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Abstract. We prove a maximal Fourier restriction theorem for hypersurfaces in Rd for

any dimension d ≥ 3 in a restricted range of exponents given by the Tomas-Stein theorem

(spheres being the most canonical example). The proof consists of a simple observation.

When d = 3 the range corresponds exactly to the full Tomas-Stein one, but is otherwise a

proper subset when d > 3. We also present an application regarding the Lebesgue points

of functions in F(Lp) when p is sufficiently close to 1.

1. Introduction

In 2016 a new line of investigation in the field of Fourier restriction studies
has been opened by Müller, Ricci and Wright in [7], namely that of maximal
Fourier restriction theorems. The goal of such line of investigation is to study

the Lebesgue points of the Fourier transform f̂ of a generic function f ∈ Lp

when 1 ≤ p ≤ 2 and sufficiently close to 1. In the aforementioned paper they
prove that for the case of curves in R2 the following holds:

Theorem 1.1 ([7]). Let Γ be a C2 curve in R2 and let f ∈ Lp with

1 ≤ p < 8/7. Then, with respect to arclength measure, a.e. point of Γ where

the curvature does not vanish is a Lebesgue point of f̂ .

In particular, if R is the Fourier restriction operator associated with Γ,
one has from the above that for all f ∈ Lp with 1 ≤ p < 8/7

Rf = f̂
∣∣
Γ

for a.e. point of Γ where the curvature is non zero (a.e. with respect to arc-
length measure). Theorem 1.1 is the consequence of a clever trick (which we
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have included in the proof of Proposition 2.3, for the reader’s convenience)
and the following

Theorem 1.2 ([7]). Let Γ be the graph of a C2 function γ : I → R, where

I is a bounded interval, and let µ denote the affine measure on Γ, which for

Γ in this form is given by

dµ((ξ, γ(ξ))) = |γ′′(ξ)|1/3 dξ.

Let χ ∈ S (R) be a fixed Schwartz function with
∫
χ = 1 and define the

maximal Fourier restriction operator

Mf(ξ) := sup
ε,δ>0

∣∣∣
∫ ∫

R2

f̂(ξ + s, γ(ξ) + t)χǫ(s)χδ(t) ds dt
∣∣∣.

Then the estimate

(1.1) ‖Mf‖Lq(Γ, dµ) .p,q ‖f‖Lp(R2)

holds for all f ∈ Lp with 1 ≤ p < 4/3 and p′ ≥ 3q.

Some clarifications about the notation used in the statement: given a
single-variable function χ we have let

χǫ(x) :=
1

ǫ
χ
(x
ǫ

)

denote the L1 rescaling; p′ denotes the conjugate exponent of p, that is 1/p+
1/p′ = 1; finally, we write A . B when there exists a constant C > 0 such that
A ≤ CB, and moreover if the constant C depends on some list of parameters
L we highlight this by writing A .L B.

Observe that the range of exponents for which (1.1) holds is the same as
that for the usual operator of Fourier restriction to Γ. The proof of the above
theorem follows the lines of Sjölin’s proof of the Fourier restriction conjecture
for curves in the plane as given in [11].

In this short note we consider the case of Fourier restriction to a com-
pact hypersurface Σ immersed in d-dimensional euclidean space and of non-
vanishing Gaussian curvature, where d ≥ 3. Let dσ denote the surface mea-
sure of Σ. Define, analogously to the above, the maximal Fourier restriction
operator for Σ

M f(ω) := sup
ǫ>0

∣∣∣
∫

f̂(ω + y)χǫ(y) dy
∣∣∣,

where ω ranges over Σ and χ ∈ S (Rd) is a fixed Schwartz function with∫
χ = 1, χǫ(y) = ǫ−dχ(y/ǫ). Then we have the following

Theorem 1.3. Let d ≥ 3 and let Σ ⊂ Rd be a compact hypersurface with

non-vanishing Gaussian curvature. The operator M satisfies

(1.2) ‖M f‖Lq(Σ, dσ) .p,q,d ‖f‖Lp(Rd)

for 1 ≤ p ≤ 4/3, p′ ≥ d+1
d−1q.
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Moreover, for 1 ≤ p ≤ 8/7, if f ∈ Lp(Rd) then σ-a.e. point of Σ is a

Lebesgue point for f̂ .

Observe that, when d = 3, the range of exponents for which (1.2) holds
has endpoint L4/3 → L2, and thus corresponds precisely to the Tomas-Stein
range for this dimension. For larger values of d, the stated range is however
only a subset of the full Tomas-Stein range, which is

1 ≤ p ≤
2(n+ 1)

n+ 3
, p′ ≥

d+ 1

d− 1
q.

It is precisely the fact that the adjoint estimate to L4/3 → Lq is Lq′ → L4

allows for a simple proof of the theorem, since 4 is an even integer and thus
the restriction estimate can be restated in cancellation-free form as in (2.2)
below. Indeed, one can prove the Tomas-Stein theorem in d = 3 just by the
coarea formula (see [8]).

Remark 1.4. This article was first circulated as a preprint in 2017.1 Since
then, many authors have contributed to the problem: see [6, 9, 10, 3, 2, 4].
The main question posed by the authors of [7] has been answered by V. Kovač
in [5], in which he provided a general procedure to deduce maximal Fourier
restriction estimates from the corresponding Fourier restriction ones.

2. Proof of the result

We divide the proof of Theorem 1.3 in two by proving separately two
propositions. First we prove

Proposition 2.1. Let d ≥ 3. The operator M satisfies

‖M f‖Lq(Σ, dσ) .p,q,d ‖f‖Lp(Rd)

for 1 ≤ p ≤ 4/3, p′ ≥ d+1
d−1q.

Proof. It suffices to prove the endpoint, that is p = 4/3 and

qd := 4
d+ 1

d− 1
.

By the Tomas-Stein theorem (see e.g. [12]) one has that for the surface Σ with
non-vanishing Gaussian curvature it holds that for every f ∈ L4/3(Rd)

(2.1) ‖f̂‖Lqd(Σ, dσ) . ‖f‖L4/3(Rd).

By duality this is equivalent to the estimate

‖ĝ dσ‖L4(Rd) . ‖g‖
Lq′

d(Σ, dσ)
.

1arXiv:1703.09495.
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The numerology here is particularly fortunate since 4 is an even exponent,
which allows us to multilinearise and use Plancherel to write

‖ĝ dσ‖2L4(Rd) = ‖(ĝ dσ)2‖L2(Rd) = ‖g dσ ∗ g dσ‖L2(Rd)

(here of course the L2 norm on the right hand side has to be interpreted as
the operator norm of the linear operator given by h 7→ 〈g dσ ∗ g dσ, h〉). Thus
the Tomas-Stein type estimate (2.1) can be stated equivalently in this case as

‖g dσ ∗ g dσ‖L2(Rd) . ‖g‖2
Lq′

d(Σ, dσ)
,

which means

(2.2)
∣∣∣
∫

Σ

∫

Σ

g(ω)g(ω′)h(ω′ − ω) dσ(ω) dσ(ω′)
∣∣∣ . ‖g‖2

Lq′
d(Σ, dσ)

‖h‖L2(Rd).

We linearise the maximal operator M by defining

Aǫ(·)f(ω) :=

∫

Rd

f̂(ω + y)χǫ(ω)(y) dy,

where ǫ(·) an arbitrary measurable function that takes positive values. To
bound M it suffices to bound Aǫ(·) in the same range independently of ǫ(·).
The desired inequality

‖Aǫ(·)f‖Lqd(Σ, dσ) . ‖f‖L4/3(Rd)

is equivalent by duality to the inequality

‖A ∗
ǫ(·)g‖L4(Rd) . ‖g‖

Lq′
d(Σ, dσ)

,

where A ∗
ǫ(·) is the formal adjoint of Aǫ(·), which is given by

A
∗
ǫ(·)g(x) :=

∫

Σ

g(ω)eiω·xχ̂(ǫ(ω)x) dσ(ω).

As before, this is equivalent to establishing

‖Â ∗
ǫ(·)g ∗ Â ∗

ǫ(·)g‖L2(Rd) . ‖g‖2
Lq′

d(Σ, dσ)
.

First of all, observe that by Fubini’s theorem

Â ∗
ǫ(·)g(ξ) =

∫
e−ix·ξ

∫

Σ

g(ω)eiω·xχ̂(ǫ(ω)x) dσ(ω) dx

=

∫

Σ

g(ω)

∫
e−ix·(ξ−ω)χ̂(ǫ(ω)x) dx dσ(ω)

=

∫

Σ

g(ω)χǫ(ω)(ξ − ω) dσ(ω)
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(with a little abuse of notation). Let then h ∈ L2(Rd), so that by the above
observation and multiple applications of Fubini’s theorem we have the follow-
ing chain of equalities:

〈Â ∗
ǫ(·)g ∗ Â ∗

ǫ(·)g, h〉 =

∫ ∫
Â ∗

ǫ(·)g(ξ − η)Â ∗
ǫ(·)g(η)h(ξ) dη dξ

=

∫ ∫ ∫

Σ

∫

Σ

g(ω)g(ω′)χǫ(ω)(ξ − η − ω)χǫ(ω′)(η − ω′) dσ(ω) dσ(ω′)h(ξ) dη dξ

=

∫ ∫

Σ

∫

Σ

g(ω)g(ω′)h(ξ)
(∫

χǫ(ω)(ξ − η − ω)

· χǫ(ω′)(η − ω′) dη
)
dσ(ω) dσ(ω′) dξ

=

∫ ∫

Σ

∫

Σ

g(ω)g(ω′)h(ξ)(χǫ(ω) ∗ χǫ(ω′))(ξ + ω′ − ω) dσ(ω) dσ(ω′) dξ

=

∫

Σ

∫

Σ

g(ω)g(ω′)

∫
h̃(−ξ)(χǫ(ω) ∗ χǫ(ω′))(ξ + ω′ − ω) dξ dσ(ω) dσ(ω′)

=

∫

Σ

∫

Σ

g(ω)g(ω′)(h̃ ∗ χǫ(ω) ∗ χǫ(ω′))(ω
′ − ω) dσ(ω) dσ(ω′),

where h̃(ξ) = h(−ξ). But then we have that pointwise

|(h̃ ∗ χǫ(ω) ∗ χǫ(ω′))(ω
′ − ω)| . M2h̃(ω′ − ω),

with constant depending only on the choice of χ, where M is the Hardy-
Littlewood maximal function; therefore by the Tomas-Stein restriction esti-
mate (2.2) we have

|〈Â ∗
ǫ(·)g ∗ Â ∗

ǫ(·)g, h〉| .

∫

Σ

∫

Σ

|g(ω)||g(ω′)|M2h̃(ω′ − ω) dσ(ω) dσ(ω′)

. ‖g‖2
Lq′

d(Σ, dσ)
‖M2h̃‖L2(Rd) . ‖g‖2

Lq′
d(Σ, dσ)

‖h‖L2(Rd),

which proves the desired estimate for Aǫ(·).

Remark 2.2. It is interesting to notice that the critical endpoint for
Fourier restriction to curves in R2 is L4/3 → L4/3, and we know that the
corresponding (even restricted) strong type estimate is false by work [1] of
Beckner, Carbery, Semmes and Soria. Thus the proof above barely misses the
case d = 2.

Finally, we prove the second half of Theorem 1.3, restated below.

Proposition 2.3. Let 1 ≤ p ≤ 8/7. If f ∈ Lp(Rd) then σ-a.e. point of

Σ is a Lebesgue point for f̂ .

Proof. The proof that follows is taken from [7] and has been included
only for the reader’s convenience.
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Let R denote the operator of Fourier restriction to the hypersurface Σ.
Let M+ denote the positive maximal Fourier restriction operator associated
with Σ, defined as

M
+f(ω) := sup

ǫ>0

1

ǫd

∫

|y|≤ǫ

|f̂(ω + y)| dy.

To prove the proposition it suffices to show that

(2.3) ‖M+f‖Lq(Σ, dσ) .p,q ‖f‖Lp(Rd)

for 1 ≤ p ≤ 8/7 and p′ ≥ q d+1
d−1 . Indeed, assuming this holds, one can define

F (ω) := lim sup
ǫ→0

1

ǫd

∫

|y|≤ǫ

|f̂(ω + y)−Rf(ω)| dy;

since Rϕ = ϕ̂|Σ for any ϕ ∈ S (Rd), we have

F (ω) ≤ lim sup
ǫ→0

1

ǫd

∫

|y|≤ǫ

|f̂ − ϕ(ω + y)| dy + |R(f − ϕ)(ω)|

≤ M
+(f − ϕ)(ω) + |R(f − ϕ)(ω)|.

By the Tomas-Stein estimate and (2.3) it follows then that

‖F‖Lq(Σ, dσ) . ‖f − ϕ‖Lp(Rd)

in the given range, and by taking ϕ to be an approximant of f in Lp norm
we see that ‖F‖Lq(Σ, dσ) = 0 or equivalently that F = 0 σ-a.e., which proves
the proposition. Thus it suffices to prove (2.3), and in particular it suffices
to prove it under the assumption that p′ = q d+1

d−1 . This will follow from
Proposition 2.1.

Observe that by Hölder’s inequality we have

1

ǫd

∫

|y|≤ǫ

|f̂(ω + y)| dy .
( 1

ǫd

∫

|y|≤ǫ

|f̂(ω + y)|2 dy
)1/2

;

let then h := f ∗ f̃ , so that

ĥ = |f̂ |2,

and we have

M
+f . (Mh)1/2

pointwise. Let s be such that s ≤ 4/3 and

q

2

d+ 1

d− 1
= s′;

by Proposition 2.1 we have then

‖M+f‖Lq(Σ, dσ) . ‖Mh‖
1/2

Lq/2(Σ, dσ)
. ‖h‖

1/2

Ls(Rd)

≤ ‖f‖Lp(Rd),
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where 1+ 1
s = 2

p and the last inequality is an application of Young’s inequality.

Thus it follows that

p′ = 2s′ = q
d+ 1

d− 1
,

as desired. Since s ≤ 4/3, we see that we can only afford p ≤ 8/7, and this
concludes the proof.
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