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UNIFORM REGULARITY FOR THE NONISENTROPIC

MHD SYSTEM

Kunlong Shi and Tong Tang

Nanjing Forestry University and Yangzhou University, P.R.China

Abstract. In this work, we prove the uniform regularity of smooth solutions to the

full compressible MHD system in T
3. Here our result is obtained by using the bilinear

commutator and product estimates.

1. Introduction

Magnetic fields influence many natural and artificial flows. The study of
these flows is called magnetohydrodynamics (MHD). The viscous compressible
MHD model has a very wide range of applications in physical models, ranging
from liquid metals to plasma. The MHD model is so important that it has
been studied both from a theoretical and numerical perspective. In this paper,
we consider the following MHD system:

∂tρ+ div (ρu) = 0,(1.1)

∂t(ρu) + div (ρu⊗ u) +∇p− µ∆u

− (λ+ µ)∇div u = b · ∇b − 1

2
∇|b|2,

(1.2)

∂tb+ u · ∇b− b · ∇u+ bdiv u− η∆b = 0, div b = 0,(1.3)

∂t(ρe) + div (ρue) + pdiv u− k∆θ = Q(∇u,∇b) in T
3 × (0,∞),(1.4)

(ρ, u, b, θ)(·, 0) = (ρ0, u0, b0, θ0)(·) in T
3.(1.5)

Here ρ denotes the density, u the velocity field, b the magnetic field, and
e := CV θ the specific internal energy, respectively. p := Rρθ is the pressure.
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λ and µ are two viscosity constants satisfying

µ > 0 and λ+
2

3
µ ≥ 0.

η > 0 is the resistivity, k > 0 is the heat conductivity coefficient. We will
denote

(1.6) Q := (µ(∇u +∇ut) + λdiv uI) : ∇u+ η|rot b|2.
The system (1.1)-(1.6) describes the macroscopic behavior of MHD flow

with dissipative mechanisms. It is obtained by combining the full Navier-
Stokes equations with Maxwell’s equation in free space and Ohm’s law. In
MHD flows, magnetic field can not only induce currents in a moving con-
ductive fluid, but also change the magnetic filed itself. Therefore, there is
a complex interaction between the magnetic and fluid dynamic phenomena,
which brings more serious conundrums than Navier-Stokes equations. Com-
pared with compressible Navier-Stokes equations, the mathematical analysis
of MHD is much more complicated, as the oscillation of the density and the
coupling interaction of hydrodynamics with magnetic field. In spite of these,
there is a vast literature dedicated to existence, blow-up and asymptotic be-
havior of solutions, see [7, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 17, 18] and the reference
cited therein. More precisely, for one-dimensional case, Hoff and Tsyganove
([9]) obtained the global existence and uniqueness of weak solutions with small
initial energy. For multi-dimensional case, Fan and Yu ([5]) obtained the local
existence of strong solutions to 3D compressible MHD equations when the ini-
tial density may contain vacuum. With regard to weak solutions, Fan and Yu
([6]), Ducomet and Feireisl ([3]), Hu and Wang ([10, 11]) proved the existence
of global weak solutions. Wang ([17, 18]) showed the blow-up criterion. On
the other hand, Nečasová and her coauthors ([7, 2, 4]) studied some models
coupled with magnetohydrodynamic effort. Since the system (1.1)-(1.5) is a
parabolic-hyperbolic one, we can deduce the the local existence of smooth
solutions and uniqueness from the results in [16].

Proposition 1.1 ([16]). Let s > 5
2 be an integer and assume that the

initial data satisfy

ρ0, u0, b0, θ0 ∈ Hs and 0 < inf ρ0

for a positive constant C0. Then the problem (1.1)-(1.5) has a unique smooth

solution (ρ, u, b, θ) satisfying

ρ ∈ Cℓ([0, T );Hs−ℓ), u, b, θ ∈ Cℓ([0, T );Hs−2ℓ), ℓ = 0, 1;

0 < inf ρ,

for some 0 < T ≤ ∞.

To the best knowledge of the authors’, the global existence of strong solu-
tio for MHD system is still an important question. Moreover, it is well known
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that the uniform regularity plays an important role in the global existence
of strong solutions. Here the aim of this paper is to prove uniform regular-
ity estimates in (η, k) which is helpful in the process of proving the global
existence. We will prove the following theorem.

Theorem 1.2. Let 0 < η < 1, 0 < k < 1, 0 < 1
C0

≤ ρ0 ≤ C0, ρ0, u0, b0, 0 ≤
θ0 ∈ Hs(T3) with s > 5

2 and div b0 = 0 in T
3. Let (ρ, u, b, θ) be the unique

local smooth solutions to the problem (1.1)-(1.5) on [0, T ]. Then

(1.7) ‖(ρ, u, b, θ)(·, t)‖Hs ≤ C in [0, T0]

holds true for some positive constants C and T0 (≤ T ) independent of η and

k.

Let

(1.8)

M(t) := 1 + sup
0≤τ≤t

{

‖(ρ, u, b, θ)(·, τ)‖Hs

+ ‖∂tu(·, τ)‖L2 + ‖∂tθ(·, τ)‖L2 +

∥

∥

∥

∥

1

ρ
(·, τ)

∥

∥

∥

∥

L∞

}

.

Theorem 1.3. For any t ∈ [0, T )(T ≤ 1), we have that

(1.9) M(t) ≤ C0(M0) exp(tC(M))

for some nondecreasing continuous functions C0(·) and C(·).

It follows from (1.9) and [1, 15] that:

(1.10) M(t) ≤ C,

thus we only need to show Theorem 1.3.
In the following proofs, we will use the bilinear commutator and product

estimates due to Kato-Ponce ([13, 14]):

‖Λs(fg)− fΛsg‖Lp ≤ C(‖∇f‖Lp1‖Λs−1g‖Lq1 + ‖g‖Lp2‖Λsf‖Lq2 ),(1.11)

‖Λs(fg)‖Lp ≤ C(‖f‖Lp1‖Λsg‖Lq1 + ‖Λsf‖Lp2‖g‖Lq2 ),(1.12)

with s > 0,Λ := (−∆)
1
2 and

1

p
=

1

p1
+

1

q1
=

1

p2
+

1

q2
.

2. Proof of Theorem 1.3

First, testing (1.1) by ρq−1, we see that

1

q

d

dt

∫

ρqdx =

(

1− 1

q

)
∫

ρqdiv udx ≤ ‖div u‖L∞

∫

ρqdx,

and thus
d

dt
‖ρ‖Lq ≤ ‖div u‖L∞‖ρ‖Lq ,
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which gives

(2.1) ‖ρ‖Lq ≤ ‖ρ0‖Lq exp

(
∫ t

0

‖div u‖L∞dτ

)

.

Taking q → +∞, we get

(2.2) ‖ρ‖L∞ ≤ ‖ρ0‖L∞ exp(tC(M)).

It follows from (1.1) that

(2.3) ∂t
1

ρ
+ u · ∇1

ρ
− 1

ρ
div u = 0.

Testing (2.3) by
(

1
ρ

)q−1

, we find that

1

q

d

dt

∫
(

1

ρ

)q

dx =

(

1 +
1

q

)
∫

(

1

ρ

)q

div udx ≤
(

1 +
1

q

)
∥

∥

∥

∥

1

ρ

∥

∥

∥

∥

q

Lq

‖div u‖L∞,

and therefore
d

dt

∥

∥

∥

∥

1

ρ

∥

∥

∥

∥

Lq

≤
(

1 +
1

q

)
∥

∥

∥

∥

1

ρ

∥

∥

∥

∥

Lq

‖div u‖L∞ ,

which gives
∥

∥

∥

∥

1

ρ

∥

∥

∥

∥

Lq

≤
∥

∥

∥

∥

1

ρ0

∥

∥

∥

∥

Lq

exp

((

1 +
1

q

)
∫ t

0

‖div u‖L∞dτ

)

and we have

(2.4)

∥

∥

∥

∥

1

ρ

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

1

ρ0

∥

∥

∥

∥

L∞

exp(tC(M))

by sending q → +∞.
Testing (1.4) by θq−1 and using (1.1), we get

CV

q

d

dt

∫

ρθqdx+ k

∫

∇θ · ∇θq−1dx

=

∫

Qθq−1dx−
∫

pθq−1div udx

≤ C(M)‖Q‖Lq‖ρ 1
q θ‖q−1

Lq + C‖div u‖L∞‖ρ 1
q θ‖qLq ,

and therefore

d

dt
‖ρ 1

q θ‖Lq ≤ C(M)‖Q‖Lq + C‖div u‖L∞‖ρ 1
q θ‖Lq ,

which, similarly to (2.2), implies

(2.5) ‖θ‖L∞ ≤ C0(M0) exp(tC(M)).

It is easy to verify that

d

dt

∫

|u|2dx = 2

∫

u∂tudx ≤ 2‖u‖L2‖∂tu‖L2 ≤ C(M),
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which implies

(2.6) ‖u‖L2 ≤ C0(M0) exp(tC(M)).

Testing (1.3) by b, we derive

1

2

d

dt

∫

|b|2dx+

∫

|∇b|2dx = −
∫

(u · ∇b − b · ∇u+ bdiv u)bdx

= −
∫

(

1

2
|b|2div u− b · ∇u · b

)

dx ≤ C‖∇u‖L∞‖b‖2L2 ≤ C(M),

which leads to

(2.7) ‖b‖2L2 +

∫ t

0

∫

|∇b|2dxdτ ≤ C0(M0) exp(tC(M)).

Taking Λs to (1.1), testing by Λsρ, using (1.11) and (1.12), we compute

1

2

d

d

∫

(Λsρ)2dx = −
∫

(Λs(u · ∇ρ)− u · ∇Λsρ)Λsρdx

+
1

2

∫

(Λsρ)2div udx−
∫

Λs(ρdiv u)Λsρdx

≤ C‖∇u‖L∞‖Λsρ‖2L2 + C‖∇ρ‖L∞‖Λs−1u‖L2‖Λsρ‖L2

+ C‖ρ‖L∞‖Λs+1u‖L2‖Λsρ‖L2

≤ C(M) + C(M)‖Λs+1u‖L2

≤ µ

16
‖Λs+1u‖2L2 + C(M).

(2.8)

It is obvious that

(2.9)

∫ t

0

∫

|∂tu|2dxdτ ≤ t sup

∫

|∂tu|2dx ≤ tC(M).

Applying Λs−1 to (1.2), testing by Λs−1∂tu, using (1.11) and (1.12), we
obtain

µ

2

d

dt

∫

|Λsu|2dx+
λ+ µ

2

d

dt

∫

(Λs−1div u)2dx+

∫

ρ|Λs−1∂tu|2dx

= −
∫

Λs−1∇p · Λs−1∂tudx−
∫

Λs−1(ρu · ∇u) · Λs−1∂tudx

−
∫

[Λs−1(ρ∂tu)− ρΛs−1∂tu]Λ
s−1∂tudx

+

∫

Λs−1

(

b · ∇b − 1

2
∇|b|2

)

Λs−1∂tudx

≤ C‖Λsp‖L2‖Λs−1∂tu‖L2 + C‖ρ‖Hs−1‖u‖2Hs‖Λs−1∂tu‖L2

+ C(‖∇ρ‖L∞‖Λs−2∂tu‖L2 + ‖∂tu‖L∞‖Λs−1ρ‖L2)‖Λs−1∂tu‖L2
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+

∥

∥

∥

∥

Λs−1

(

b · ∇b− 1

2
∇|b|2

)∥

∥

∥

∥

L2

‖Λs−1∂tu‖L2

≤ C(M)‖Λs−1∂tu‖L2 + C(M)(‖Λs−2∂tu‖L2 + ‖∂tu‖L∞)‖Λs−1∂tu‖L2

≤ C(M)‖Λs−1∂tu‖L2 + C(M)
(

‖∂tu‖
1

s−1

L2 ‖Λs−1∂tu‖
s−2
s−1

L2 + ‖∂tu‖L2

+ ‖∂tu‖
s−1−n

2
s−1

L2 ‖Λs−1∂tu‖
n

2(s−1)

L2

)

‖Λs−1∂tu‖L2

≤ C(M)‖Λs−1∂tu‖L2

+ C(M)(‖Λs−1∂tu‖
s−2
s−1

L2 + ‖Λs−1∂tu‖
n

2(s−1)

L2 )‖Λs−1∂tu‖L2

≤ 1

2

∫

ρ|Λs−1∂tu|2dx+ C(M),

which gives

(2.10)

∫ t

0

∫

|Λs−1∂tu|2dxdτ ≤ C0(M0) exp(tC(M)).

Applying Λs to (1.2), testing by Λsu, using (1.1), (1.11) and (1.12), we
have

1

2

d

dt

∫

ρ|Λsu|2dx+ µ

∫

|Λs+1u|2dx+ (λ+ µ)

∫

(Λsdiv u)2dx

(2.11)

+

∫

ρΛs∇θ · Λsudx+

∫

θ∇Λsρ · Λsudx

= −
∫

(Λs(ρ∂tu)− ρΛs∂tu)Λ
sudx−

∫

(Λs(ρu · ∇u)− ρu · ∇Λsu)Λsudx

−
∫

(Λs(ρ∇θ)− ρ∇Λsθ)Λsudx−
∫

(Λs(θ∇ρ) − θ∇Λsρ)Λsudx

+

∫

(Λs(b · ∇b)− b · ∇Λsb)Λsudx

+

∫

b · ∇Λsb · Λsudx+
1

2

∫

Λs|b|2 · Λsdiv udx

≤ C(‖∇ρ‖L∞‖Λs−1∂tu‖L2 + ‖∂tu‖L∞‖Λsρ‖L2)‖Λsu‖L2

+ C(‖∇u‖L∞‖Λs(ρu)‖L2 + ‖∇(ρu)‖L∞‖Λsu‖L2)‖Λsu‖L2

+ C(‖∇ρ‖L∞‖Λsθ‖L2 + ‖∇θ‖L∞‖Λsρ‖L2)‖Λsu‖L2

+ C(‖∇θ‖L∞‖Λsρ‖L2 + ‖∇ρ‖L∞‖Λsθ‖L2)‖Λsu‖L2

+ C‖∇b‖L∞‖Λsb‖L2‖Λsu‖L2

+

∫

b · ∇Λsb · Λsudx+ C‖b‖L∞‖Λsb‖L2‖Λs+1u‖L2

≤ C(M) + C(M)(‖Λs−1∂tu‖L2 + ‖∂tu‖L∞)
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+

∫

b · ∇Λsb · Λsudx+ C(M)‖Λs+1u‖L2

≤ C(M) + ‖Λs−1∂tu‖2L2 +
µ

16
‖Λs+1u‖2L2 +

∫

b · ∇Λsb · Λsudx.

Applying Λs to (1.3), testing by Λsb, using (1.11) and (1.12), we have

(2.12)

1

2

d

dt

∫

|Λsb|2dx+ η

∫

|Λs+1b|2dx

= −
∫

(Λs(u · ∇b)− u · ∇Λsb)Λsbdx−
∫

u · ∇Λsb · Λsbdx

+

∫

(Λs(b · ∇u)− b · ∇Λsu)Λsbdx+

∫

b · ∇Λsu · Λsbdx

−
∫

(Λs(bdiv u)− bΛsdiv u)Λsbdx−
∫

bΛsdiv uΛsbdx

≤ C(‖∇u‖L∞‖Λsb‖L2 + ‖∇b‖L∞‖Λsu‖L2)‖Λsb‖L2

+

∫

1

2
|Λsb|2div udx+

∫

b · ∇Λsu · Λsbdx−
∫

bΛsdiv uΛsbdx

≤ C(M) +

∫

b · ∇Λsu · Λsbdx+ C(M)‖Λs+1u‖L2

≤ C(M) +

∫

b · ∇Λsu · Λsbdx+
µ

16
‖Λs+1u‖2L2.

Applying Λs−1 to (1.4), testing by Λs−1∂tθ, using (1.11) and (1.12), we
have

k

2

d

dt

∫

(Λsθ)2dx+

∫

ρ|Λs−1∂tθ|2L2dx

= −
∫

Λs−1(pdiv u)Λs−1∂tθdx −
∫

Λs−1(ρu · ∇θ)Λs−1∂tθdx

−
∫

[Λs−1(ρ∂tθ)− ρΛs−1∂tθ]Λ
s−1∂tθdx +

∫

Λs−1Q · Λs−1∂tθdx

(where we take CV = 1)

≤ ‖Λs−1(pdiv u)‖L2‖Λs−1∂tθ‖L2 + ‖Λs−1(ρu · ∇θ)‖L2‖Λs−1∂tθ‖L2

+ C(‖∇ρ‖L∞‖Λs−2∂tθ‖L2 + ‖∂tθ‖L∞‖Λs−1ρ‖L2)‖Λs−1∂tθ‖L2

+ ‖Λs−1Q‖L2‖Λs−1∂tθ‖L2

≤ C(M)‖Λs−1∂tθ‖L2 + C(M)(‖Λs−2∂tθ‖L2 + ‖∂tθ‖L∞)‖Λs−1∂tθ‖L2

≤ C(M)‖Λs−1∂tθ‖L2 + C(M)(‖∂tθ‖
1

s−1

L2 ‖Λs−1∂tθ‖
s−2
s−1

L2 + ‖∂tθ‖L2

+ ‖∂tθ‖
s−1−n

2
s−1

L2 ‖Λs−1∂tθ‖
n

2(s−1)

L2 )‖Λs−1∂tθ‖L2
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≤ 1

2

∫

ρ|Λs−1∂tθ|2dx+ C(M),

which leads to

(2.13)

∫ t

0

∫

|Λs−1∂tθ|2dxdτ ≤ C0(M0) exp(tC(M)).

Taking Λs to (1.4), testing by Λsθ, using (1.1), (1.11) and (1.12), we have

1

2

d

dt

∫

ρ(Λsθ)2dx+ k

∫

(Λs+1θ)2dx

= −
∫

(Λs(ρ∂tθ)− ρΛs∂tθ)Λ
sθdx−

∫

(Λs(ρu · ∇θ)− ρu · ∇Λsθ)Λsθdx

−
∫

Λs(pdiv u) · Λsθdx+

∫

ΛsQ · Λsθdx

≤ C(‖∇ρ‖L∞‖Λs−1∂tθ‖L2 + ‖∂tθ‖L∞‖Λsρ‖L2)‖Λsθ‖L2

+ C(‖∇(ρu)‖L∞‖Λsθ‖L2 + ‖∇θ‖L∞‖Λs(ρu)‖L2)‖Λsθ‖L2

+ C(‖p‖L∞‖Λs+1u‖L2 + ‖∇u‖L∞‖Λsp‖L2)‖Λsθ‖L2 + ‖ΛsQ‖L2‖Λsθ‖L2

≤ C(M)(‖Λs−1∂tθ‖L2 + ‖∂tθ‖L∞) + C(M)

+ C(M)‖Λs+1u‖L2 + ηC(M)‖Λs+1b‖L2

≤ µ

16
‖Λs+1u‖2L2 +

η

8
‖Λs+1b‖2L2 + ‖Λs−1∂tθ‖2L2 + C(M).

(2.14)

Summing up (2.8), (2.11), (2.12) and (2.14), using (2.10) and (2.13), we
arrive at

1

2

d

dt

∫

((Λsρ)2 + ρ|Λsu|2 + |Λsb|2 + ρ(Λsθ)2)dx +
µ

2

∫

(Λs+1u)2dx

+
λ+ µ

2

∫

(Λsdiv u)2dx+
η

2

∫

(Λs+1b)2dx+
k

2

∫

(Λs+1θ)2dx

≤ C(M) + ‖Λs+1∂tu‖2L2 + ‖Λs−1∂tθ‖2L2 .

(2.15)

Whence

‖Λs(ρ, u, b, θ)(·, t)‖L2 + ‖Λs+1u‖L2(0,t;L2) +
√
η‖Λs+1b‖L2(0,t;L2)

+
√
k‖Λs+1θ‖L2(0,t;L2) ≤ C0(M0) exp(tC(M)).

(2.16)

On the other hand, it follows from (1.2) that

‖∂tu‖L2 =

∥

∥

∥

∥

1

ρ

(

b · ∇b− 1

2
∇|b|2 + µ∆u+ (λ+ µ)∇div u−∇p− ρu · ∇u

)∥

∥

∥

∥

L2

≤ C0(M0) exp(tC(M)).

(2.17)
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Similarly, we have

(2.18) ‖∂tθ‖L2 ≤ C0(M0) exp(tC(M)).

Combining (2.4), (2.6), (2.7), (2.16), (2.17) and (2.18), we conclude that
(1.9) holds true.

This completes the proof.
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