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Abstract. In [28], for any real non associative algebra of dimension m ≥ 2, having

k linearly independent nilpotent elements n1, n2, . . . , nk, 1 ≤ k ≤ m − 1, Mencinger and

Zalar defined near idempotents and near nilpotents associated to n1, n2, . . . , nk. Assuming

NkNk = {0}, where Nk = span {n1, n2, . . . , nk}, they showed that if there exists a near

idempotent or a near nilpotent, called u, associated to n1, n2, . . . , nk verifying niu ∈ Rni,

for 1 ≤ i ≤ k, then any nilpotent element in Nk is unstable. They also raised the question

of extending their results to cases where NkNk 6= {0} with NkNk ⊂ Nk and to cases where

NkNk 6⊂ Nk.

In this paper, positive answers are emphasized and in some cases under the weaker

conditions niu ∈ Nk. In addition, we characterize all such algebras in dimension 3.

1. Introduction

An autonomous homogeneous polynomial systems of ODEs of degree k is
defined by

(1.1) x′ =
dx

dt
= H (x) ,

where the vector function x : I ⊂ R → R
m is defined on some open interval I

and H : Rm → R
m is a homogeneous form of degree k

(1.2) H (αx) = αkH (x) ∀α ∈ R, ∀x ∈ R
m.

If H is homogeneous of degree two, system (1.1) is called a homogeneous
quadratic system. In this case, it is common to write x′ = Q (x).
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Lawrence Markus in [17] was the first one who associated system (1.1) for
k = 2 with nonassociative algebra A =(Rm, ·), where the algebra multiplica-
tion · is defined by

(1.3) x · y =
1

2
(Q (x+ y)−Q (x)−Q (y)) .

Conversely, given a nonassociative algebra of dimension m, we associate
the homogeneous quadratic differential equation in A:

x′ = x · x.

Therefore, there is a one-to-one correspondence between real non-associative
algebras in dimension n and homogeneous quadratic dynamical systems in
R

m.
After his classification of planar systems, many other authors considered

various classifications, mostly limited to k = 2, see [4, 5, 6, 7, 8, 18, 22]. For
systems (1.1), the question of (in)stability of singular point(s) is nontrivial,
see [3, 19, 23, 24, 25, 28], since the origin is a nonelementary nonhyperbolic
singular point in any dimension and for any degree of homogeneity. There
are also some papers about (algebraic) structure(s) and dynamics in systems
(1.1), e.g. [1, 4, 5, 8] and applications beyond ODEs (see e.g. [12, 13, 14, 15,
26, 16, 21]). Finally, let us mention some review papers [10, 11, 12, 20] and a
monograph [27]. The list of the references below is far from exhaustive, but
the references in [27] are quite exhaustive until year 1991.

Concerning the solutions of a quadratic system (1.1) and special algebraic
elements in the corresponding algebra A, it is well-known that any nonzero
idempotent (for which p · p = p holds) in A implies the existence of a ray
solution which yields instability of the origin. The ray solutions on the line
Rp are examples of so called blow-up solutions (e.g. [10, 11, 20, 27]). On
the other hand, nilpotent elements, defined as nonzero elements n verifying
n2 = n ·n = 0, lead to a line of nilpotents Rn and to a line of stationary points
for the associated dynamical system. As a consequence, a nilpotent element
is never asymptotically stable.

We recall the definition of critical point stability in the sense of Lyapunov.

Definition 1.1. Consider a dynamical system in R
m and M ∈ R

m a
stationary point. M is a stable critical point if for any neighbourhood VM ⊂
R

m of M , there exist a neighbourhood WM ⊂ VM of M such that, for any
point P0 ∈ WM , the trajectory P0(t) via P0 remains in VM for t > 0 as long
as solution is defined.

In [28], the authors studied the stability of non-zero singular points of a
quadratic system (1.1) using the so called λ−space of a nonzero element u
defined by

(1.4) Aλ (u) = {x ∈ A; u · x = λx} .
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If Aλ (u) 6= {0}, it is called an eigenspace of u. Obviously, all such λ are eigen-
values of the linear map x 7−→ u ·x and the maximal number of λ−eigenspaces
is smaller than dim (A) . In [3], the authors proved that the nilpotent line Rn
consists of unstable singular points, if n is included in Aλ (p) for some idempo-
tent p ∈ A and that this result remains true even when p is not necessarily an
idempotent but an element satisfying a weaker algebraic condition. In [28],
the authors defined a more general algebraic framework in which the first
main result of [3] was reinterpreted in sense of the following two definitions.

Definition 1.2 ([28]). Let A be a commutative real algebra of dimension
m and Nk ⊂ A the subspace spanned by a set of linearly independent nilpotent
elements n1, . . . , nk in A, 1 ≤ k ≤ m − 1. An element u ∈ A \ Nk will be
called a near-nilpotent associated to Nk if

(1.5) u2 =
k

∑

i=1

λini,

where all λi ∈ R are nonzero.

Definition 1.3 ([28]). An element u ∈ A \ Nk will be called a near-
idempotent associated to Nk if

(1.6) u2 − u =
k
∑

i=1

λini,

where all λi ∈ R are nonzero. The largest possible number k from equation
(1.5) or (1.6) will be called the rank of u. Note that the above definitions imply
that u2 is always a nonzero element.

The authors noted that near-idempotents and near-nilpotents exist even
in algebras which do not contain idempotents and proved that under suitable
conditions (see [28, Th.1]) the existence of such special algebraic elements
affects the (in)stability of (all) singular points and implies that the origin of
the corresponding system of ODEs cannot be stable.

To make the paper self-contained, we summarize the following three re-
sults from [28].

Proposition 1.4 ([28]). Let A be a real nonassociative algebra of finite
dimension m and u ∈ A either a near-idempotent or near-nilpotent of rank 1,
associated to the subspace N1 = Rn1, where n1 is a nonzero nilpotent. If N1

is included in one of the eigenspaces of u, then every n ∈ N1 is an unstable
singular point of the Riccati equation x′ = x2 associated with A.

Corollary 1.5 ([28]). The additional assumption, about N1 being an
eigenspace of u, cannot be removed from Proposition 1.4.

Theorem 1.6 ([28]). Let A be a real nonassociative algebra of finite di-
mension m ≥ 2, n1, . . . ,nk k nonzero linearly independent nilpotents of rank
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two, for 1 ≤ k ≤ m−1, Nk = span{n1, . . . , nk}, u ∈ A\Nk be a near-nilpotent
or a near-idempotent associated with Nk. If ni ·nj = 0 for all 1 ≤ i, j ≤ k and
ni ∈ Aλi

(u), for all 1 ≤ i ≤ k and some scalars λ1, . . . , λk, then any n ∈ Nk

is a unstable singular point of the Riccati equation x′ = x2 in A.

The authors in [28] also raised the following question: Is it possible to
generalize the instability results from the case where NkNk = {0}, which
makes Nk trivial as subalgebra, to the case where Nk is no longer trivial and,
even more, to the case when Nk is not a subalgebra, that is NkNk 6⊂ Nk.

In the present paper, we continue to eliminate some classes of algebras
corresponding to systems (1.1) with unstable origin. We consider the stability
of singular points in the classical sense of Lyapunov. As already mentioned,
the origin x = 0 ∈ R

m is a totally degenerated nonhyperbolic singular point of
(1.1) for every m ∈ N, m ≥ 2 and non-zero singular points of a homogeneous
system (1.1) clearly correspond to nilpotents of rank two defined by n ·n = 0.

In the following section, when there exists a near nilpotent u, we state an
instability theorem for 0 ∈ A and also for any nilpotent belonging to Rn1, . . . ,
or Rnk under the weaker condition niu ∈ Nk, 1 ≤ i ≤ k, which generalizes
niu ∈ Rni, 1 ≤ i ≤ k, by assuming a restriction in the case NkNk ⊂ Nk,
NkNk 6= {0}.

For the near idempotent case, the instability remains for 0 ∈ A and for any
nilpotent element belonging to Rn1, . . . , or Rnk under the weaker condition
NkNk ⊂ Nk but with niu ∈ Rni, for 1 ≤ i ≤ k.

When Nk is no longer a subalgebra and in case there is a near nilpotent
with k = 2, we prove the instability of 0 ∈ A and of any nilpotent belonging
to Rn1, . . . , or Rnk under the conditions niu ∈ Rni, for 1 ≤ i ≤ k and justify
that some additional restrictions are needed to extend the result to the cases
3 ≤ k ≤ m − 1. Also, some remarks are underlined for the near idempotent
case.

For each theorem, we give applications by characterizing, in dimension
three, all corresponding algebras and we justify that they represent totally
new families of algebras not treated in [28].

Finally, when the ni’s are no longer necessarily nilpotents, we obtain an
extension of classical instability result stated by Sagle and Kinyon.

2. Main Results

Before starting and proving our main theorems, we recall an efficient
tool for proving the instability of some given stationary point. Let A be
a nonassociative algebra, B ⊂ A a subalgebra and n ∈ B \ {0} a nilpotent
element. Obviously, considered in A, n is also a nilpotent element. Since
B is a subalgebra, it makes sense to study the quadratic dynamical system
associated toA, but this time restricted to the subspace B. If n ∈ B is unstable
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for the restricted system of ODE, it is also unstable for the original system of
ODE in A. This remark justifies that we will often deal with restrictions.

Let A be a real nonassociative algebra of dimension m = dimA ≥ 2,
k an integer with 1 ≤ k ≤ m − 1 and n1, . . . , nk k linearly independent
nilpotents. We denote Nk = span {n1, . . . , nk}. An element u ∈ A \ N k

verifying u2 = δu +
∑k

i=1
γini, where the γi’s are all nonzero, is a near-

nilpotent if and only if δ = 0 and u is a near-idempotent if and only if δ = 1.

2.1. The case NkNk ⊂ Nk and NkNk 6= {0}.
2.1.1. The case of a near nilpotent. We start with the case δ = 0 and for

i, j ∈ {1, . . . , k} , i 6= j, we let N k
ij = span {ni, nj} .

Theorem 2.1. Let A be a real nonassociative algebra of dimension
m ≥ 3, n1, . . . , nk k linearly independent nilpotents, 2 ≤ k ≤ m − 1,
Nk = span{n1, . . . , nk} and u ∈ A \N k a near-nilpotent associated to
Nk. If NkNk ⊂ Nk, ni · u belongs to Nk for i = 1, . . . , k and there exist
i0, j0 ∈ {1, . . . , k}, i0 6= j0 with N k

i0j0
N k

i0j0
⊂ N k

i0j0
and N k

i0j0
not trivial, then

0 ∈ A and any nilpotent in Rni0 or Rnj0 are unstable.

Proof. According to assumptions, we have the following tables:

ni · ni = 0, for 1 ≤ i ≤ k,

ni · u =
k

∑

ℓ=1

λℓ
ini for 1 ≤ i ≤ k with λℓ

i scalars,

u · u =
k

∑

i=1

γini, γi 6= 0 for 1 ≤ i ≤ k,

ni · nj =

k
∑

ℓ=1

Aℓ
ijnℓ for i, j ∈ {1, . . . , k} with i 6= j, Aℓ

ij = Aℓ
ji and Am

i0j0
= 0

if m /∈ {i0, j0} .

Let Pk = span {n1, . . . , nk, u} . In the basis {n1, . . . , nk, u} of Pk, let (x1, . . . ,
xk, z) denote the coordinates. Obviously, Pk is a subalgebra and, as noted
before, it makes sense to consider the Riccati equation restricted to Pk. More
precisely, the corresponding ODE’s restricted to the subspace Pk become

ẋ1 = x1



2
∑

i6=1

A1

1ixi



+ 2

k
∑

i=1

λ1

i xiz + γ1z
2,

ẋ2 = x2



2
∑

i6=2

A2

2ixi



+ 2

k
∑

i=1

λ2

i xiz + γ2z
2,

...



256 H. BOUJEMAA AND B. FERČEC

ẋk = xk



2
∑

i6=k

Ak
kixi



+ 2

k
∑

i=1

λk
i xiz + γkz

2,

ż = 0.

Since N k
i0j0

is also a subalgebra, the system restricted to N k
i0j0

is

ẋi0 = xi0

(

2Ai0
i0j0

xj0

)

,

ẋj0 = xj0

(

2Aj0
i0j0

xi0

)

,

with (Ai0
i0j0

, Aj0
i0j0

) 6= (0, 0). We deduce: Aj0
i0j0

ẋi0 − Ai0
i0j0

ẋj0 = 0 which leads
to

Aj0
i0j0

xi0 (t)−Ai0
i0j0

xj0 (t) = K,

for some constant K depending on the initial condition.
Therefore, trajectories in N k

i0j0
are either segments or half-lines according

to the initial condition. In any given neighbourhood of any critical point,
trajectories will enter this neighbourhood from one side and leave it from the
other side. Thus, any nilpotent in Rni0 or Rnj0 is unstable and 0 ∈ N k

i0j0
,

too.

Remark 2.2. This theorem remains true for any scalars γi, 1 ≤ i ≤ k.

Applications in dimension 3.

Consider the general algebra A having two linearly independent nilpo-
tent elements n1, and n2 with the conditions N2N2 ⊂ N2, where N2 =
span {n1, n2}.

Given a basis {n1, n2, e3}, we have the general tables:

(2.1)

n2

1 = n2

2 = 0,

n1n2 = A1

12n1 +A2

12n2,

n1e3 = α1n1 + α2n2 + α3e3,

n2e3 = β1n1 + β2n2 + β3e3,

e23 = µ1n1 + µ2n2 + µ3e3.

Such an algebra admits a near-nilpotent verifying hypothesis of Theorem 2.1
if and only if α3 = β3 = µ3 = 0. Certainly, if we let u = an1+ bn2+ ce3 /∈ N2,
which means c 6= 0, it is not difficult to obtain that the two products n1 · u
and n2 · u belong to N2 if and only if α3 = β3 = 0 and that u2 belongs to N2

if and only if µ3 = 0. Thus, we have u2 = γ1n1 + γ2n2, for some convenient
scalars γ1 and γ2.

If γ1γ2 = 0, u is not a near-nilpotent. However, due to the previous
remark, the conclusion of the theorem remains true in this case.

Therefore, we characterized all homogeneous quadratic systems in R
3

having two distinct lines of critical points crossing the origin and verifying
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Theorem 2.1 assumptions:

ẋ1 = 2A1

12x1x2 + 2α1x1x3 + 2β1x2x3 + µ1x
2

3,

ẋ2 = 2A2

12x1x2 + 2α2x1x3 + 2β2x2x3 + µ2x
2

3,

ẋ3 = 0,

with no condition on scalars, except
(

A1
12, A

2
12

)

6= (0, 0). We notice that the

condition
(

A1
12, A

2
12

)

= (0, 0) corresponds to the case studied in [28] for which
instability of (0, 0, 0) and any nilpotent in N2 holds.

In the following subsection, we study the near idempotent case.
2.1.2. The case of a near idempotent. Before stating our second result,

we recall a well known result that will be used in the sequel (see [9, Theorem
on p. 171]).

Theorem 2.3. Let f : R
n → R

n be C1, ẋ = f (x) be the associated
autonomous dynamical system defined on R

n and let (0, x0) ∈ R× R
n be an

initial condition. If x (t) is the maximal solution with x (0) = x0, then either
x (t) is defined for t ∈ [0,∞) or the trajectory blows up.

When we consider the case of a near-idempotent (δ = 1), the conditions
can be made weaker.

Theorem 2.4. Let A be a real nonassociative algebra of dimension m ≥
3, n1, . . . , nk k linearly independent nilpotents, 1 ≤ k ≤ m − 1, Nk =
span {n1, . . . , nk} and u ∈ A \ N k a near-idempotent associated to Nk. If
ni · u ∈ Nk for i = 1, . . . , k and NkNk ⊂ Nk then 0 ∈ A and all nilpotents in
Rn1, or in Rn2 . . . or in Rnk are unstable.

Proof. According to hypothesis, we have the following tables:

n2

i = 0 for 1 ≤ i ≤ k,

ni · nj =

k
∑

ℓ=1

Aℓ
ijnℓ,

ni · u =

k
∑

ℓ=1

λℓ
inℓ, λℓ

i scalars for i, ℓ ∈ {1, . . . , k} ,

u2 = u+

k
∑

i=1

γini, γi 6= 0 for 1 ≤ i ≤ k,

with Aℓ
ii = 0 for i, ℓ ∈ {1, . . . , k}, and Aℓ

ij = Aℓ
ji for i, j ∈ {1, . . . , k} .

As Pk = span {n1, . . . , nk, u} is a subalgebra, if we choose the basis
{n1, . . . , nk, u} and if the corresponding coordinates are denoted by (x1, . . . ,
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xk, z), the corresponding ODEs restricted to Pk become:

ẋ1 = 2

k
∑

m,p=1

A1

mpxmxp + 2

k
∑

i=1

λ1

i xiz + γ1z
2,

ẋ2 = 2
k
∑

m,p=1

A2

mpxmxp + 2
k

∑

i=1

λ2

i xiz + γ2z
2,

...

ẋk = 2

k
∑

m,p=1

Ak
mpxmxp + 2

k
∑

i=1

λk
i xiz + γkz

2,

ż = z2.

In any neighborhood of 0 ∈ Pk, we consider the point M0 = (0, . . . , 0, ε0),
with ε0 > 0, small enough and the initial condition (t0,M0) = (0,M0).

Suppose the trajectory ϕM0
(·) viaM0 is bounded. Then, according to the

result above, ϕM0
(t) is defined for t ∈ [0,∞) which contradicts the equation

ż = z2 as z (t) = ε0
1−ε0t

. Thus, the trajectory via M0 blows up and 0 ∈ Pk is
unstable.

Using the same idea, we prove that any nilpotent in Rn1 or Rn2 . . .
or in Rnk is unstable by selecting a similar initial condition in any given
neighbourhood of the nilpotent.

Remark 2.5. Here again we notice that Theorem 2.4 remains true for
any scalars γi.

If we suppose γi = 0 for 1 ≤ i ≤ k then u is an idempotent and Theorem
2.4 gives not only the instability of 0 ∈ A, which is an obvious conclusion,
but also the instability of any other nilpotent in Rn1 or Rn2 . . . or in Rnk.

Applications in dimension 3.

We consider the general algebra A having two linearly independent nilpo-
tents n1, n2 with N2N2 ⊂ N2 given by the tables (2.1) and we look for nec-
essary and sufficient conditions ensuring the existence of a near-idempotent
as required in Theorem 2.4. As obtained in the previous application, there
exist a vector u = an1 + bn2 + ce3 /∈ N2, i.e. c 6= 0, verifying u · n1 ∈ N2

and u · n2 ∈ N2 if and only if α3 = β3 = 0. Moreover, u2 has a nonzero third
component if and only if µ3 6= 0. Therefore, the conditions α3 = β3 = 0 and
µ3 6= 0 are equivalent to the existence of a vector u verifying u · n1 ∈ N2 and
u · n2 ∈ N2 and u2 = a′n1 + b′n2 + c′e3 with some convenient scalars a′, b′

and c′ with the condition c′ 6= 0. By replacing, if necessary, u by the vector
v = αu, where α is an appropriate nonzero scalar, we obtain

v2 = v + a′′n1 + b′′n2,
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with a′′ and b′′ scalars. Certainly, if a′′b′′ = 0, v is not a near-idempotent.
But even in this case and due to the remark above, the conclusion still holds.

Therefore, the general algebra A verifies assumptions of Theorem 2.4 if
and only if α3 = β3 = 0 and µ3 6= 0. This leads to the family of homogeneous
quadratic dynamical systems

ẋ1 = 2A1

12x1x2 + 2α1x1x3 + 2β1x2x3 + µ1x
2

3,

ẋ2 = 2A2

12x1x2 + 2α2x1x3 + 2β2x2x3 + µ2x
2

3,

ẋ3 = µ3x
2

3,

with no conditions on scalars except µ3 6= 0.
According to the result in [28], the case

(

A1
12, A

2
12

)

= (0, 0) can be in-
cluded.

Remark 2.6. In dimension three under hypothesis of Theorem 2.4, it
is easy to show that the only nilpotents are the nonzero elements of Rn1 or
Rn2. On the other hand, it is known that the image of a nilpotent under an
isomorphism is also a nilpotent. Consequently, all considered algebras are
nonisomorphic to any algebra involved in [28] since there it is supposed that
N2N2 = {0} and N2 is a plane of nilpotents.

If we consider two algebras A1 and A2 verifying hypothesis of theorem 3
with basis {n1, n2, e3} and {n′

1, n
′
2, e

′
3}, respectively and if f : A1 → A2 is an

isomorphism, we have either

f (n1) = d1n
′
1 and f (n2) = d2n

′
2, or f (n1) = d1n

′
2 and f (n2) = d2n

′
1

with d1, d2 nonzero scalars. In addition, the conditions

f (ni · e3) = f (ni) f (e3) for i = 1, 2,

f (n1 · n2) = f (n1) f (n2) ,

f
(

e23
)

= (f (e3))
2

lead to many other restrictions. Therefore, one can expect that, up to an
isomorphism, it is difficult to reduce significantly the family.

2.2. The case NkNk 6⊂ Nk. In this subsection, we suppose k = 2, m ≥ 3
and δ = 0.

Theorem 2.7. Let A be a real nonassociative algebra of dimension m ≥ 3,
n1, n2 two linearly independent nilpotents, N2 = span {n1, n2}, u ∈ A \ N

2
a

near-nilpotent associated to N2 and P2 = span {n1, n2, u}. If N2N2 ⊂ P2 and
ni ∈ Aλi

(u) for i = 1, 2 then 0 ∈ A and any nilpotent in Rn1 or in Rn2 are
unstable.

Proof. As P2 is a subalgebra, we will prove that 0 ∈ P2 is unstable.
Restricted to P2, the corresponding ODE’s become

ẋ1 = x1

(

2A1

12x2 + 2λ1z
)

+ γ1z
2,
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ẋ2 = x2

(

2A2

12x2 + 2λ2z
)

+ γ2z
2,

ż = 2C1

2x1x2,

if we let n1n2 = A1
12n1 +A2

12n2 + C1
2u with C1

2 6= 0.
With no loss of generality, we can suppose γ1 = γ2 = 1 by considering

the new basis
{

1

γ1

n1,
1

γ2

n2, u
}

. Also, if C1
2 < 0 we can replace u by −u, then

the new constant, still denoted by C1
2 , is strictly positive.

Let N0 = (0, 0, ε0) ∈ P2, with ε0 > 0 small, be an element of any given
neighbourhood of 0 ∈ Pk. We will justify that trajectory via N0 blows up.
Suppose the contrary, it is then defined for any t > 0. For t > 0 small enough,
since ẋ1(0) > 0 and ẋ2(0) > 0, x1 (t) and x2 (t) increase. Thus, there exist
t0 > 0 with x1 (t0) > 0 and x2 (t0) > 0.

If z 6= 0, at each point (0, x2, z) belonging to the plane ”x1 = 0”, we have
ẋ1 = z2 > 0. Consequently, this plane is repellent and the same conclusion
holds for any point (x1, 0, z) in the plane ”x2 = 0”.

Thus, if x1 (t0)> 0 and x2 (t0)> 0, x1 (t) and x2 (t) remain positive for
t ≥ t0. As a consequence, we have z(t) ≥ ε0, for all t ≥ 0.

In addition, there exist some scalars µ > 0 and t1 > 0 with x1 (t) ≥ µ and
x2 (t) ≥ µ for all t ≥ t1. We will prove it for x1 (t) and the same idea gives
the result for x2 (t). Therefore, suppose there exists a sequence tn → +∞ for
which x1 (tn) → 0. As the sequences (x2 (tn))n and (z (tn))n are bounded, up
to subsequences still denoted by (x1 (tn))n, (x2 (tn))n and (z (tn))n, we have:

lim
n→∞

(x1 (tn) , x2 (tn) , z (tn)) = (0, α, β) ,

where α ≥ 0 and β > 0 are some convenient scalars. As the point (0, α, β)
is repellent, there exist no trajectory that enters any given neighbourhood of
(0, α, β) infinitely often.

As a consequence, we obtain

ż (t) ≥ 2C1

2µ
2 > 0 for t ≥ t1

and z (t) blows up when t → ∞, which is a contradiction. Thus 0 ∈ A is un-
stable. Using the same ideas, we can prove that any nilpotent in Rn1 or Rn1 is
unstable by setting a convenient initial condition in any given neighbourhood
of the considered nilpotent.

Remark 2.8. The conditions γi 6= 0, 1 ≤ i ≤ k are necessary for our
proof.

If k ≥ 3, we need additional restrictions like: ninj ∈ Nk for i 6= j with
exactly one exception (i0, j0), i0 < j0 for which

ni0nj0 = Ai0
i0j0

ni0 +Ai0
i0j0

nj0 + Ci0
j0
u,

with Ci0
j0

6= 0. This assumptions will keep the repellency of the two hyper-
planes ”xi0 = 0”and ”xj0 = 0”in Pk.
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When u is a near-idempotent, k = 2 and N2N2 6⊂ N2 with N2N2 ⊂ P2.
The system of ODE’s restricted to P2 writes

ẋ1 = x1

(

2A1

12x2 + 2λ1z
)

+ z2,

ẋ2 = x2

(

2A2

12x2 + 2λ2z
)

+ z2,

ż = z2 + 2C1

2x1x2,

with C1
2 6= 0. If C1

2 > 0, one can prove that 0 ∈ A and any nilpotent in Rn1

or Rn1 are unstable. However, we believe that the case C1
2 < 0 may include

some cases where stability of the origin occurs though we have no available
example.

Applications in dimension 3.

We consider the general family of algebras A′ defined by (2.1) with, this
time, n1n2 = A1

12n1 +A2
12n2 +A3

12e3, where A3
12 6= 0 since N2N2 6⊂ N2.

Let u = an1 + bn2 + ce3 be a vector not in N2 (i.e. c 6= 0). The condition
n1 ∈ Aλ1

(u) is equivalent to

bA2

12 + cα2 = 0,

bA3

12 + cα3 = 0,

and this system admits nontrivial solutions if and only if

(2.2) α3A
2

12 = α2A
3

12.

On the other hand, the condition n2 ∈ Aλ2
(u) is equivalent to

aA1

12 + cβ1 = 0,

aA3

12 + cβ3 = 0,

and we obtain nontrivial solutions of and only if

(2.3) β3A
1

12 = β1A
3

12.

Under conditions (2.2) and (2.3), we obtain

u = −c

(

β3

A3
12

n1 +
α3

A3
12

n2 − e3

)

; c 6= 0.

Then we compute u2 and the third component should be zero. A direct
computation gives the necessary and sufficient condition

µ3 =
2α3β2

A3
12

.

According to the proof, we absolutely need the conditions γ1γ2 6= 0, where
u2 =

∑2

i=1
γini. This leads to

(2.4)
2α3β3A

1

12 − 2A3

12 (α1β3 + α3β1) + µ1

(

A3

12

)2
6= 0,

2α3β3A
2

12 − 2A3

12 (α2β3 + α3β2) + µ2

(

A3

12

)2
6= 0.
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Consequently, we did characterize the elements of the family that verify hy-
pothesis of Theorem 2.7. They correspond to the quadratic dynamical sys-
tems:

ẋ1 = 2A1

12x1x2 + 2α1x1x3 +
2β3A

1
12

A3
12

x2x3 + µ1x
2

3,

ẋ2 = 2A2

12x1x2 +
2α3A

2
12

A3
12

x1x3 + 2β2x2x3 + µ2x
2

3,

ẋ3 = 2A3

12x1x2 + 2α3x1x3 + 2β3x2x3 +
2α3β3

A3
12

x2

3,

with conditions (2.4).

Remark 2.9. Using above theorems, we can give an extension of a clas-
sical result of Kinyon and Sagle.

In [10], Kinyon and Sagle stated that if there exist an idempotent in a
nonassociative algebra A, the origin is unstable.

When there exist no idempotent but we have a vector u verifying

u2 = u+
k

∑

i=1

λiei,

where e1, . . . , ek are linearly independent vectors of A (not necessarily nilpo-
tents) and all scalars λi are not zero, we can derive the following result.

Theorem 2.10. Let A be a real nonassociative algebra of dimension m,
e1, . . . , ek k linearly independent elements of A, 1 ≤ k ≤ m − 1 and u ∈
A\ span {e1, . . . , ek} verifying

u2 = u+
k

∑

i=1

γiei,

where not all γi’s are zero. If Mk = span {e1, . . . , ek} is a subalgebra and
ei · u ∈ Mk for i = 1, . . . , k, then 0 ∈ A is unstable.

Proof. According to hypotheses, Pk = span{e1, . . . , ek, u} is a subalge-
bra and the corresponding ODE’s restricted to Pk become:

ẋ1 = 2
∑

i,j

A1

ijxixj + 2

k
∑

i=1

λ1

ixiz + γ1z
2,

ẋ2 = 2
∑

i,j

A2

ijxixj + 2
k
∑

i=1

λ2

ixiz + γ2z
2,

...
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ẋk = 2
∑

i,j

Ak
ijxixj + 2

k
∑

i=1

λk
i xiz + γkz

2,

ż = z2,

with suitable constants.
For any neighbourhood of 0 ∈ Pk, let P0 = (0, . . . , 0, ε0) ∈ Pk with ε0 > 0

small, be an element of this neighbourhood. Necessarily, the trajectory via
P0 with blows up otherwise it would be defined for t ∈ [0,∞) but this is in
contradiction with

ż = z2.
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&
Center for Applied Mathematics and Theoretical Physics, University of Maribor
Mladinska 3, SI-2000 Maribor, Slovenia
&
Faculty of natural sciences and mathematics, University of Maribor
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