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ABSTRACT. In [28], for any real non associative algebra of dimension m > 2, having
k linearly independent nilpotent elements ni, na, ..., ng, 1 < k < m — 1, Mencinger and
Zalar defined near idempotents and near nilpotents associated to ni, na, ..., ng. Assuming
NNy, = {0}, where N}, = span {ni,ns,...,n}, they showed that if there exists a near
idempotent or a near nilpotent, called u, associated to ni,na,...,ng verifying n;u € Rn;,
for 1 < i < k, then any nilpotent element in N}, is unstable. They also raised the question
of extending their results to cases where NNy # {0} with NNy C N}, and to cases where
NN, & Ni.

In this paper, positive answers are emphasized and in some cases under the weaker

conditions n;u € N}. In addition, we characterize all such algebras in dimension 3.

1. INTRODUCTION

An autonomous homogeneous polynomial systems of ODEs of degree k is
defined by

dx
1.1 = = H
(1) o= = H (),
where the vector function z : I C R — R™ is defined on some open interval [
and H : R™ — R™ is a homogeneous form of degree k

(1.2) H(ax) = o"H (z) Ya€R, VreR™
If H is homogeneous of degree two, system (1.1) is called a homogeneous

quadratic system. In this case, it is common to write 2’ = Q (z).
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Lawrence Markus in [17] was the first one who associated system (1.1) for
k = 2 with nonassociative algebra A = (R™, -), where the algebra multiplica-
tion - is defined by

(13) vy =5 Q+y) - Q@) - Q).

Conversely, given a nonassociative algebra of dimension m, we associate
the homogeneous quadratic differential equation in A:

.I/:I'I.

Therefore, there is a one-to-one correspondence between real non-associative
algebras in dimension n and homogeneous quadratic dynamical systems in
R™.

After his classification of planar systems, many other authors considered
various classifications, mostly limited to k = 2, see [4, 5, 6, 7, 8, 18, 22]. For
systems (1.1), the question of (in)stability of singular point(s) is nontrivial,
see [3, 19, 23, 24, 25, 28], since the origin is a nonelementary nonhyperbolic
singular point in any dimension and for any degree of homogeneity. There
are also some papers about (algebraic) structure(s) and dynamics in systems
(1.1), e.g. [1, 4, 5, 8] and applications beyond ODEs (see e.g. [12, 13, 14, 15,
26, 16, 21]). Finally, let us mention some review papers [10, 11, 12, 20] and a
monograph [27]. The list of the references below is far from exhaustive, but
the references in [27] are quite exhaustive until year 1991.

Concerning the solutions of a quadratic system (1.1) and special algebraic
elements in the corresponding algebra A, it is well-known that any nonzero
idempotent (for which p-p = p holds) in A implies the existence of a ray
solution which yields instability of the origin. The ray solutions on the line
Rp are examples of so called blow-up solutions (e.g. [10, 11, 20, 27]). On
the other hand, nilpotent elements, defined as nonzero elements n verifying
n? = n-n = 0, lead to a line of nilpotents Rn and to a line of stationary points
for the associated dynamical system. As a consequence, a nilpotent element
is never asymptotically stable.

We recall the definition of critical point stability in the sense of Lyapunov.

DEFINITION 1.1. Consider a dynamical system in R™ and M € R™ q
stationary point. M is a stable critical point if for any neighbourhood Vy; C
R™ of M, there exist a neighbourhood Wy C Viar of M such that, for any
point Py € Wy, the trajectory Py(t) via Py remains in Vi for t > 0 as long
as solution is defined.

In [28], the authors studied the stability of non-zero singular points of a
quadratic system (1.1) using the so called A—space of a nonzero element u
defined by

(1.4) Ay (u) ={z e A u-z=Az}.
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If Ay (u) # {0}, it is called an eigenspace of u. Obviously, all such \ are eigen-
values of the linear map x — u -z and the maximal number of A—eigenspaces
is smaller than dim (A) . In [3], the authors proved that the nilpotent line Rn
consists of unstable singular points, if n is included in Ay (p) for some idempo-
tent p € A and that this result remains true even when p is not necessarily an
idempotent but an element satisfying a weaker algebraic condition. In [28],
the authors defined a more general algebraic framework in which the first
main result of [3] was reinterpreted in sense of the following two definitions.

DEFINITION 1.2 ([28]). Let A be a commutative real algebra of dimension
m and Ny C A the subspace spanned by a set of linearly independent nilpotent
elements ny,...,ng in A, 1 <k <m—1. An element v € A\ Ny will be
called a near-nilpotent associated to Ny, if

k
1=1

where all A\; € R are nonzero.

DEFINITION 1.3 ([28]). An element v € A\ N, will be called a near-
idempotent associated to Ny, if

k
(1.6) u? —u=Y A,
=1

where all \; € R are nonzero. The largest possible number k from equation
(1.5) or (1.6) will be called the rank of u. Note that the above definitions imply
that u? is always a nonzero element.

The authors noted that near-idempotents and near-nilpotents exist even
in algebras which do not contain idempotents and proved that under suitable
conditions (see [28, Th.1]) the existence of such special algebraic elements
affects the (in)stability of (all) singular points and implies that the origin of
the corresponding system of ODEs cannot be stable.

To make the paper self-contained, we summarize the following three re-
sults from [28].

PROPOSITION 1.4 ([28]). Let A be a real nonassociative algebra of finite
dimension m and u € A either a near-idempotent or near-nilpotent of rank 1,
associated to the subspace N1 = Rny, where ny is a nonzero nilpotent. If Ny
is included in one of the eigenspaces of u, then every n € Ny is an unstable
singular point of the Riccati equation x' = x? associated with A.

COROLLARY 1.5 (|28]). The additional assumption, about N7 being an
eigenspace of u, cannot be removed from Proposition 1.4.

THEOREM 1.6 ([28]). Let A be a real nonassociative algebra of finite di-
mension m > 2, ny, ...,ng k nonzero linearly independent nilpotents of rank
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two, for1 <k <m—1, N}, =span{ny,...,nx}, u € A\N} be a near-nilpotent
or a near-idempotent associated with Ny,. If n;-nj; =0 for all1 <i,j <k and
n; € Ay, (u), for all 1 <i < k and some scalars \i,..., X\, then any n € Ny
is a unstable singular point of the Riccati equation x' = 2% in A.

The authors in [28] also raised the following question: Is it possible to
generalize the instability results from the case where NNy = {0}, which
makes N}, trivial as subalgebra, to the case where N}, is no longer trivial and,
even more, to the case when N}, is not a subalgebra, that is NNy & N.

In the present paper, we continue to eliminate some classes of algebras
corresponding to systems (1.1) with unstable origin. We consider the stability
of singular points in the classical sense of Lyapunov. As already mentioned,
the origin x = 0 € R™ is a totally degenerated nonhyperbolic singular point of
(1.1) for every m € N, m > 2 and non-zero singular points of a homogeneous
system (1.1) clearly correspond to nilpotents of rank two defined by n-n = 0.

In the following section, when there exists a near nilpotent u, we state an
instability theorem for 0 € A and also for any nilpotent belonging to Rnq, . ..,
or Rny under the weaker condition n;u € Ny, 1 < i < k, which generalizes
niu € Rn;, 1 < i < k, by assuming a restriction in the case NNy C Ny,

NNy # {0}.
For the near idempotent case, the instability remains for 0 € A and for any
nilpotent element belonging to Rnq, ..., or Rng under the weaker condition

NN, C N, but with nju € Rn;, for 1 <7 < k.

When N}, is no longer a subalgebra and in case there is a near nilpotent
with k = 2, we prove the instability of 0 € A and of any nilpotent belonging
to Rny, ..., or Rng under the conditions n;u € Rn,, for 1 <1 < k and justify
that some additional restrictions are needed to extend the result to the cases
3 <k < m—1. Also, some remarks are underlined for the near idempotent
case.

For each theorem, we give applications by characterizing, in dimension
three, all corresponding algebras and we justify that they represent totally
new families of algebras not treated in [28].

Finally, when the n;’s are no longer necessarily nilpotents, we obtain an
extension of classical instability result stated by Sagle and Kinyon.

2. MAIN RESULTS

Before starting and proving our main theorems, we recall an efficient
tool for proving the instability of some given stationary point. Let A be
a nonassociative algebra, B C A a subalgebra and n € B\ {0} a nilpotent
element. Obviously, considered in A, n is also a nilpotent element. Since
B is a subalgebra, it makes sense to study the quadratic dynamical system
associated to A, but this time restricted to the subspace B. If n € 5 is unstable
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for the restricted system of ODE, it is also unstable for the original system of
ODE in A. This remark justifies that we will often deal with restrictions.
Let A be a real nonassociative algebra of dimension m = dim.A > 2,

k an integer with 1 < k < m — 1 and ny, ..., ng k linearly independent
nilpotents. We denote N}, = span{ni,...,n;}. An element u € A\ N,
verifying u? = du + Zle ~vini, where the ~+;’s are all nonzero, is a near-

nilpotent if and only if § = 0 and w is a near-idempotent if and only if § = 1.

2.1. The case NgNy C Ny and NypyNy, # {0}.
2.1.1. The case of a near nilpotent. We start with the case § = 0 and for

i,je{l,... .k}, i #£j, welet /\/’Z; = span{n;,n;}.

THEOREM 2.1. Let A be a real nonassociative algebra of dimension
m > 3, ni,...,ng k linearly independent nilpotents, 2 < k < m — 1,
Ni = span{ni,..., ng} and v € A\N, a near-nilpotent associated to
Ni. If NpNyi C Ni, n; - u belongs to Ny, for i = 1,...,k and there exist
10,0 € {1,..., k}, ig # jo with ./\/i]f)jo./\/iﬁjo C N;I(C)jo and N;I(C)jo not trivial, then
0 € A and any nilpotent in Rn;, or Rn;, are unstable.

PROOF. According to assumptions, we have the following tables:
n;-n; =0, forl<i<k,

k
ng U= Z )\fni for 1 <4 < k with )\f scalars,
(=1

k
i=1
k
ni-nj =Y Agne ford,je{l,....k} withi#j, Af; = Aj; and A7, =0
(=1

if m ¢ {io,jo} .
Let Py, = span{ni,...,ng,u}. In the basis {ni,...,ng, u} of Pk, let (x1,...,
2k, z) denote the coordinates. Obviously, Py is a subalgebra and, as noted
before, it makes sense to consider the Riccati equation restricted to Py. More
precisely, the corresponding ODE’s restricted to the subspace Py, become

k
T = 22/1%1»:171- +2Z/\%a:iz+”y122,
i£1 i=1

k
To = X9 22/1%1»:171- +2Z/\fa:iz+”y222,
i£2 i=1
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k
i#k i=1
z=0.
k

. k . .
Since 'A/iojo is also a subalgebra, the system restricted to Mojo

is
R 10 .

Tiy = Tig (2Ai0j03330) ,

W o Jo . ..

Ljo = Ljg (2Aioj0$m> )

) # (0,0). We deduce: A% g, — Al

i9Jo "0 10J0

with (A% A% ’

10J0 * o jo %;, = 0 which leads
to

Ag(?jo'rio (t) — Azzj'oxjo (t) = K,
for some constant K depending on the initial condition.

Therefore, trajectories in /\/;’f) j, are either segments or half-lines according
to the initial condition. In any given neighbourhood of any critical point,
trajectories will enter this neighbourhood from one side and leave it from the
other side. Thus, any nilpotent in Rn;, or Rn,, is unstable and 0 € ./V;’f) joo
too.

REMARK 2.2. This theorem remains true for any scalars ~;, 1 <i < k.

APPLICATIONS IN DIMENSION 3.

Consider the general algebra A4 having two linearly independent nilpo-
tent elements n;, and ne with the conditions MoANs C MNs, where Ny =
span{ni,na}.

Given a basis {ni,ns, es3}, we have the general tables:

ni=mn;=0,
ning = A}znl + A%27’L2,
(2.1) nies = a1ny + aang + azes,
ngez = fing + Pang + Baes,
€3 = puny + pans + pizes.

Such an algebra admits a near-nilpotent verifying hypothesis of Theorem 2.1
if and only if oz = 83 = p3 = 0. Certainly, if we let u = any + bna +cez & Na,
which means ¢ # 0, it is not difficult to obtain that the two products n; - u
and ny - u belong to A5 if and only if as = 33 = 0 and that u? belongs to N>
if and only if p3 = 0. Thus, we have u? = y;n; + Yan9, for some convenient
scalars v and ~s.

If 972 = 0, w is not a near-nilpotent. However, due to the previous
remark, the conclusion of the theorem remains true in this case.

Therefore, we characterized all homogeneous quadratic systems in R3
having two distinct lines of critical points crossing the origin and verifying
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Theorem 2.1 assumptions:

.fl = 2Ai2$1172 + 20&1171173 + 2[’31I2$3 + ,ulzzrg,
Bg = 243,012 + 2007173 + 227273 + fi273,

z3 =0,

with no condition on scalars, except (Al,, A%,) # (0,0). We notice that the
condition (A}, A?,) = (0,0) corresponds to the case studied in [28] for which
instability of (0,0,0) and any nilpotent in N3 holds.

In the following subsection, we study the near idempotent case.

2.1.2. The case of a near idempotent. Before stating our second result,
we recall a well known result that will be used in the sequel (see [9, Theorem
on p. 171]).

THEOREM 2.3. Let f : R*® — R"™ be C, & = f(x) be the associated
autonomous dynamical system defined on R™ and let (0,z0) € R x R" be an
initial condition. If x (t) is the mazimal solution with x (0) = x, then either
x (t) is defined for t € [0,00) or the trajectory blows up.

When we consider the case of a near-idempotent (6 = 1), the conditions
can be made weaker.

THEOREM 2.4. Let A be a real nonassociative algebra of dimension m >
3, ni, ..., ng k linearly independent nilpotents, 1 < k < m — 1, N =
span{ni,...,ng} and u € A\ N, a near-idempotent associated to Nj,. If
ni-u €Ny fori=1,....k and NyNi C N}, then 0 € A and all nilpotents in
Rnq, or in Rng ... or in Rng are unstable.

PROOF. According to hypothesis, we have the following tables:

n?:O for 1 <i<k,
k
¢
ng-n; = ZAiij
=1

k
ng - u= Z)\fng, X scalars for 4,0 € {1,...,k},
=1

k
u2=u+27mi, v #0 for 1 <i <k,
i=1
with Af; = 0 for i,£ € {1,...,k}, and Af; = A%, for i,j € {1,...,k}.
As P, = span{ni,...,ng,u} is a subalgebra, if we choose the basis
{n1,...,ng,u} and if the corresponding coordinates are denoted by (z1,...,
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Z, z), the corresponding ODEs restricted to Py become:

k k
T =2 Z A}np:vmxp—i-22)\}xiz+7122,

m,p=1 i=1

k k
Tg =2 Z Afnp:vmxp +2 Z )\?xiz + 7222,

m,p=1 i=1

k k
T =2 Z Afnpxmxp + 22 )\fxiz + Y22,
m,p=1 i=1
3 =22
In any neighborhood of 0 € Py, we consider the point My = (0,...,0,¢0),
with g9 > 0, small enough and the initial condition (to, My) = (0, Mp).
Suppose the trajectory ¢z, (+) via My is bounded. Then, according to the
result above, g, (t) is defined for ¢ € [0, 00) which contradicts the equation
i=z2%asz(t) = 1=2. Thus, the trajectory via Mo blows up and 0 € Py, is
unstable.
Using the same idea, we prove that any nilpotent in Rn; or Rng ...
or in Rny is unstable by selecting a similar initial condition in any given
neighbourhood of the nilpotent. O

REMARK 2.5. Here again we notice that Theorem 2.4 remains true for
any scalars ;.

If we suppose v; = 0 for 1 < i < k then u is an idempotent and Theorem
2.4 gives not only the instability of 0 € A, which is an obvious conclusion,
but also the instability of any other nilpotent in Rn; or Rny ... or in Rng.

APPLICATIONS IN DIMENSION 3.

We consider the general algebra 4 having two linearly independent nilpo-
tents ny, ny with AoNa C Na given by the tables (2.1) and we look for nec-
essary and sufficient conditions ensuring the existence of a near-idempotent
as required in Theorem 2.4. As obtained in the previous application, there
exist a vector u = anj + bng + ces € N, i.e. ¢ # 0, verifying u-n; € Ny
and u - ny € Ny if and only if a3 = B3 = 0. Moreover, u? has a nonzero third
component if and only if p3 # 0. Therefore, the conditions a3 = 53 = 0 and
13 # 0 are equivalent to the existence of a vector u verifying u - n; € Ny and
u-ny € Ny and u? = a’ny + b'na + ’e3 with some convenient scalars a’, b’
and ¢ with the condition ¢/ # 0. By replacing, if necessary, u by the vector
v = au, where « is an appropriate nonzero scalar, we obtain

v=v+d"n + b no,
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with a” and 0" scalars. Certainly, if a”’b” = 0, v is not a near-idempotent.
But even in this case and due to the remark above, the conclusion still holds.

Therefore, the general algebra A verifies assumptions of Theorem 2.4 if
and only if ag = 3 = 0 and pug # 0. This leads to the family of homogeneous
quadratic dynamical systems

T = 2Ai2x1:172 + 2c1 2123 + 26103 + ,ulzzrg,
Bo = 243,01 72 + 2007173 + 227273 + fi273,
i3 = pss,

with no conditions on scalars except s # 0.

According to the result in [28], the case (Af,, A;) = (0,0) can be in-
cluded.

REMARK 2.6. In dimension three under hypothesis of Theorem 2.4, it
is easy to show that the only nilpotents are the nonzero elements of Rn; or
Rns. On the other hand, it is known that the image of a nilpotent under an
isomorphism is also a nilpotent. Consequently, all considered algebras are
nonisomorphic to any algebra involved in [28] since there it is supposed that
NoNz = {0} and N5 is a plane of nilpotents.

If we consider two algebras A; and Ay verifying hypothesis of theorem 3
with basis {n1,ns,e3} and {n},nh,es}, respectively and if f: A4, — Ay is an
isomorphism, we have either

f(n1) =din} and f(n2) =dany, or f(n1) =diny and f (n2) = dan]
with dj, d2 nonzero scalars. In addition, the conditions
f(ni-es)=f(n;) f(es) fori=1,2,
f(n1-n2) = f(m) f(n2),
f (eg) =(f (63))2
lead to many other restrictions. Therefore, one can expect that, up to an

isomorphism, it is difficult to reduce significantly the family.

2.2. The case NNy ¢ Ny.. In this subsection, we suppose k = 2, m > 3
and § = 0.

THEOREM 2.7. Let A be a real nonassociative algebra of dimension m > 3,
ni, ng two linearly independent nilpotents, No = span{ni,ns}, u€ A\ N, a
near-nilpotent associated to Ny and Pz = span{ny,na,u}. If NoNy C Py and
n; € Ay, (u) fori=1,2 then 0 € A and any nilpotent in Rny or in Rng are
unstable.

PRrROOF. As P5 is a subalgebra, we will prove that 0 € P is unstable.
Restricted to Pa, the corresponding ODE’s become

T =1 (214%2552 + 2)\12) + '71227
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To = X2 (214%2552 + 2)\22) + '72227
2.5 = 2021I1$2,

if we let ning = Along + A3yng + Cu with C3 # 0.
With no loss of generality, we can suppose 71 = y2 = 1 by considering
the new basis {%nl, V—Zm, u} Also, if C3 < 0 we can replace u by —u, then

the new constant, still denoted by C3, is strictly positive.

Let No = (0,0,g0) € P2, with €9 > 0 small, be an element of any given
neighbourhood of 0 € Py. We will justify that trajectory via Ny blows up.
Suppose the contrary, it is then defined for any ¢t > 0. For ¢t > 0 small enough,
since #1(0) > 0 and 42(0) > 0, z1 (¢t) and x4 (¢) increase. Thus, there exist
to > 0 with z1 (t9) > 0 and z2 (t9) > 0.

If 2 # 0, at each point (0, 2, z) belonging to the plane 21 = 0”7, we have
i = 22 > 0. Consequently, this plane is repellent and the same conclusion
holds for any point (x1,0, z) in the plane "zo = 07.

Thus, if z1 (to) > 0 and 2 (t9) > 0, @1 (t) and x» (t) remain positive for
t > to. As a consequence, we have z(t) > eg, for all t > 0.

In addition, there exist some scalars > 0 and ¢; > 0 with 7 (¢) > p and
29 (t) > p for all t > ¢;. We will prove it for x1 () and the same idea gives
the result for x5 (). Therefore, suppose there exists a sequence t,, — 400 for
which z; (t,) — 0. As the sequences (x2 (t,)),, and (z (t,)),, are bounded, up
to subsequences still denoted by (x1 (t,)),,, (@2 (tn)), and (2 (t,)),,, we have:

nh_gio (z1 (tn) ) L2 (tn) 22 (tn)) = (07 «, ﬁ) )

where @ > 0 and 8 > 0 are some convenient scalars. As the point (0, a, 3)
is repellent, there exist no trajectory that enters any given neighbourhood of
(0, v, B) infinitely often.

As a consequence, we obtain

() >2053u* >0 for t>t

and z (t) blows up when ¢ — oo, which is a contradiction. Thus 0 € A is un-
stable. Using the same ideas, we can prove that any nilpotent in Rnj or Rny is
unstable by setting a convenient initial condition in any given neighbourhood
of the considered nilpotent. O

REMARK 2.8. The conditions ~; # 0, 1 < ¢ < k are necessary for our
proof.

If £ > 3, we need additional restrictions like: n;n; € Ny, for i # j with
exactly one exception (ig, jo), io < jo for which

Cme = A0 . io
NigNj, = A . ni, + A;

) to
%070 i0jo Vo + Cjou’

with C’;g # 0. This assumptions will keep the repellency of the two hyper-
planes "z;, = 0”and "z, = 0”in Py.
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When u is a near-idempotent, k = 2 and NoNy & N with NoANs C Ps.
The system of ODE’s restricted to Py writes

1 = a1 (2Ai2x2 + 2)\12) + 22,
Lo = To (2Af2332 + 2)\22) + 22,
=224 2021£L'1$2,
with C3 # 0. If C4 > 0, one can prove that 0 € A and any nilpotent in Rn;
or Rn; are unstable. However, we believe that the case C3 < 0 may include

some cases where stability of the origin occurs though we have no available
example.

APPLICATIONS IN DIMENSION 3.

We consider the general family of algebras A’ defined by (2.1) with, this
time, ning = Alyng + A2yng + Alyes, where A3, # 0 since NoNo ¢ Nb.

Let u = any + bng + ceg be a vector not in N (i.e. ¢ # 0). The condition
ny € Ay, (u) is equivalent to

bA3, + cag =0,
bA3, + caz =0,
and this system admits nontrivial solutions if and only if
(22) a3A%2 = agA%.
On the other hand, the condition ny € Ay, (u) is equivalent to
a’A]iQ + Cﬂl = Oa
G/A?z + 063 = 0,
and we obtain nontrivial solutions of and only if
(2.3) BSAb = 51A§’2-
Under conditions (2.2) and (2.3), we obtain
Bs a3 )
u=—c|—=ni+-—-—=mns—es3); c#0.
(Ai”z Ay
Then we compute u? and the third component should be zero. A direct
computation gives the necessary and sufficient condition

According to the proof, we absolutely need the conditions v;72 # 0, where
u? = Ele ~v;ni. This leads to

20383 A1, — 2A%, (o1 Bs + asp) + (A?2)2 #0,

(2.4)
2033342, — 243, (B + asBa) + s (A%,)° # 0.
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Consequently, we did characterize the elements of the family that verify hy-
pothesis of Theorem 2.7. They correspond to the quadratic dynamical sys-
tems:

25314%2
Aty

. 1 2
1 = 2A[57129 + 2012123 + ToT3 + [ 25,

2(13 A%Q
ATy

1123 + 2B2x273 + P23,

2ai33 2
3 3
Ay

. 2
To = 2A12JJ1LL‘2 +

ig = 2A?2$1$2 + 20[3$1Ig + 2[33I2$3 +

with conditions (2.4).

REMARK 2.9. Using above theorems, we can give an extension of a clas-
sical result of Kinyon and Sagle.

In [10], Kinyon and Sagle stated that if there exist an idempotent in a
nonassociative algebra 4, the origin is unstable.
When there exist no idempotent but we have a vector u verifying

k
w=u+ Z i€,
i=1
where ey, ..., e, are linearly independent vectors of A (not necessarily nilpo-

tents) and all scalars A\; are not zero, we can derive the following result.

THEOREM 2.10. Let A be a real nonassociative algebra of dimension m,
€1, ..., e k linearly independent elements of A, 1 <k <m—1 and u €

A\ span{ey,...,e,} verifying

k
u’ =u+ Z'Yiei;
i=1
where not all v;’s are zero. If My = span{es,...,er} is a subalgebra and

ei-u€ My fori=1,... k, then 0 € A is unstable.

PROOF. According to hypotheses, P, = span{es,...,er,u} is a subalge-
bra and the corresponding ODE’s restricted to P, become:

k
i?l = 2 ZAZIJ.IZ.IJ —+ 2 Z All.IZZ + 71227

ij i=1

k
Tog = 2 Z A?jxixj + 2 Z )\%5[512’ + 72227

ij i=1
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k
Ty =2 ZAfjxixj +2 Z MNexiz 4+ 22,
ij i=1

z =2z

with suitable constants.

For any neighbourhood of 0 € Py, let Py = (0,...,0,e0) € Py, with gg > 0
small, be an element of this neighbourhood. Necessarily, the trajectory via
Py with blows up otherwise it would be defined for ¢ € [0, 00) but this is in
contradiction with
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