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Abstract. We investigate the relation between the topological entropy of pseudo-

Anosov maps on surfaces with punctures and the rank of the first homology of their mapping

tori. On the surface S of genus g with n punctures, we show that the minimal entropy of a

pseudo-Anosov map is bounded from above by
(k + 1) log(k + 3)

|χ(S)|
up to a constant multiple

when the rank of the first homology of the mapping torus is k + 1 and k, g, n satisfy a

certain assumption. This is a partial generalization of precedent works of Tsai and Agol-

Leininger-Margalit.

1. Introduction

Let S be a connected orientable surface of finite type and Mod(S) be its
mapping class group. Denote by Sg,n a surface of genus g with n punctures.
It is well-known that when f is a pseudo-Anosov mapping class, the pseudo-
Anosov map representative minimizes the topological entropy among all other
representatives of the isotopy class f . For this reason, we do not distinguish
a pseudo-Anosov mapping class and its pseudo-Anosov representative, and
there is no ambiguity to discuss their topological entropy. Also, we simply
talk about entropy, since it always mean topological entropy throughout the
paper.

For a pseudo-Anosov f ∈ Mod(Sg,n), let
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1. κ(f) denote the dimension of the subspace of H1(Sg,n;R) fixed by f ,
and

2. h(f) denote the entropy of f .

We remark that κ(f) is an integer between 0 and 2g + n and that h(f)
is equal to the logarithm of the stretch factor λ(f) of f . For more details on
the relation between h(f) and λ(f), we refer to [7]. Somewhat surprisingly,
κ(f) and h(f) are related in an interesting way. To see this more explicitly,
let L(k, g) be the inf{h(f) | f : Sg → Sg is pseudo-Anosov and κ(f) ≥ k}.
Then Agol-Leininger-Margalit in [1] showed that

L(k, g) ≍ k + 1

g
(≍ k + 1

|χ(Sg)|
),

where the symbol ≍ means that the ratio between the left-hand side and
the right-hand side is uniformly bounded from above and below by posi-
tive constants. It was known earlier that L(0, g) ≍ 1/g by Penner ([17])
and L(2g, g) ≍ 1 by Farb-Leininger-Margalit ([5]), and the result of Agol-
Leininger-Margalit interpolates this two extreme cases and shows a mysteri-
ous connection between the dimension of the invariant homology and minimal
entropy (in particular answering a question of Ellenberg, see [4]).

One can ask whether we can generalize the result of Agol-Leininger-
Margalit to punctured surfaces. For a pseudo-Anosov map f ∈ Mod(Sg,n),
the quantities κ(f) and h(f) are defined similarly. Analogous to L(k, g), we
define L(k, g, n) to be the inf{h(f) | f : Sg,n → Sg,n is pseudo-Anosov and
κ(f) ≥ k}.

There has been previous work in the setting of punctured surfaces in the
case where k = 0. For example, Valdivia in [22] showed that when g = rn

for some fixed positive rational r, L(0, g, n) ≍ 1

|χ(Sg,n)|
. For fixed g ≥ 2

Tsai showed that L(0, g, n) ≍ logn

n
in [21]. Yazdi in [23] showed that there

exists a constant C such that if g > Cn log2(n), then L(0, g, n) ≍ 1

g
. In the

same article it is also proven that for fixed n, we have that L(0, g, n) ≍ 1

g
.

Cooper-Tillmann-Worden in [3] showed that for any fixed 0 < ǫ < 1, for all g

and n such that ǫg + 2 ≤ n ≤ 1
ǫ
g + 2, we have that L(0, g, n) .

1

|χ(Sg,n)|
.

Our main result is the following theorem.

Theorem 1.1. For 4g − 4 ≤ k + 1 ≤ n ≤ 2k − 4g + 6, we have

k + 1

|χ(Sg,n)|
. L(k, g, n) .

(k + 1) log (k + 3)

|χ(Sg,n)|
,

where . means the inequality holds up to a constant multiple.
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The theorem follows from the discussion in Section 2.1 (lower bound) and
Theorem 5.5 (upper bound). In fact, as discussed in Section 2.1, the lower
bound holds without any restriction on k, g, n and it follows from some basic 3-

dimensional geometry and the Kojima-McShane’s inequality h(f) &
vol(Mf )

|χ(S)|
where f ∈ Mod(S) is pseudo-Anosov and Mf is the mapping torus with
monodromy f (see Theorem 1.1 of [14]).

Figure 1. A visualisation of the domain for the main in-
equality of Theorem 1.1. The variables g, k and n correspond
to the axis came out to the front, the horizontal and vertical
axis, respectively. The darker region is the slice of the cone
at g = 3

To obtain the upper bound in the main theorem, we investigate certain
sequences of fibers in the fibered cone of hyperbolic link complements which
fiber over the circle. Let C(n) be a n chained link with 2 half-twists (for a
more precise description, see Section 4), and let M(n) be the complement of
a small regular neighborhood of C(n). We first study a specific fibration of
M(n) in Section 4.3, and then study primitive integral classes in the fibered
cone which are projectively near the given fibration. As in [1], the fact that
the normalized entropy of monodromies extends to a continuous convex func-
tion on the fibered face (Fried, [8, 9]) then allows us to compute this upper
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bound (the (non-)convexity of translation lengths on curve complexes and
arc complexes are also a topic of active research, see [2, 18] for example).
In Section 3, we describe the situation in a toy example, namely the magic
manifold.

Figure 2. This is a graphical representation of the condi-
tions of the corollary. The vertical and horizontal axis cor-
respond to n, k, respectively. The entire colored area is the
g = 2 slice of our domain and darker areas correspond to
slices at higher values of g.

One corollary of the upper bound in the main theorem is that for fixed g ≥
2, when n ≥ 4g−4 and

n

2
+2g−3 < k < n, we have L(k, g, n) .

(k + 1) logn

n
.

We provide a visual representation of the domains of such slice of fixed genus
in figure 2. This is a partial generalization of Tsai’s work [21] where it was

shown that L(0, g, n) ≍ logn

n
for fixed g ≥ 2. From the viewpoint of [21], the

log term in the upper bound is quite natural. On the other hand, it can be
shown that the current method for obtaining the lower bound using Kojima-
McShane’s inequality cannot be improved to get a better lower bound. But
there might be another way to obtain a better lower bound. Also, it would
be interesting to explore this question outside the range of k, g, n we covered
in our result. We leave this as the following question.
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Question 1.1. For fixed g, do we have L(k, g, n) ≍ (k + 1) logn

|χ(Sg,n)|
in gen-

eral?

Another direction of further research is to study the complements of the n
chained links with p half-twists. In an upcoming paper of the second and the
fourth authors, they compute the unit Thurston norm balls and Teichmüller
polynomials in these settings.

2. Preliminaries and the lower bound

As stated in the introduction, we are interested in the asymptotic behavior
of the quantity L(k, g, n) = min{h(f) | f : Sg,n → Sg,n and κ(f) ≥ k}. This
quantity interpolates between L(0, g, n), which is the minimal entropy among
all pseudo-Anosov map of Sg,n, and L(2g, g, 0), which is the minimal entropy
among all pseudo-Anosov map in a Torelli subgroup. In [1], the authors
establish the asymptotic behavior of L(k, g). We start this section by recalling
their arguments for the lower bound and stating them explicitly for the case
of punctured surfaces. Then we will quickly review the core notions needed
for the rest of paper, such as Thurston’s norm and Thurston’s construction
on surfaces.

2.1. Lower bound. To get a lower bound for L(k, g, n), we use the same
sequence of inequalities as in [1]. Their argument actually works verbatim
for punctured surfaces too, but since they stated it only in the case of closed
surfaces we recall it explicitly here.

Theorem 2.1 ([14, Theorem 1.1]). For a pseudo-Anosov map f on sur-
face Sg,n, the inequality

3π|χ(Sg,n)|h(f) ≥ vol(Mf )

holds.

Proposition 2.2 ([1, Proposition 2.2]). If M is a complete, orientable,
hyperbolic 3-manifold of finite volume, then

b1(M) ≤ 334.08 · vol(M).

Whenever M is a mapping torus with fibration ϕ, the first Betti number
of M is exactly one more than κ(ϕ), the dimension of the homological fixed
subspace of ϕ. This fact is a direct consequence of the Mayer-Vietoris sequence
associated to a mapping torus. Combining all of this, we get the desired result.

Theorem 2.3. For any values of k, g and n, the following holds

.00031
k + 1

|χ(Sg,n)|
≤ L(k, g, n).
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In other words,
k + 1

|χ(Sg,n)|
. L(k, g, n).

Proof. For any pseudo-Anosov f with κ(f) ≥ k, we get the inequality

k + 1 ≤ κ(f) + 1

= b1(Mf )

≤ 334.08 · vol(Mf )

≤ 334.08 · 3π|χ(Sg,n)|h(f)
≃ 3147.8|χ(Sg,n)|h(f).

2.2. Thurston’s norm and fibered faces. LetM be an irreducible, atoroidal
and oriented 3-manifold with boundary ∂M . In [19], Thurston defined a norm
x on the second homology group H2(M,∂M ;Z) as below;

x(a) = min−χ(S)
where a ∈ H2(M,∂M ;Z) is represented by an oriented surface S embedded in
M . One can consider a ∈ H2(M,∂M ;Z) as a closed 1-form by the Poincaré
duality. In that sense, if there is a fibration M → S1 so that a is a pullback
of the closed 1-form of dθ on S1, then the norm is given by

x(a) = −χ(S),
where S is a fiber of the fibration M → S1.

This norm is then extended in the obvious way to rational number and
Thurston proved that there is a unique continuous extension to the real num-
bers which is linear on rays through the origin. Thurston also showed that
unit ball B with respect to this norm is a convex polyhedron P . In other
words, if F is a facet of P and C is the cone over F , the restriction of norm
x on C is linear.

Now suppose that M → S1 is a fibration of M over the circle with fiber
Sn
g and monodromy ϕ. The surface Sg,n then represents an integral point
a ∈ H2(M,∂M ;Z). Thurston proved that there is a top dimensional face
∆ of B such that a is in the open cone C(∆) through the origin and any
other integral points b ∈ H2(M,∂M ;Z) have minimal representatives Fb that
correspond to fibers of M over S1. Such a top dimensional face ∆ is called a
fibered face.

2.3. Thurston’s construction. In [20], Thurston described a way to cre-
ate mapping classes on a surface and a criterion to check whether the con-
structed map is pseudo-Anosov. This theorem is now known under the name
of Thurston’s construction. We will use this to calculate the stretch factors
of monodromies we construct in section 4.3.
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For a simple closed curve α, we denote by Tα the positive Dehn twist
around the curve α. For a multicurve A = {α1, . . . , αm}, let us then define
TA := Tα1

· · ·Tαm
. Let S be a surface and let A and B be two multicurves on

S. We say that the two multicurves A and B fill the surface S if, after cutting
S along A and B, all remaining connected components are homeomorphic to
disks or once punctured disks.

Theorem 2.4 ([20], [6, Chapter 14.1]). Let A = {α1, . . . , αm} and B =
{β1, . . . , βn} be two multicurves that fill a surface S. Define N to be the matrix
given by Ni,j = i(αi, βj) and µ to be the largest real eigenvalue of NNT . Then
there is a representation ρ : 〈TA, TB〉 → PSL(2,R) given by

TA 7→
[
1

√
µ

0 1

]

and TB 7→
[

1 0
−√

µ 1

]

.

Furthermore, an element in 〈TA, TB〉 is pseudo-Anosov if and only if its rep-
resentation is hyperbolic and its stretch factor is then equal to the largest
eigenvalue of its representation.

We remark that the existence of such a µ is guaranteed by Perron-
Frobenious’s theorem. For more details on Thurston’s construction, we refer
to Chapter 14.1 in [6], for example.

3. Examples in Magic 3-manifold

To illustrate the techniques we will use in this paper, we start with some
motivating toy examples which arise from fibers in the magic 3-manifold. That
being said, these examples yield some results which are not covered by the
main theorem of this paper, so they are also of interest on their own.

Let M be the magic 3-manifold, which is the complement of a small
regular neighborhood of the 3-chain link shown in figure 3.

As the first Betti number of M is 3, every monodromy map of its fiber
fixes a homological subspace of dimension 2. One of the fibered faces ∆ of M
is the convex hull of the points (1, 0, 0), (1, 1, 1), (0, 1, 0) and (0, 0,−1). It is
described as ∆ := {(x, y, z) | x + y − z = 1, x > 0, y > 0, x > z, y > z}. In
[12], Eiko Kin shows a = (1, 1, 0) represents a fiber and how to calculate the
number of boundaries of fibered classes in the fibered cone C(∆) := R

+ · ∆
corresponding to the fibered face ∆:

Lemma 3.1 ([12, Lemma 2.6]). Let (x, y, z) be a primitive integer tuple
in C(∆). Then we have

1. ||a|| = x+ y − z
2. the number of boundaries of (x, y, z) is equal to gcd(x, y+z)+gcd(y, z+

x) + gcd(z, x+ y) (here we use the convention that gcd(0, w) = |w|).
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Figure 3. The magic manifold is the complement of a reg-
ular neighborhood of this alternating link

By using the above lemma we can determine the topological type of each
fibered class just by knowing its coordinates in the fibered cone C(∆). Note
that the normalized entropy is constant on each ray in a fibered face. Also, the
entropy function restricted to a fibered face is strictly convex and diverges to
∞ towards the boundary. Using these information, we compute upper bounds
for L(k, g, n) in some special cases.

Lemma 3.2. L(2, g, 3) ≍ 1/g ≍ L(2, g, 4).

Proof. We choose a point near the ray R which passes through (4, 4, 2)
and the origin. It obviously passes through the fibered face ∆ := {(x, y, z) | x+
y − z = 1, x > 0, y > 0, x > z, y > z}. Now, to get surfaces with 3 boundary
components, we choose the following sequences.

• (4k + 1, 4k + 1, 2k + 1) has 3 boundaries and the number of genera is
3k.

• (4k, 4k, 2k+ 1) has 3 boundaries and the number of genera is 3k − 1.
• (4k − 1, 4k − 1, 2k + 1) has 3 boundaries and the number of genera is

3k − 2 if k 6= 1 mod 3.
• (4k + 1, 4k + 1, 2k − 1) has 3 boundaries and the number of genera is

3k + 1 if k 6= 2 mod 3.

These sequences cover all cases for g > 1 and n = 3. For surfaces with 4
boundaries, we choose the following sequences instead.

• (4k + 1, 4k + 1, 2k) has 4 boundaries and the number of genera is 3k.
• (4k−1, 4k−1, 2k) has 4 boundaries and the number of genera is 3k−2.
• (4k+3, 4k+3, 2k) has 4 boundaries and the number of genera is 3k+2

if k 6= 0 mod 3.



TOPOLOGICAL ENTROPY AND HOMOLOGY OF MAPPING TORI 299

Figure 4. The link C(n)

• (4k−3, 4k−3, 2k) has 4 boundaries and the number of genera is 3k−4
if k 6= 0 mod 3.

These sequences cover all cases for g and n = 4. Since the ray R is in the
interior of the fibered face and all the sequences of points we chose converge
to R, the normalized entropy of such tuples approaches the one of the ray
and is hence bounded. Since this upper bound is also a lower bound by the
content of section 2.1, we get L(2, g, 3) ≍ 1/g ≍ L(2, g, 4).

Lemma 3.3. L(2, 0, n) ≍ 1/n.

Proof. We choose the following sequences, so that they all lie around
the ray which passes (1, 1, 0) from the origin.

• (2k − 1, 2k, 0) has 4k + 1 boundaries and no genus.
• (2k − 1, 2k + 1, 0) has 4k + 2 boundaries and no genus.
• (2k, 2k + 1, 0) has 4k + 3 boundaries and no genus.
• (2k − 1, 2k + 3, 0) has 4k + 4 boundaries and no genus.

These sequences cover all n > 4. Here again upper bound from sequences and
lower bound from section 2.1 coincide. Thus L(2, 0, n) ≍ 1/n.

4. The n chained link complements and their fibered face

In this section we generalize the techniques used for the magic 3-manifold
to study sequences of fibers in more general link complements. We will con-
centrate on specific n-chained link complement with 2 half-twists, denoted by
C(n). We will first show that C(n) is fibered and find a fibered face F . Then
we will compute the stretch factor of a specific fiber lying in F .
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4.1. The n chained links C(n) are fibered. We fist define the family of
links we will work with. Recall that an alternating link is a link which admits
a diagram which is alternating.

Definition 4.1 (n chained link C(n)). C(n) is a link composed of n
components which are circularly linked together with claps of the same type,
and with 2 half twists on one of its links. We choose the direction of these
half twists so that C(n) admits a non-alternating diagram. See figure 4.

Remark 4.2. To clarify the definition of a clasp, we borrow the wording
of Leininger in [15]. A clasp is defined to be a pair of crossings where the two
ends of adjacent components are linked. There are exactly 2 kinds of clasps,

Figure 5. The two different types of clasps

as illustrated in figure 5. In our case, we will require C(n) to have all clasps
looking like the right clasp of figure 5. We also give an orientation on the
clasp, and it induces the orientation on each component in C(n). Note that
the half twists can be resolved by an appropriate isotopy, but clasps might
change their shape in the process. See figure 6.

Figure 6. Half twists can be resolved, but the shape of some
clasps might change.

LetM(n) be the complement of a small enough neighborhood N (C(n)) of
C(n). Note that M(n) is a 3-manifold with boundary and ∂M = ∂N (C(n))
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is a disjoint union of n tori. Also, since the first Betti number of M is n,
every monodromy map of its fiber fixes a homological subspace of dimension
n−1. In [16], Neumann and Reid prove that, when n ≥ 4,M(n) is hyperbolic.
Leininger in [15] then showed that it is fibered, by finding a specific fiber.

Lemma 4.3 ([15, Lemma 4.2]). C(n) is a fibered link and thus M(n) is a
fibered 3-manifold.

We want to find a precise fibration of M over the circle, which will then
constitute a proof of Lemma 4.3. We need a few more tools before doing so.
First, we recall the definition of an operation on surfaces, called the Murasugi
sum.

Definition 4.4 (Murasugi sum, [11]). The oriented surface Σ ⊂ S3 is a
Murasugi sum of two different oriented surfaces Σ1 and Σ2 if

1. Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = D, where D is a 2n-gon.
2. There is a partition of S3 into two 3-balls B1, B2 satisfying

• Σi ⊂ Bi for i = 1, 2.
• B1 ∩B2 = S2 and Σi ∩ S2 = D for i = 1, 2.

This definition is most likely easier understood by a picture, so we refer
to figure 7 for an example of a Murasugi sum.

Figure 7. Murasugi sum of two surfaces, here D is a hexagon

By the following theorem of Gabai ([10]) we can detect fibers by showing
that they are built from smaller fibers.

Theorem 4.5 (Gabai). Let S be a Murasugi sum of S1 and S2. S is a
fiber surface if and only if both S1 and S2 are fiber surfaces.

We remark that in the above theorem, not only is S a fiber, but we can
also construct the associated monodromy from the monodromies of S1 and
S2. In our case, the building block for making more complicated fibers using
this process will be Hopf bands.
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Figure 8. The fiber S is a consecutive Murasugi sum of n
vertical bands on a horizontal band.

Lemma 4.6 (Hopf band is a fiber). A Hopf band is a fibered surface.
Moreover, the monodromy of a positive (negative) Hopf band is the right-
handed (left-handed) Dehn twists along its core curve.

We are now ready to recall the proof of the lemma 4.3.

Proof. We will directly prove the lemma by constructing an explicit
fibration with fiber S. The fiber S is obtained from the Seifert algorithm
applied to C(n) equipped with a suitable orientation. See also the figure 8.

Since the Seifert surface S we obtain in this way is a consecutive Murasugi
sum of one horizontal Hopf band and n vertical Hopf bands, it is a fiber by
Theorem 4.5 and Lemma 4.6.

Now, we focus on the homology of M := M(n). Consider that we draw
C(n) in such a way that the top link that has 2 half-twists, as in the figure 4.
We then label the top link by L1 and we enumerate the other link component
in a clockwise fashion. i.e., The links components are labeled L1, . . . , Ln in
C(n) with 2 half twists in L1.

Denote the twice punctured disk surrounded by the i’th link component
by Ki. Note that the set [Ki]1≤i≤n forms a basis of H2(M,∂M). Then we
have the following lemma.

Lemma 4.7. The fiber S has a coordinate (1, . . . , 1) with respect to the
basis [Ki]1≤i≤n, i.e., [S] = [K1] + · · ·+ [Kn].

Proof. The boundary map ∂∗ : H2(M,∂M) → H1(∂M) sends (1, . . . , 1)
to the boundary of the Seifert surface. Therefore it suffices to show that ∂∗
is injective.

In the long exact sequence for (M,∂M), the map right after the boundary
map is induced by the inclusion i : ∂M → M . Only the meridians survive
under i∗ and they form a basis of H1(M). Hence i∗ is surjective. Now we will
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cut out the following short exact sequence from the long exact sequence,

0 → H2(M,∂M)/image of j∗ → H1(∂M) → H1(M) → 0,

where j : (M, ∗) →֒ (M,∂M) is an inclusion. Since H1(M) ∼= Z
n, it

splits. Thus Z
2n ∼= H1(∂M) = H1(M) ⊕ H2(M,∂M)/image of j∗ ∼= Z

n ⊕
Z
n/image of j∗. Therefore, j∗ is a zero map. In conclusion, ∂∗ is injective

and the fiber S has coordinates (1, . . . , 1) in the basis [Ki]1≤i≤n.

Note that the fiber S is a genus 1 surface with n boundaries and so its Euler
characteristic is equal to n. From now on, let F be the fibered face of M :=
M(n) which contains S.

We first observe the following lemma.

Lemma 4.8. Let M = M(n) and suppose that a1, . . . , an are n linearly
independent points in H2(M,∂M), all of which have Thurston norm equal to
1. Let σ be the (n − 1)-dimensional simplex obtained by taking the convex
hull of a1, . . . , an. Then, if there exists a point a which represents a fiber, in
interior of σ whose Thurston norm x(a) is equal to 1, σ is a subset of a fibered
face of M . Moreover the hyperplane supporting the fibered face is simply the
hyperplane passing through a1, . . . , an.

Proof. The proof is a direct consequence of the convexity of the unit
Thurston’s norm ball. Since the fibered face is top dimensional (here, n− 1)
the hyperplane must pass all a′is.

Then, as in the magic 3-manifold case, we can calculate the Euler char-
acteristic of any primitive points in F .

Corollary 4.9. The convex hull of the points e1, e2, . . . , en and
1

n
(1, . . . , 1) is a subset of the fibered face F . Moreover, for any primitive

point α := (α1, . . . , αn) in the cone C := R
+ · F , the Euler characteristic of

the representative of α is α1 + · · ·+ αn.

Proof. Use Lemma 4.8 with ai = ei and a =
1

n
(1, . . . , 1). Note that

each ei lies on the unit Thurston norm ball. This is because we already have
a representative of ei with 2-punctured disk which bounds its x(ei) by 1 above,
and M(n) is hyperbolic so that there are no degenerated embedded surface in
M(n). Since we already observed that na is a fiber and −χ(na) = n, it gives
a linear equation x1+ · · ·+xn = 1, which is then the equation of a supporting
hyperplane for the fibered face F . Plugging (α1, . . . , αn) into x1 + · · · + xn,
we get the Euler characteristic for α.

To understand fully the topological type of surfaces representing a given
fibered point in C, we will use a slightly generalized version of the boundary
formula proven by Kin and Takasawa, [13].
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Lemma 4.10 (slight generalization of Lemma 3.1 in [13]). Suppose Σ is a
minimal representative of (a1, . . . , an) ∈ C. Then the number of boundaries of
Σ is equal to

∑n
i=1 gcd(ai−1 + ai+1, ai), where the subscripts are understood

modulo n.

Proof. The proof is analogous to the original one in [13]. Note that
∂N (Li) :=

⋃n
i=1 Ti, where Ti is a torus whose longitude is Li. So we can talk

about the longitudes [li]’s and meridians [mi]’s of each Ti, which together
form a basis of H1(

⋃n

i=1 Ti). Then using the long exact sequence for the pair
(M(n), ∂M(n) =

⋃n

i=1 Ti)), we get a boundary map ∂∗ as in the lemma 4.7.
Note that ∂∗ sends [Ki] 7→ li −mi−1 −mi+1, where the subscript i is to

be understood modulo n. Hence,
n∑

i=1

ai[Ki] 7→
n∑

i=1

aili −
n∑

i=1

(aimi−1 + aimi+1)

Since Σ is the minimal representative of (a1, . . . , an), the boundary of Σ which
intersects with Ti is a union of oriented parallel simple closed curves on Ti.
The slope of such a curve is decided by the ratio of li,mi, which is (ai−1 +
ai+1, ai). Similarly, the number of boundaries that intersects with Ti is equal
to gcd(ai−1 + ai+1, ai).

4.2. Monodromy of S. Now we focus on the monodromy map with fiber
S, provided from [15]. We need another theorem proven by Gabai.

Theorem 4.11 ([11, Corollary 1.4]). Suppose that R is a Murasugi sum
of R1, R2 with ∂Ri = Li, where Li is a fibered link with monodromy fi which
restricts to the identity on ∂Ri, resp. Then L = L1 ∪ L2 is fibered link with
the fiber R and its monodromy map is f = f ′

2 ◦f1 where f ′
i is the induced map

on R by inclusion.

By Gabai’s Theorem 4.11 and Lemma 4.6, the monodromy of our given
fiber S is equal to the composition of the Dehn twists around the Hopf bands.
More precisely, S admits a monodromy composed of 1 horizontal Dehn twist
followed by n vertical Dehn twist. Thus we have the following corollary,

Corollary 4.12 (Monodromy fixes punctures). Let ψ be the monodromy
map of given fiber S. Then ψ∗ : H1(S) → H1(S) fixes a subspace of dimension
at least n− 1.

We end this subsection with one remark. In [15], Leininger proved not
only that the n-chained link that has only 2 half twists is fibered, but also
that n-chained links with p half twists with 0 ≤ p ≤ n are fibered, except
when (n, p) = (2,−1). Since such fibers are still a consecutive Murasugi sum
of Hopf bands, the monodromy of each fiber is easily understood. In a future
paper, the second and fourth author intend to study the unit Thurston norm
ball, the fibered faces and the Teichmüller polynomials of n-chained links
complements with p half twists.



TOPOLOGICAL ENTROPY AND HOMOLOGY OF MAPPING TORI 305

4.3. Stretch factors for the ray (1, . . . , 1). In this section we compute the
stretch factor of given fiber in F . We denote the surface obtained from per-
forming the Seifert algorithm to C(n) by S := Sn. Since M(n) is the com-
plement of C(n), the second homology H2 = H2(M(n), ∂M(n);Z) is a free
abelian group of rank n, with a canonical basis given by the meridians of the
link component. With that in mind, we remark that Sn is a surface of genus
one with n boundaries and its coordinates in H2 are (1, 1, . . . , 1).

Thus, if Sn is placed as suggested in figure 8, the monodromy ψn is the
composition of the n vertical multi-twists directed downward followed by the
left Dehn twist along the core of horizontal band.

Proposition 4.13. The stretch factor of the monodromy corresponding

to (1, 1, . . . , 1) is
n+ 2 +

√
n2 + 4n

2
.

Proof. Recall from section 2.3 that Thurston constructed a method to
make pseudo-Anosov element from pair of filling multicurves and its Dehn
twists. The core of the horizontal band and the vertical bands fill the surface
by dividing it into once punctured disks, therefore our monodromy is obtained
from Thurston’s construction. We use the notations of Theorem 2.4. Since
the core of the horizontal band meets each vertical bands once, we have that
N = (1, . . . , 1). Hence, NNT = (n) and thus µ = n. The map TAT

−1
B

represents the monodromy and the trace of its representation is equal to
n + 2. It is thus hyperbolic and the stretch factor of the monodromy is
n+ 2 +

√
n2 + 4n

2
.

Note that the stretch factor is asymptotic to n and smaller than n+2 here.
Therefore the entropy is asymptotic to logn and strictly less than log(n+2).
Remark that in the case of this monodromy, an invariant train track is easily
found by smoothing the cores of the Hopf bands properly. Since this invariant
train track provides an oriented singular foliations on Sn, the stretch factor
can be calculated from the leading eigenvalue of its homology action. Also, one
could compute the stretch factors from the leading eigenvalue of the transition
matrix of the invariant train track.

5. Sequences around the ray (1, . . . , 1)

In this section, we find many sequences of fibers in F that projectively
converge to the ray R passing through the point 1N := (1, . . . , 1

︸ ︷︷ ︸

N times

). As before,

we denote by M :=MN the mapping torus of S1,N × [0, 1]/(x, 0) ∼ (ψ(x), 1),
where ψ := ψN is the pseudo-Anosov map discussed in Section 4.2. We will
drop the index N when no confusion is possible. Even though we do not know
the exact shape of the fibered cone C which contains the point 1, recall that
from section 4 we know the following.
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Proposition 5.1. Let E = {e1, . . . , en} be the standard basis for R
n and

let σ be the simplex spanned by E. Then the interior of the cone over σ is a
subset of the fibered cone C ofM containing the point 1N . Moreover, the Euler

characteristic for any primitive point (x1, . . . , xN ) in C is given by
∑N

i=1 xi.

We thus know that not only the ray R but all points with positive integer
coordinates are in the interior of the fibered cone C, and we can compute the
entropy of points converging to that ray. We consider the following sequences
of points, all of which have N ≥ 4 coordinates,

(t+ 1, t+ 1, t, t, . . . , t) (N − 4)t+ 4
(t+ 1, t+ 1, t+ 1, t, t, . . . , t) (N − 4)t+ 5

...
...

(t+ 1, t+ 1, . . . , t+ 1, t, t) (N − 4)t+N

The numbers appearing on the right of the sequences are the number of bound-
ary components of the associated fibers, which are calculated by using Lemma
4.10.

Similarly, we can compute the number of genera g for each of these se-
quences by using an Euler characteristic argument:

Nt+ c = 2g + (N − 4)t+ (c+ 2)− 2 where 2 ≤ c ≤ N − 2.

Here c is the number of t+1 in the tuple. Hence, the number of genera is the
same for each sequences and equal to g = 2t.

Similarly, we consider following sequences of points having N ≥ 8 coordi-
nates.

(t+ 1, t+ 1, t, t, t+ 1, t+ 1, t, t, . . . , t) (N − 8)t+ 8
(t+ 1, t+ 1, t+ 1, t, t, t+ 1, t+ 1, t, t, . . . , t) (N − 8)t+ 9

...
...

(t+ 1, t+ 1, . . . , t+ 1, t+ 1, t, t, . . . , t) (N − 8)t+N

The number of boundaries is again written on the right of the sequences and
the number of genera is g = 4t− 1 as shown by the following calculation:

Nt+c = 2g+(N−8)t+(c+4)−2 where 4 ≤ c ≤ N−4, ⇒ g = 4t−1.

Inductively, we have infinitely many of these finite sequences which start
with n number of (t+1)’s followed by m number of (t+1, t+1, t, t)’s, and end
with some consecutive t’s. The table below summarizes the conditions and
the number of genera and boundaries obtained from each of these sequences.
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#genera #boundaries condition on N
2t (N − 4)t+ c+ 2, 2 ≤ c ≤ N − 2 N ≥ 4

4t− 1 (N − 8)t+ c+ 4, 4 ≤ c ≤ N − 4 N ≥ 8
6t− 2 (N − 12)t+ c+ 6, 6 ≤ c ≤ N − 6 N ≥ 12

...
...

...
2mt− (m− 1) (N − 4m)t+ c+ 2m, 2m ≤ c ≤ N − 2m N ≥ 4m

...
...

...

Take t = 1 and choose the first term on each sequence so that each tuple
represents Sm+1,N . This sequence starts with

m = 1 ⇒ (2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

i times

)

m = 2 ⇒ (2, 2, 1, 1, 2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

i times

)

m = 3 ⇒ (2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

i times

)

and so forth.
Also, if we choose the second term on each sequence, then each tuple

represents Sm+1,N+1. This sequence starts with

m = 1 ⇒ (2, 2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

i times

)

m = 2 ⇒ (2, 2, 2, 1, 1, 2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

i times

)

m = 3 ⇒ (2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

i times

)

and so forth.

Definition 5.2 ((m,n)-sequence). We call the sequence above an (m,n)-

sequence and denote it by {s(m,n)
i }i∈N. i.e.,

s
(m,n)
i = (2, . . . , 2

︸ ︷︷ ︸

n times

, 2, 2, 1, 1, . . . , 2, 2, 1, 1
︸ ︷︷ ︸

m number of (2,2,1,1)’s

, 1, . . . , 1
︸ ︷︷ ︸

i times

).

For example, the (1, 1)-sequence starts with s
(1,1)
1 = (2, 2, 2, 1, 1, 1), s

(1,1)
2 =

(2, 2, 2, 1, 1, 1, 1), s
(1,1)
3 = (2, 2, 2, 1, 1, 1, 1, 1) and so on. Note that the length

of s
(m,n)
i is N := n + 4m + i and each tuple represents a fiber of MN of

topological type Sm+1,N+n. Abusing the notation, if we let the number of 2 be
c then n = c− 2m.
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The following lemma is useful to approximate the upper bounds of en-

tropies of s
(m,n)
i .

Lemma 5.3 ([1, Lemma 3.11]). Let C be a fibered cone for a mapping
torus M . Then the entropy function h(x) for x ∈ C is strictly convex. i.e.,
h(u + v) < h(u) for u ∈ C and v ∈ C.

Applying this lemma to our (m,n)-sequences, we get the following

Lemma 5.4. The normalized entropy h(s
(m,n)
i ) is less than 2N log (N + 2),

where N = n+ 4m+ i, the length of s
(m,n)
i .

Proof. We apply lemma 5.3 with

u = 1n+4m+i and v = (1, . . . , 1
︸ ︷︷ ︸

n times

, 1, 1, 0, 0, . . . , 1, 1, 0, 0
︸ ︷︷ ︸

m number of (1,1,0,0)’s

, 0, . . . , 0
︸ ︷︷ ︸

i times

).

Note that v is on the boundary of the standard simplex σ, so that v ∈ C by

Lemma 5.1. Since s
(m,n)
i = u + v, the entropy of s

(m,n)
i is strictly less than

the entropy of 1N , which is in turn less than log (N + 2). As s
(m,n)
i represents

a surface Sm+1,N+n, multiplying by |χ(Sm+1,N+n)| gives the inequality

h(s
(m,n)
i ) <

|χ(Sm+1,N+n)|
N

h(1N ) < 2N log (N + 2).

The last inequality comes from N = 4m+ n+ i, so that

|χ(Sm+1,N+n)|
N

=
6m+ 2n+ i

4m+ n+ i
< 2.

Note that
|χ(Sm+1,N+n)|

N
monotonously decreases and converges to 1 as i→

∞.

Now we are ready to prove the upper bound for various L(k, g, n).

Theorem 5.5. For 4g − 4 ≤ k + 1 ≤ n ≤ 2k − 4g + 6, we have

L(k, g, n) ≤ 2(k + 1) log (k + 3)

|χ(Sg,n)|
.

Proof. Given (k, g, n), we choose the tuple s := s
(g−1,n−k−1)
2k−4g+6−n . Note that

the length of this tuple is N := 4(g− 1)+n− k− 1+ 2k− 4g+6− n = k+1
and it represents a fiber of topological type Sg,n. By Lemma 5.3, dividing
the normalized entropy by |χ(Sg,n)|, we get an upper bound on entropy as
follows,

h(s) <
2(k + 1) log (k + 3)

|χ(Sg,n)|
Finally, all surfaces we have considered are essentially embedded fibers of

the mapping torusM := S1,N × [0, 1]/(x, 0) ∼ (ψ(x), 1). Hence, the first Betti
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number of M determines the dimension of fixed homological subspace of the
action of ψ on H1, which is then N − 1 = k. Therefore, we did indeed find an
upper bound for L(k, g, n) with conditions on (k, g, n) as in the statement of
the theorem.

Restricting the scope of (k, g, n) in Theorem 5.5, we get a few direct corollaries.
If we take k = n− 1 we have the following,

Corollary 5.6. For n ≥ 4g − 4, we have

L(n− 1, g, n) ≤ 2n log (n+ 2)

|χ(Sg,n)|
.

If instead we fix g ≥ 2, we can see that L(k, g, n) has, up to constant, an

upper bound of the form
k log (n+ 2)

|χ(Sg,n)|
.

Corollary 5.7. Let g ≥ 2 fixed and n ≥ 4g−4. For
n+ 4g − 6

2
≤ k < n,

L(k, g, n) ≤ 2(k + 1) log (n+ 2)

|χ(Sg,n)|
.

Proof. The condition k+1 ≤ n ≤ 2k− 4g+6 from Theorem 5.5 can be

reduced to
n+ 4g − 6

2
≤ k < n.

We end this paper with a few questions we believe are worth thinking
about. Note that in [21], Tsai proved that for any fixed g ≤ 2, the minimal
entropy lg,n of pA map on Sg,n satisfies the following inequality,

logn

cgn
< lg,n <

cg logn

n

for a constant cg only depends to g. This can be restated as ‘L(0, g, n) behaves
like logn/n asymptotically’. Our upper bound is not tight enough to describe
the asymptotic behavior of L(k, g, n). This is perhaps due to the absence of
nicer lower bounds at the moment, or perhaps due to the existence of other
sequences with lower entropy. It is thus natural to ask whether L(k, g, n)

behaves asymptotically like
(k + 1) logn

|χ(Sg,n)|
. But this is not true in general. In

[23], Yazdi proved that there is a constant C > 0 such that if g > Cn log2(n)

then L(0, g, n) ≍ 1

g
but

(k + 1) logn

|χ(Sg,n)|
is comparable to

log(n)

g
. Combining

two results, if g is fixed then log(n) term on the enumerator survives. On
the other hands if g grows slightly faster than n, g became dominant in the
denominator. But as in our case, though we only have an upper bound, if g, n
grows linearly in a certain region then both terms stay alive. Hence we ask
as we did in Question 1,
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For fixed g, do we have L(k, g, n) ≍ (k + 1) logn

|χ(Sg,n)|
?

Note that in our formula we have a k log k in the numerator, but the range
of k is restricted linearly by n and that is why we believe the general formula
should feature a logn and not log k.

Another natural improvement would be to relax the conditions on k, g and
n in our theorem. Also, in the condition on the inequality, k ≥ 4g− 5 implies
k ≥ 5 as we only consider surfaces of genera g ≥ 2. We remark that in chapter
3 we found some sequences that fix a homological subspace of dimension 2,
but we could not generalize the techniques used there for finding sequences
fixing homological subspaces of arbitrary dimensions. That would also be a
interesting directions to pursue.

Moreover, we only use the case t = 1 for the (m,n)-sequences we defined,
but one can plug different values of t’s to get many other sequences. But
these sequences have gaps on the number of genus. For example, for t = 2,
the genera covers by the sequences will be g = 4, 7, 10, and so on. Still,
studying these sequences further might be useful to get bounds of L(k, g, n)
with a different scope on k, since enlarging t does not change k but increases g
and sometimes n also. If we fix the length of tuple as N = k+1 and increasing
t, then the upper bound of L(k, g, n) is asymptotic to 1/|χ(Sg,n)|.
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