) proved that the list contains all the sporadic
perfects M with ω(M) ≤ 4. The case ω(M) = 5 is open from 2009.

Lemma 3.2. With the primes

Q2 := x2 + x+ 1,

Q3a := x3 + x+ 1,

Q3b := x3 + x2 + 1,

Q4a := x4 + x3 + 1,

Q4b := x4 + x3 + x2 + x+ 1,

Q4c := x4 + x+ 1,

one has the 11 sporadic perfects known. Besides, M20a and M20b, they are
the unique sporadic perfects with at most four distinct prime divisors.

M5a := x(x + 1)2 ·Q2,

M5a := x(x + 1)2 ·Q2,

M5b := (x+ 1)x2 ·Q2,

M11a := x(x + 1)2 ·Q2
2 ·Q4c,

M11b := x2(x+ 1) ·Q2
2 ·Q4c,

M11c := x3(x+ 1)4 ·Q4a,

M11d := x4(x+ 1)3 ·Q4b,

M15a := x3(x+ 1)6 ·Q3a ·Q3b,

M15b := x6(x+ 1)3 ·Q3a ·Q3b,

M16 := x4(x+ 1)4 ·Q4a ·Q4b,

M20a := x4(x+ 1)6 ·Q3a ·Q3b ·Q4b,

M20b := x6(x+ 1)4 ·Q3a ·Q3b ·Q4a.

With the same notations as in Lemma 3.2, the list of the five sporadic
perfects of a special form follows.

Lemma 3.3. Besides M20a and M20b the following polynomials A are the
only sporadic perfects with ω(A) ≤ 4, of the form

(3.1) A := B2 · S,
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where B is the even polynomial of higher degree, such that B2|A, and S is a
square-free polynomial coprime with B, i.e., one has gcd(B,S) = 1.

M5a = (x+ 1)2 · x ·Q2,

M5b = x2 · (x+ 1) ·Q2,

M11a = ((x + 1)Q2)
2 · x ·Q4c,

M11b = (xQ2)
2
· (x+ 1) ·Q4c,

M16 = (x2(x+ 1)2)2 ·Q4a ·Q4b.

We easily check the following lemma. It is useful for the proof of the last
part of the theorem.

Lemma 3.4. Let a = 2nk be an even number, where k is odd. For any
binary polynomial A, and positive integer r, set S(Ar) := 1 + A + · · · + Ar.
Then

S(Aa) + 1 = A · (A+ 1)2
n−1 · S(Ak−1)2

n

.

4. Proof of Theorem 1.1

Remember that r is the number of odd prime divisors of the even perfect
polynomial A. We consider the cases r = 1, r = 2, and r = 3. In each of
them we will work on the equality

A = σ(A),

with both A and σ(A) explicitly factored as product of primes in F2[x]. We
apply our lemmas in Section 3 to prove the result in each of these cases.
Essentially, our method consists of using the uniqueness of the factorization
into primes in the ring F2[x].

We assume that r = 1. Thus, for some prime P1 one has

(4.1) σ(B2)(P1 + 1) = B2P1.

Since gcd(B2, σ(B2)) = 1 and P1 is prime, (4.1) implies that σ(B2) = P1.
Thus, P1 = (1 + B)2. This is impossible. Therefore, this case does not
happen.

We assume that r = 2. For some primes P1, P2 we have

(4.2) σ(B2)(P1 + 1)(P2 + 1) = B2P1P2.

Equation (4.2) can also be written as

(4.3) P1P2(B
2 − σ(B2)) = (P1 + P2 + 1)σ(B2).

Since gcd(σ(B2), B2) = 1, (4.2) implies that σ(B2) | P1P2.
Case 1. We can assume that σ(B2) = P1. Thus, ω(B2) = 1. Therefore,

A = B2P1P2 is an even perfect polynomial with ω(A) = 3. This implies that
A ∈ {M5a,M5b}, by Lemma 3.3 and Lemma 3.2.
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Case 2. We have then

(4.4) σ(B2) = P1P2.

Since B2 is an even square, (4.4) together with Lemma 3.1 (a), imply that
both P1 and P2 are odd. As before, (4.4) implies that ω(B2) ≤ 2, so that A
is an even perfect polynomial with ω(A) ≤ 4. By Lemma 3.3 and Lemma 3.1,
the only possibility is A = M16, for which B = x2(x + 1)2, P1 = x4 + x3 +
x2 + x+ 1, P2 = x4 + x3 + 1.

We assume now that r = 3. We have then

(4.5) σ(B2)(P1 + 1)(P2 + 1)(P3 + 1) = B2P1P2P3.

Case 1. We have ω(σ(B2)) = 1, say σ(B2) = P1. Thus, as before,
ω(B2) = 1. This implies that ω(A) = 4. By Lemma 3.3, this case does not
happen.

Case 2. We have ω(σ(B2)) = 2. If ω(B) = 1, as before, there is no solution
by Lemma 3.3. We assume then that ω(B) = 2. One sees that ω(A) = 5,
thus we cannot deduce the result from Lemma 3.3 again. In fact, we do not
know if M20a and M20b are the unique even perfects M with ω(M) = 5.

We have, by Lemma 3.1(a), and without loss of generality, that for odd
primes P1, P2, for primes R1 6= R2, and for positive integers a1, a2 the follow-
ing holds.

(4.6) σ(B2) = P1P2 , and B = Ra1

1 Ra2

2 .

Moreover, (4.5) becomes

(4.7) (P1 + 1)(P2 + 1)(P3 + 1) = B2P3.

Assume that P3 is even. If P3 = x, since gcd(P3, B) = 1, and B is even, we
have that R1 = x + 1, and R2 is odd. Moreover, P1 and P2 are odd, hence
comparing valuations in (4.7) gives vx((P1 + 1)(P2 + 1)(P3 + 1)) ≥ 2, while
vx(BP3) = 1. Thus, P3 6= x. By translation x to x+1, P3 6= x+1. Therefore,
deg(P3) > 1. Since P1, P2, P3 are all odd, it follows from (4.7) that, say,
R1 = x and R2 = x+ 1, B is even, gcd(B,P3) = 1, and ω(B) = 2. It follows
from (4.6) that we can take σ(x2a1 ) = P1 and σ((x + 1)2a2) = P2, so that

(4.8) P1 + 1 = x(1 + x+ · · ·+ x2a1−1),

and

(4.9) P2 + 1 = x(1 + x+ · · ·+ x2a2−1).

From (4.8) and (4.9) we get vx(P1 + 1) = vx(P2 + 1) = 1. Since x, x+ 1 and
P3 are the only primes that divide B2P3, we can assume that, say, P3 | P1+1
and P3 ∤ P2 + 1. Write, P1 + 1 = xc1(x + 1)c2P3, P2 + 1 = xd1(x + 1)d2 , and
P3 + 1 = xe1 (x+ 1)e2 . From (4.8) and (4.9) we get c1 = 1 and d1 = 1.

Since P1 = 1 + x(x + 1)c2P3 we have from (4.8)

(4.10) (P1 + 1)/x = σ(x2a1−1) = 1 + x+ · · ·+ x2a2−1 = (x+ 1)c2P3.
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Thus, (x+1)c2P3 is complete. It follows from Lemma 3.1(b) that c2 = 2n− 1
for some positive integer n, since P1 is odd. In other words, for K complete,
we have the following equality:

(4.11) (P1 + 1)/x = (x+ 1)2
n−1K2n .

It follows from (4.11) and (4.10) that P3 = K2n . Hence, n = 0. This is
impossible. Therefore, Case 2 does not happen.

Case 3. We have ω(σ(B2)) = 3. Thus, we consider again (4.5), i.e.,

(4.12) σ(B2)(P1 + 1)(P2 + 1)(P3 + 1) = B2P1P2P3.

Equation (4.12) implies immediately

(4.13) σ(B2) = P1P2P3,

and

(4.14) (P1 + 1)(P2 + 1)(P3 + 1) = B2.

Since P1, P2 and P3 are all odd, (4.14) implies that x(x+1) | B. In particular,
ω(B) ≥ 2. Since B2 is an even square, σ(B2) is odd, so that (4.13) implies
that P1, P2 and P3 are all odd. Thus, (4.13) implies that ω(B) = ω(B2) < 4.

If ω(B) = 2, one has B = xa(x + 1)b for positive integers a, b. Since
P1P2P3 is square free, we can assume from (4.13) that, say

(4.15) σ(x2a) = P3 , and σ((x + 1)2b) = P1P2.

Moreover, since P3 is odd, for some positive integers c, d we have

(4.16) 1 + P3 = xc(x+ 1)d.

From (4.15) and (4.16) we obtain c = 1, since 1 + P3 = x(1 + · · · + x2a−1).
Putting K3 = (1 + P3)/x, one sees that

(4.17) K3 = 1 + · · ·+ x2a−1 = xc−1(x+ 1)d = (x+ 1)d.

Equation (4.17) says that K3 is complete, thus, as before, Lemma 3.1(b)
implies that for some positive integer n one has d = 2n − 1, and K3 =
(x+ 1)2

n−1C2n , with C complete. This implies C = 1. Hence,

(4.18) P3 = 1 + x(x+ 1)2
n−1.

Since P3 is prime, Lemma 3.1(c) implies that

(4.19) P3 ∈ {x2 + x+ 1, x4 + x3 + x2 + x+ 1}.

Assume that P3 = x2 +x+1. Thus, from σ(x2a) = P3 we get a = 1. In other
words, B = x(x + 1)b. From (4.14) and (4.15) we obtain

(4.20) (P1 + 1)(P2 + 1) = x(x+ 1)2b−1.

Equation (4.20) is impossible since vx((P1 + 1)(P2 + 1)) ≥ 2, while
vx(x(x + 1)2b−1) = 1. Thus P3 6= x2 + x + 1. Assume then that we have
P3 = x4 + x3 + x2 + x+1. We claim that A = M20b (M20a is obtained by the



232 L. H. GALLARDO

same method, switching x and x + 1). In order to prove the claim, observe
that P3 + 1 = x(x + 1)3, thus (4.14) becomes

(4.21) (P1 + 1)(P2 + 1) = x2a−1(x+ 1)2b−3.

From σ(x2a) = P3 we get a = 2. This together with (4.15) givesB = x2(x+1)b

and

(4.22) (P1 + 1)(P2 + 1) = x3(x+ 1)2b−3.

We can take in (4.22), with positive integers b1, b2; b2 odd since P2 is not a
square, and b1 even since b1 + b2 = 2b− 3. Thus,

(4.23) P1 + 1 = x(x + 1)b1 , P2 + 1 = x2(x + 1)b2 .

Since σ((x + 1)2b) is complete in x + 1, and since P1, P2 are Mersenne,
one sees that (4.15) together with Lemma 3.1(d) implies that

(4.24) σ((x + 1)2b) ∈ {x2 + x+ 1, x4 + x3 + 1, (x3 + x+ 1)(x3 + x2 + 1)}.

But ω(σ((x + 1)2b) = 2, since σ((x + 1)2b) = P1P2. Thus, the only
possibility allowed by (4.24) is that σ((x+ 1)2b) = (x3 + x+ 1)(x3 + x2 + 1).
Therefore, P1 = x3+x+1, P2 = x3+x2+1, i.e., b = 3. Thus, B = x2(x+1)3.
In other words, we have

(4.25) B2P1P2P3 = M20b.

This finishes the case in which ω(B) = 2.
We claim that the remaining case, namely ω(B) = 3 does not happen.

To prove the claim, we assume that, on the contrary, B = Ra1

1 Ra2

2 Ra3

3 with
some positive integers a1, a2, a3. Observe that the perfect polynomial A =
B2P1P2P3 has ω(A) = 6 so that, as before, we cannot rely on Lemma 3.3 for
the proof. But, we can, and do, assume that R1 = x, R2 = x + 1, and that
R3 is odd, since x(x+ 1) | B (see (4.14)). Thus, (4.13) becomes

(4.26) σ(x2a1 )σ(x2a2 )σ(R2a3

3 ) = P1P2P3.

Since P1P2P3 is square-free, the three factors on the left-hand side of
(4.26) are pairwise coprime, so that we can take

(4.27) σ(x2a1 ) = P1, σ(x2a2 ) = P2, σ(R2a3

3 ) = P3.

Put, 2a1 = 2n1k1, 2a2 = 2n2k2, 2a3 = 2n3k3, for odd numbers k1, k2, k3. From
Lemma 3.4 we get

(4.28) P1 + 1 = σ(x2a1 ) + 1 = x(x+ 1)2
n1−1(1 + x+ · · ·+ xk1−1)2

n1

.

(4.29) P2 + 1 = σ(x2a2 ) + 1 = x(x+ 1)2
n2−1(1 + x+ · · ·+ xk2−1)2

n2

.

(4.30) P3 + 1 = σ(R2a3

3 ) + 1 = R3(R3 + 1)2
n3−1(1 +R3 + · · ·+Rk3−1

3 )2
n3

.

On the other hand, (4.14) implies

(4.31) P1 + 1 = xu1(x+ 1)u2Ru3

3 ,
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(4.32) P2 + 1 = xv1(x+ 1)v2Rv3
3 ,

and

(4.33) P3 + 1 = xw1(x + 1)w2Rw3

3 .

Assume, first, that k1 = k2 = 1. Thus, from (4.31) and (4.32) we get

(4.34) P1 + 1 = x(x + 1)2n1−1,

and

(4.35) P2 + 1 = (x+ 1)x2n2−1.

But from (4.30) and (4.33) we have w3 = 1. Thus, (4.34) and (4.35) implies
that

(4.36) vR3
(P1 + 1)(P2 + 1)(P3 + 1) = 1.

Clearly, (4.36) contradicts (4.14). Thus, the case k1 = k2 = 1 does not
happen.

We claim that the case k1 > 1 and k2 > 1 also does not happen.
Since from (4.14) (P1+1)(P2+1)(P3+1) = B2 and since ω(B) = 3 for all j,

one has 2 ≤ ω(Pj+1) ≤ 3. Moreover, one sees that ω(P1+1) = 2 is equivalent
to k1 = 1, and ω(P2+1) = 2 is equivalent to k2 = 1. Thus, k1 > 1 and k2 > 1
implies R3 = 1 + x + · · ·+ xk1−1, and R3 = 1 + (x + 1) + · · · + (x + 1)k2−1.
In other words, we have σ(xk1−1) = σ((x + 1)k2−1). This is impossible by
Lemma 3.1(e).

By the same argument, one sees that it remains only two possibilities,
either Case A, or Case B:

Case A. One has k1 = 1, k2 > 1, and R3 = 1+(x+1)+ · · ·+(x+1)k2−1.
Case B. One has k1 > 1, k2 = 1, and R3 = 1 + x+ · · ·+ xk1−1.

We work now Case A: We have 2a1 = 2n1 , with n1 ≥ 1. We have

P1 = 1 + x(x + 1)2
n1−1

. It follows from Lemma 3.1(f) that n1 ∈ {1, 2}, i.e.,
that a1 ∈ {1, 2}. Thus,

P1 ∈ {x2 + x+ 1, x4 + x3 + x2 + x+ 1}.

Case A1. Assume that P1 = x2 + x + 1. Thus, n1 = 1 = a1, so that
B = x(x+ 1)a2Ra3

3 . Thus, (4.14) becomes

(4.37) (P2 + 1)(P3 + 1) = x(x + 1)2a2−1R2a3

3 .

I will now recall that (4.27) implies σ(x2) = P1, σ((x + 1)2a2) = P2, and

σ(R2a3

3 ) = P3, with 2a2 = 2n2k2, 2a3 = 2n3k3, k2 > 1 is odd, and k3 ≥ 1 is
odd.

But P2 and P3 are both odd, thus vx((P2 + 1)(P3 + 1)) ≥ 2, while (4.37)
implies that vx(x(x + 1)2a2−1R2a3

3 ) = 1. This is impossible. Thus, Case A1
does not happen.
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Case A2. Assume that P1 = x4 + x3 + x2 + x+ 1. Thus, a1 = 2, so that
B = x2(x+1)a2Ra3

3 . Thus, after division of both sides by x(x+1)3, equation
(4.14) becomes

(4.38) x3(x+ 1)2a2−3R2a3

3 = (P2 + 1)(P3 + 1),

with a2 ≥ 2. Here, we have from (4.27), σ(x4) = P1, σ((x + 1)2a2) = P2,
and σ(R2a3

3 ) = P3. By (4.29) and (4.30) we have vR3
(P2 + 1) = 2n2 and

vR3
(P3 + 1) = 1.
Thus, vR3

((P2 + 1)(P3 + 1)) = vR3
(P2 + 1) + vR3

(P3 + 1) = 2n2 + 1. On

the other hand, from (4.28) we obtain vR3
(x3(x+ 1)2a2−3R2a3

3 ) = 2a3. Thus,
2a3 = 2n2 + 1. This is impossible, thus Case A2 does not happen.

Thus, Case A does not happen.
Case B. We have now, k2 = 1 and k1 > 1. Thus, 2a2 = 2n2 , 2a1 = 2n1k1

and

P1 = 1 + x(x + 1)2
n1−1(1 + · · ·+ xk1−1)2

n1

.

Since k2 = 1 one has

(4.39) P2 = 1 + x2n2−1(x+ 1).

Since P2 is prime, Lemma 3.1(f), (4.39), and switching x and x + 1 gives
n2 ∈ {1, 2}. If n2 = 1 then a2 = 1 so that P2 = x2 + x + 1, while if n2 = 2
then a2 = 2 and P2 = x4 + x3 + 1.

Case B1. We have P2 + 1 = x(x + 1). In particular, k2 = 1 and n2 = 1.
More precisely, we have 2a1 = 2n1k1, 2a2 = 2n2k2 = 2, 2a3 = 2n3k3.

We have also

P1 + 1 = x(x + 1)2
n1−1(1 + · · ·+ xk1−1)2

n1

,

and

P3 + 1 = R3(R3 + 1)2
n3−1(1 + · · ·+Rk3−1

3 )2
n3

.

We thus have, by definition of B

(4.40) B2 = x2n1k1(x + 1)2R2n3k3

3 .

Divide now both sides of (4.14) by x(x + 1) = P2 + 1 to get

(4.41) (P1 + 1)(P3 + 1) = x2n1k1(x+ 1)R2n3k3

3 .

Since P3 and P1 are odd primes (4.41) implies

(4.42) 2 ≤ vx+1((P1 + 1)(P3 + 1)) = vx+1(x
2n1k1(x + 1)R2n3k3

3 ) = 1.

Since (4.42) is impossible, we obtain that Case B1 does not happen.
Case B2. Here P2 + 1 = x3(x + 1). In particular, k2 = 1 and n2 = 2.

More precisely, we have 2a2 = 2n2k2 = 4. As before, we have by definition of
B

(4.43) B2 = x2a1(x + 1)4R2a3

3 .
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Divide now both sides of (4.14) by x3(x+ 1) = P2 + 1 to get

(4.44) x2a1−3(x+ 1)3R2a3

3 = (P1 + 1)(P3 + 1).

We now have

P1 + 1 = x(x + 1)2
n1−1(1 + · · ·+ xk1−1)2

n1

,

P3 + 1 = R3(R3 + 1)2
n3−1(1 + · · ·+Rk3−1

3 )2
n3

.

Computing the valuation in R3 in both sides of (4.44) we obtain

(4.45) 2a3 = 2n1 + 1.

Since (4.45) is impossible, we obtain that Case B2 does not happen. This
finish the proof that the case ω(B) = 3 does not happen. Thus, we proved
the theorem.

Acknowledgements.

We are indebted to both referees for careful reading and interesting sug-
gestions. The result of their work is a substantially improved paper.

References
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