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 Abstract: 
The paper presents a simultaneous numerical analysis 
of the geometric and material nonlinearity of the beams. 
It describes a process of determining the bearing 
capacity of a stratified cross-section of a beam made of 
homogeneous and isotropic material in linear and 
nonlinear domains of material behaviour. Material 
nonlinearity is analysed by the variation of the cross-
sectional stiffness of the beam on bending EI in the 
stiffness matrix of the system obtained according to the 
first-order theory. Geometric nonlinearity is introduced 
into the calculation using the geometric stiffness matrix 
of the system. Numerical examples present an 
application of the procedure for solving problems of 
nonlinear structure analysis. The calculation results 
obtained in accordance with the procedure described in 
the paper are compared with the results of the SCIA 
software package. 
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1 Introduction 

The influence of geometric nonlinearity is introduced into the calculation of slender load-
bearing elements under the influence of loads. An increase is noted in the cross-sectional 
forces, deformations, and displacements of the system that occur by changing the geometry 
of the system owing to the load. The equations describing the static and deformation states of 
a beam are divided into three groups: 1) equilibrium conditions, 2) compatibility conditions, and 
3) constitutive equations [1]. Geometric nonlinearity encompasses the equilibrium conditions 
that are established in the deformed system and conditions of compatibility between the 
deformations of the cross section of the beam and the displacement of the axis of the beam. 
In most cases, in practice, the displacements of the system are small (finite displacement) but 
have sufficient intensity to establish balance conditions in the deformed system. The 
relationship between displacement and deformation are adopted as linear. Beam calculation, 
in which linear constitutive equations and compatibility conditions are adopted, and nonlinear 
conditions of balance are called the second-order theory.  
In [2], spatial systems are analysed in accordance with the second-order theory. The stiffness 
matrix of the beam is obtained using the solution of the differential equation of the beam in 
accordance with the second-order theory. The results of the analysis are compared with those 
of the approximate solution of the geometric stiffness matrix. The approximate solution of the 
geometric stiffness matrix of the beam is based on the interpolation functions of the first-order 
theory of the beam. The results of the approximate calculation are close to the results of the 
calculation according to the second-order theory when the beams of the system are divided 
into smaller elements. 
The constitutive equations describe the connections between the deformations and stress of 
the cross-section of the beam. In the linear theory of beam calculation, the dependence of the 

normal stress and longitudinal strain σ = σ(ε), that is, shear stress and shear strain, τ = τ

(γ), are linear. Material nonlinearity is introduced into the calculation by adopting nonlinear 

connections between the deformations and stresses. The calculation of the beam, in which the 
nonlinearity of the material is analysed, is called the theory of plasticity. The theory of plasticity 
is divided into a 1) simplified theory and 2) strict theory. The calculation of girders according to 
the simplified theory of plasticity is based on the plastic behaviour of the material in the narrow 
zones of the system elements. The zones in which the material behaves plastically are known 
as plastic joints. Furthermore, the elastic behaviour of the material is applied to other parts of 
the system beams (EI = constant and EA = constant). The cross-sections of the beams must 
be able to rotate cross-section M-κ to achieve the moment of plasticity. The strict theory of 
plasticity encompasses the nonlinearity of the material along the elements of the system (EI ≠ 
constant and EA ≠ constant). The stiffness of the cross-section of beams EI and EA is 
determined based on the bearing capacity of the cross-section of the beam. This bearing 
capacity is determined based on the assumption that the cross-sections remain flat and are 
controlled by the support axis after deformation, and the influence of transverse forces on the 
bearing capacity is ignored. In the case of a reinforced concrete section, the concrete does not 
participate in the tensile strength; no slippage occurs between the concrete and the 
reinforcement, and the participation of the forks in the bending strength is neglected.  
In [3], the stability of the framework is analysed using numerical calculation methods. Material 
nonlinearity is introduced by applying the tangent modulus of material elasticity. The change 
in the elastic modulus of the material affects the changes in the stiffness of the finite elements 
of the system. In the analysis of material nonlinearity, the stress behaviour of the material must 
be understood. In [4], the inelastic behaviour of steel when stretched to fracture is described. 
The behaviour of the material must be understood well to analyse material nonlinearity. The 

behaviour of the material under uniaxial stress is described by σ–ε and τ–γ diagrams. The 

behaviour of the material for biaxial and triaxial stresses is described by the following models: 
the Tresca, von Mises, Mohr–Coulomb, and Drucker–Prager. The analysis of the system 
according to the strict theory of plasticity is performed using numerical methods. 
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Finite element methods are numerical methods that are applicable to nonlinear structural 
analysis. Methods for calculating geometric and material nonlinearity using the finite element 
method are described in [5]. The nonlinearity of a material is determined by the decrease in 
the stiffness of the cross-section of the finite element using numerical methods. The stiffness 
of the cross-section of the element for bending and axial stress is obtained from the elastic–
plastic bearing capacity of the cross-sections of the nodes of the final element. In the case of 
simultaneous analysis of geometric and material nonlinearity, the interpolation function of the 
reduced stiffness of the cross-section of the beam is adopted to form the finite element stiffness 
matrix. The stiffness of the finite elements of the system is reduced to a limit at which the forces 
and displacements in the two iterative stages become approximately equal. The displacements 
and rotations of the nodes occur as unknown quantities in the nodes of the system. A nonlinear 
analysis of structures is convenient to perform using numerical calculation methods in which 
displacements and rotations of system nodes occur as unknowns. The unknown 
displacements and rotations of nodes are obtained from a system of algebraic nonlinear 
equations. The nonlinear equations are solved using iterative methods. The contribution to the 
iterative solution of algebraic nonlinear equations is presented in [6, 7]. 
With the development of computer programs, nonlinear analysis of supporters is performed 
according to the defined input data within the program. The shape and parameters of the 
material stress–deformation relation affect the behaviour of the supporter in the analysis of 
material and geometric nonlinearity. The input data in the programs are defined as numerical 
values, and then, the material behaviour model and numerical methods for solving the system 
of nonlinear equations are adopted in a given number of iterations. The supporter is discretised 
by one-dimensional (1D) finite elements using the proposed numerical procedure for 
geometrical and material nonlinearity analyses. Computer programs in nonlinear analysis 
discretise system elements using two-dimensional (2D) elements. The aim of the described 
numerical calculation is to present the flow of the calculation and results of the nonlinear 
analysis of the supporters when discretising the system with 1D elements. The results of the 
manual calculation of the displacement of the nodes of the 1D elements should be close to the 
numerical values of the displacement of the nodes of the 2D elements calculated by the SCIA 
program. 

2 Beam Stiffness Matrix 

The balance of the bearing system and the beam as its integral part under load is established 
at the deformed position of the system. The connections between the cross-sectional forces 
and the load and the connections between the displacement of the beam axis and the 
deformations of the cross-section of the beam are nonlinear. In most cases, introducing the 

assumption of small deformation values of the cross-section of the beam: ε<<1 and <<1 in 

the calculation of building structures is justified. In addition, squares and higher degrees of 
deformation values can be neglected. The three groups of equations that describe the static 
deformation state of the beam in the analysis of geometric nonlinearity are nonlinear equations 
of equilibrium conditions, linear constitutive equations, and compatibility conditions. The 
analysis of the beam with the described assumptions is called the second-order theory. In the 
analysis of structures, the second-order theory is important because the effects on 
compressed and stressed elements are obtained using the second-order theory. An 
inhomogeneous differential equation obtained from the equations describing the static 
deformation state of the beam, according to the second-order theory, can be expressed as 
follows [8]: 

d2

d𝑥2
[𝐸𝐼(𝑥)

d2𝑣

d𝑥2
] −

d

d𝑥
(𝐻(𝑥)

d𝑣

d𝑥
) = 𝑝𝑦 −

d2

d𝑥2 [𝐸𝐼(𝑥) ⋅ 𝛼𝑡

Δ𝑡

ℎ
] (1) 

In Equation (1), the unknown quantities are displacements v and components of the 

intersection forces H(x). Constant αt represents the temperature coefficient of the material, 

and py denotes the transversal load of the beam. The increase in force H(x) is minimal in most 
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cases of system analysis. According to Equation (1), sufficient accuracy of the solution of the 
bending of the beam is achieved if H = S is considered, where S is the normal force in the 
beam determined by the first-order theory. The analysis of the beam in which the assumption 
H = S is accepted is called the linearised second-order theory. In the case of prismatic beams 
loaded with a transverse load py without temperature influence and with a constant bending 
stiffness EI = const. and axial force H = constant, the differential equation (1) can be expressed 
as follows: 

d4𝑣

d𝑥4
± 𝑘2

d2𝑣

d𝑥2
=

𝑝𝑦

𝐸𝐼
; 𝑘2 =

𝑆

𝐸𝐼
 (2) 

The interpolation functions required to determine the members of the beam stiffness matrix 
are obtained for py = 0, and the unit generalised displacements of the beam nodes are 
accepted. 
 

2.1 Fixed-ends beam 

The deformation line of a beam with rigid connections at the ends is a homogeneous solution 
of Equation (2) and can be expressed as follows [9]: 

𝑣(𝑥) = 𝛽1 + 𝛽2 ⋅ 𝑘𝑥 + 𝛽3 ⋅ 𝑠𝑖𝑛 𝑘 𝑥 + 𝛽4 ⋅ 𝑐𝑜𝑠 𝑘 𝑥 (3) 

where β1, β2, β3, and β4, are the unknown constants. According to Equation (3), the 

deformation line of the beam according to the second-order theory is a form of a trigonometric 
function. The calculation of the stiffness matrix of the beam can be simplified by adopting the 
deformation line of the beam in the form of the third-degree polynomial. The third-degree 
polynomial corresponds to a homogeneous solution of the differential equation for the bending 
of the beam in accordance with the first-order theory for rigid beam connections, as shown in 
Figure 1. 

 

Figure 1. General line of displacement and deformation of a beam with fixed ends 

The axial stress of the beam is described by an equation of the same form in the first- and 
second-order theories. The equations of axial stress and bending of the beam according to the 
first-order theory can be expressed as follows: 

d2𝑢

d𝑥2
= 0;

d4𝑣

d𝑥4
= 0 (4) 

The solution of the differential equation of the axial stress of the beam, considering the 

boundary conditions (x = 0  u = q1, and x = L  u = q4), can be expressed as follows: 

𝑢(𝑥) = 𝛼1 + 𝛼2 ⋅ 𝑥 = 𝑞1 +
𝑞4 − 𝑞1

𝐿
𝑥; 𝑢(𝑥) = 𝑁1(𝑥) ⋅ 𝑞1 + 𝑁4(𝑥) ⋅ 𝑞4

= (1 −
𝑥

𝐿
) ⋅ 𝑞1 +

𝑥

𝐿
⋅ 𝑞4 

(5) 

where u(x) and v(x) denote the horizontal and vertical displacements, respectively, of the beam 
axis. The solution of the beam-bending equation can be expressed as follows: 

𝑣(𝑥) = 𝛼1 + 𝛼2 ⋅ 𝑥 + 𝛼3 ⋅ 𝑥2 + 𝛼4 ⋅ 𝑥3;
𝑑𝑣(𝑥)

𝑑𝑥
= 𝛼2 + 2𝛼3 ⋅ 𝑥 + 3𝛼4 ⋅ 𝑥2 (6) 
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By introducing boundary conditions (x = 0  v = q2, dv/dx = q3 i x = L  v = q5, dv/dx = q6) for 
the rigid connections of the beam, the deformation line can be expressed as follows: 

𝑣(𝑥) = (1 − 3
𝑥2

𝐿2
+ 2

𝑥3

𝐿3)𝑞2 + (𝑥 − 2
𝑥2

𝐿
+

𝑥3

𝐿2)𝑞3 + (3
𝑥2

𝐿2
− 2

𝑥3

𝐿3)𝑞5 + (
𝑥3

𝐿2
−

𝑥2

𝐿
)𝑞6; 

𝑣(𝑥) = ∑𝑁𝑖𝑞𝑖

𝑖

= 𝑁2(𝑥) ⋅ 𝑞2 + 𝑁3(𝑥) ⋅ 𝑞3 + 𝑁5(𝑥) ⋅ 𝑞5 + 𝑁6(𝑥) ⋅ 𝑞6 
(7) 

Applying Castiglian theorem to the variation of the internal energy “U” of a beam, which occurs 
owing to the generalised displacement qi = 1, generalised forces Ri can be obtained as follows 
[10]: 

∂𝑈

∂𝛿𝑖
= 𝑅𝑖 (8) 

The internal energy of the beam from the generalised displacements of the beam nodes and 
axial pressure force determined by the first-order theory can be expressed as follows: 

𝑈 =
1

2
∫ [𝐸𝐴 (

d𝑢

d𝑥
)
2

+ 𝐸Ι (
d2𝑣

d𝑥2)

2

− 𝑆 (
d𝑣

d𝑥
)
2

]
𝐿

0

d𝑥 (9) 

The first two terms of Equation (9) represent the energy from the axial stress and bending of 
the beam, respectively, and the third term represents the energy from the influence of the 
normal force when changing the geometry of the beam. After replacing the derivative of the 
beam axis displacement functions given by Equations (5), (7), and (9), the internal energy can 
be expressed as follows: 

𝑈 =
𝐸𝐴

2𝐿
(𝑞4

2 − 2𝑞4 ⋅ 𝑞1 + 𝑞1
2) +

𝐸𝐼

2
(
12

𝐿3
𝑞2

2 +
4

𝐿
𝑞3

2 +
12

𝐿3
𝑞5

2 +
4

𝐿
𝑞6

2 +
12

𝐿2
𝑞2 ⋅ 𝑞3 −

24

𝐿3
𝑞2 ⋅ 𝑞5

+
12

𝐿2
𝑞2 ⋅ 𝑞6 − 

−
12

𝐿2
𝑞3 ⋅ 𝑞5 +

4

𝐿
𝑞3 ⋅ 𝑞6 −

12

𝐿2
𝑞5 ⋅ 𝑞6) −

𝑆

2
(

6

5𝐿
𝑞2

2 +
2𝐿

15
𝑞3

2 +
6

5𝐿
𝑞5

2 +
2𝐿

15
𝑞6

2 +
1

5
𝑞2 ⋅ 𝑞3 − 

−
12

5𝐿
𝑞2 ⋅ 𝑞5 +

1

5
𝑞2 ⋅ 𝑞6 −

1

5
𝑞3 ⋅ 𝑞5 −

𝐿

15
𝑞3 ⋅ 𝑞6 −

1

5
𝑞5 ⋅ 𝑞6) 

(10) 

The terms of the stiffness matrix are defined as generalised forces arising from the accepted 
generalised displacements caused by single generalised displacements of the beam nodes. 
Generating internal potential energy on generalised displacements, the generalised forces in 
the matrix form of rigid connections of the beam are expressed as follows: 

[𝑅]𝑇 = [𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6] = [
∂𝑈

∂𝑞1

∂𝑈

∂𝑞2

∂𝑈

∂𝑞3

∂𝑈

∂𝑞4

∂𝑈

∂𝑞5

∂𝑈

∂𝑞6

] (11) 

[𝑅] =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3
− 𝑆

6

5𝐿

6𝐸𝐼

𝐿2
− 𝑆

1

10
0 −

12𝐸𝐼

𝐿3
+ 𝑆

6

5𝐿

6𝐸𝐼

𝐿2
− 𝑆

1

10

0
6𝐸𝐼

𝐿2
− 𝑆

1

10

4𝐸𝐼

𝐿
− 𝑆

2𝐿

15
0 −

6𝐸𝐼

𝐿2
+ 𝑆

1

10

2𝐸𝐼

𝐿
+ 𝑆

𝐿

30

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
+ 𝑆

6

5𝐿
−

6𝐸𝐼

𝐿2
+ 𝑆

1

10
0

12𝐸𝐼

𝐿3
− 𝑆

6

5𝐿
−

6𝐸𝐼

𝐿2
+ 𝑆

1

10

0
6𝐸𝐼

𝐿2
− 𝑆

1

10

2𝐸𝐼

𝐿
+ 𝑆

𝐿

30
0 −

6𝐸𝐼

𝐿2
+ 𝑆

1

10

4𝐸𝐼

𝐿
− 𝑆

2𝐿

15 ]
 
 
 
 
 
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞6]
 
 
 
 
 
 
 
 
 
 

 (12) 

In general, Equation (12) can be written as follows: 



Demirović, B., et al. Numerical Analysis of Geometric and Material Nonlinearity of Beams in the Plane 

 

ACAE | 2022, Vol. 13, Issue No. 25 

 

Page | 37  

 

[𝑅] = [𝑘] ⋅ [𝑞] = [[𝑘0] + [𝑘𝑔]] ⋅ [𝑞] (13) 

where [R] denotes the vector of generalised forces, [k] denotes the stiffness matrix of the 
pressed beam that is represented as the sum of the stiffness matrix according to the first-order 
theory [k0] and geometric matrix [kg] obtained by an approximate solution, and [q] denotes the 
vector of the generalised displacements of the beam nodes. 
 

2.2 One-sided fixed beam 

By introducing the boundary conditions of a one-sided fixed beam into Equation (6) (x = 0  v 

= q2, dv/dx = q3 i x = L  v = q5), the deformation line can be written as follows: 

𝑣(𝑥) = (1 −
3𝑥2

2𝐿2
+

𝑥3

2𝐿3)𝑞2 + (𝑥 −
3𝑥2

2𝐿
+

𝑥3

2𝐿2)𝑞3 + (
3𝑥2

2𝐿2
−

𝑥3

2𝐿3)𝑞5

= 𝑁2(𝑥) ⋅ 𝑞2 + 𝑁3(𝑥) ⋅ 𝑞3 + 𝑁5(𝑥) ⋅ 𝑞5 

(14) 

A homogeneous solution of the differential equation of beam bending according to the theory 
of the first order of a one-sided fixed beam is a third-degree polynomial, as shown in Figure 2. 

 

Figure 2. General line of displacement of a beam with fixed and hinged joints 

The internal energy of a fixed beam based on Equations (5) and (14) can be expressed as 
follows: 

𝑈 =
𝐸𝐴

2𝐿
(𝑞4

2 − 2𝑞4 ⋅ 𝑞1 + 𝑞1
2) +

3𝐸𝐼

2𝐿3
(𝑞2 + 𝑞3𝐿 − 𝑞5)

2

−
𝑆

2
(
2𝑞2 ⋅ 𝑞3

5
−

2𝑞3 ⋅ 𝑞5

5
+

6𝑞2
2

5𝐿
−

12𝑞2 ⋅ 𝑞5

5𝐿
+

6𝑞5
2

5𝐿
+

𝑞3
2𝐿

5
) 

(15) 

Generalized forces in the matrix form of a one-sided fixed beam can be expressed as follows: 

[𝑅]𝑇 = [𝑅1 𝑅2 𝑅3 𝑅4 𝑅5] = [
∂𝑈

∂𝑞1

∂𝑈

∂𝑞2

∂𝑈

∂𝑞3

∂𝑈

∂𝑞4

∂𝑈

∂𝑞5
] (16) 

[𝑅] =

[
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0

0
3𝐸𝐼

𝐿3
− 𝑆

6

5𝐿

3𝐸𝐼

𝐿2
− 𝑆

1

5
0 −

3𝐸𝐼

𝐿3
+ 𝑆

6

5𝐿

0
3𝐸𝐼

𝐿2
− 𝑆

1

5

3𝐸𝐼

𝐿
− 𝑆

𝐿

5
0 −

3𝐸𝐼

𝐿2
+ 𝑆

1

5

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0

0 −
3𝐸𝐼

𝐿3
+ 𝑆

6

5𝐿
−

3𝐸𝐼

𝐿2
+ 𝑆

1

5
0

3𝐸𝐼

𝐿3
− 𝑆

6

5𝐿 ]
 
 
 
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝑞4

𝑞5]
 
 
 
 
 
 
 
 

 (17) 

In the case of a tension beam, the opposite signs are introduced before the elements in the 
geometric stiffness matrix. The solutions to the geometric nonlinearity problem are provided 
by an approximate procedure. The second-order influences are handled by an independent 
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geometric matrix of beam stiffness [kg]. The nonlinearity of the material is introduced into the 
calculation of the stiffness matrix obtained according to the first-order theory. 

3 Material Nonlinearity of the Beam 

When analysing the material nonlinearity of a beam, the behaviour of the material under a load 
must be known. The behaviour of a material under axial stress is described by the normal 
stress–strain relationship. The stress–strain diagram of a material is approximated by adopted 
shapes such as bilinear, polygonal, and polynomial. Suitable forms of diagrams for the analysis 
of material nonlinearity are a) an ideal elastic–plastic diagram, b) an ideal elastic–plastic 

diagram with softening, and c) a nonlinear relation σ–ε, as shown in Figure 3. 

 

  

  
a)   b) c) 

Figure 3. Behaviour of a material: a) ideal elastic–plastic diagram; b) elastic–plastic 
diagram with softening; c) nonlinear relation 

In the following discussion, the diagram of elastic–plastic behaviour of the material with 
softening is analysed. Based on the accepted behaviour scheme of the material, the bearing 
capacity of the cross-section of the beam is determined. Modelling the load-bearing capacity 
of the cross-section of the beam is based on the following assumptions: the cross-section is 
symmetrical in relation to the vertical axis, cross-section forces act in the plane, and cross-
sections remain straight and perpendicular to the beam axis before and after deformation. The 
load-bearing capacity of the cross-section of the beam is described by the ratios of the cross-

sectional forces and deformations of cross-sections M-κ and N-ε. The secant modulus of 

elasticity of material Es is valid up to the yield strength of material σT. After the yield strength 

of the material, the tangent modulus of the material, Et, increases. The section is divided into 
equal layers of rib and flange, with thickness hj, as shown in Figure 4. Each layer corresponds 

to deformation εj and normal stress j. The stress of the individual layers in the elastic and 

plastic parts depends on deformation. Owing to the nonlinear behaviour of the material, this 
problem is solved iteratively [11]. 

 

Figure 4. a) Layered cross-section; b) deformations of the cross-section; c) stresses 
of the cross-section 

In the initial iterative step, the modulus of secant elasticity of the material, Es, is adopted for 
the selected combination of cross-sectional forces at the centroid of the cross-section. Based 
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on this, the deformation of the centroid cross-section of the section, curvature of the section, 
and deformation of the layers can be expressed as follows: 

𝜀(0) =
𝑁

𝐸𝑠𝐴𝑖
; 𝜅(0) =

𝑀

𝐸𝑠𝐼𝑖
; 𝜀𝑗

(0)
= 𝜀 + 𝜅 ⋅ (𝑦𝑖 − 𝑦𝑗) (18) 

where ε(0) denotes the deformation of the centroid cross-section in the zero iterative step, and 

κ(0) denotes the curvature of the beam. The deformation of the j-th layer in the initial iteration 

corresponds to the deformation in the first iteration in accordance with the accepted stress 
diagram presented in Figure 4b. 

𝜎𝑗
(1)

= 𝐸𝑠 ⋅ 𝜀𝑗
(0)

(0 ≤ 𝜀 ≤ 𝜀𝑇); 

𝜎𝑗
(1)

= 𝜎𝑇 + 𝐸𝑡 ⋅ (𝜀𝑗
(0)

− 𝜀𝑇) (𝜀𝑇 ≤ 𝜀 ≤ 𝜀𝑚𝑎𝑥()) 
(19) 

where σj
(1) denotes the stress of the j-th layer in the first iteration. If all the layers are in a state 

of elastic stress, the initial iterative step is sufficient. In the case of plastification of one or more 
layers, the iterative process continues until one of the cross-sectional layers cracks [12]. By 
integrating the stresses across the layers, intersection forces N i M of the first iteration are 
determined as follows: 

𝑁
(1)

= ∑𝜎𝑗
(1)

⋅ 𝐴𝑖

𝑗

;𝑀𝑖
(1)

= ∑𝜎𝑗
(1)

⋅ 𝐴𝑖(𝑦𝑖 − 𝑦𝑗)

𝑗

 (20) 

In a new iterative step, the stiffness of the cross-section and position of the centroid cross-
section are determined. For the n-th iteration, they can be expressed as follows: 

𝐸(𝑛)𝐴𝑖
(𝑛)

= ∑𝐸𝑗
(𝑛)

𝑗

⋅ 𝐴𝑗; 𝐸
(𝑛)𝐼𝑖

(𝑛)
= ∑𝐸𝑗

(𝑛)

𝑗

⋅ 𝐴𝑗(𝑦𝑗 − 𝑦𝑖)
2
; 

[
(0 ≤ 𝜀 ≤ 𝜀𝑇) ⇒ 𝐸𝑗

(𝑛)
= 𝐸𝑠

(𝜀𝑇 ≤ 𝜀 ≤ 𝜀𝑚𝑎𝑥()𝑗
(𝑛)

𝑡
)

[𝑖
(𝑛)

∑ 𝐸𝑗
(𝑛)

𝑗 ⋅ 𝐴𝑗 ⋅ 𝑦𝑗

𝐸(𝑛)𝐴𝑖
(𝑛)

 

(21) 

The new characteristics of the cross-section correspond to the increment of deformations, 
curvature of the cross-section, increment of the normal force, and bending moment. They can 
be expressed as follows: 

Δ𝜀(𝑛) =
Δ𝑁(𝑛)

𝐸(𝑛)𝐴𝑖
(𝑛)

; Δ𝜅(𝑛) =
Δ𝑀𝑖

(𝑛)

𝐸(𝑛)𝐼𝑖
(𝑛)

; Δ𝑁(𝑛) = 𝑁 − 𝑁(𝑛−1); Δ𝑀𝑖
(𝑛)

= 𝑀𝑖 − 𝑀𝑖
(𝑛−1)

 (22) 

Deformations in the n-th iterative step and stresses of layer j cross-sections in the n+1 step 
can be expressed as follows: 

𝜀(𝑛) = 𝜀(𝑛−1) + Δ𝜀(𝑛); 𝜅(𝑛) = 𝜅(𝑛−1) + Δ𝜅(𝑛); 

𝜎𝑗
(𝑛+1)

= 𝐸𝑠 ⋅ 𝜀𝑗
(𝑛)(0 ≤ 𝜀 ≤ 𝜀𝑇); 𝜎𝑗

(𝑛+1)
= 𝜎𝑇 + 𝐸𝑡 ⋅ (𝜀𝑗

(𝑛)
− 𝜀𝑇) (𝜀𝑇 ≤ 𝜀 ≤ 𝜀𝑚𝑎𝑥()) 

(23) 

The iterative process is repeated until the increment in forces and deformations becomes 
small. The static and deformation characteristics of the beam change during the nonlinear 
analysis. The geometric characteristics of the cross-sections of the beam change with an 
increase in the load. Therefore, a numerical analysis of the static and deformation sizes of the 
beam can be performed at its discretisation points. By discretisation, the straight beam A-B is 
divided into finite elements of length L, as shown in Figure 5. 
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Figure 5. a) Beam A-B; b) change in stiffness EIi of the beam; c) change in stiffness 
EAi of the beam; d) finite element (short beam) 

In the nodes of the finite elements, EAi is the axial stiffness of the cross-section of the beam, 
and EIi is the bending stiffness of the cross-section of the beam. When the final element is 
sufficiently small in length, the stiffness of the cross-section of beam i-k, EAi,ik and EIi,ik, are 
assumed to have constant shape dimensions [13]. 

𝐸𝐴𝑖,𝑖𝑘 =
𝐸𝐴𝑖,𝑖 + 𝐸𝐴𝑖, 𝑘

2
; 𝐸𝐼𝑖,𝑖𝑘 =

𝐸𝐼𝑖,𝑖 + 𝐸𝐼𝑖,𝑘
2

 (24) 

4 Beams Equilibrium Equations 

After the introduction of the material nonlinearity of the finite element, the terms of the stiffness 

matrix according to the first-order theory have a variable value (k0  const.). Geometric stiffness 
matrix [kg] is constant (kg = const.) if the axial forces of the beam are accepted by the first-order 
theory. If the axial forces significantly change during the iterative process, matrix [kg] is 
corrected. The equilibrium equation of the system nodes in matrix form is expressed as follows 
[14]: 

[[𝐾0
(𝑚−1)

] + [𝐾𝑔]] ⋅ [𝑞(𝑚)] = [𝑄] + [𝑆] (25) 

where [K0
(m-1)] denotes the stiffness matrix of the system according to the first-order theory in 

the (m-1) iterative step, [Kg] denotes the geometric stiffness matrix of the system, [q(m)] denotes 
the matrix of displacement and rotation of nodes in the m-th iteration, [Q] denotes the vector 
of the equivalent nodal load, and [S] denotes the vector of the nodal forces. Matrix [K0

(m-1)] is 
defined as the material nonlinearity, and according to matrix [kg], the geometric nonlinearity of 
the system is defined. The system of Equation (25) is nonlinear; therefore, the solution of the 
system equations is determined iteratively. During the iterative process, the change in static 

and geometric quantities of EIi,ik and EAi,ik are handled by relations M-κ i N-ε. The iterative 

procedure continues until the m-th iteration when the stiffness of the system beams becomes 
approximately constant. 

5 Numerical Examples 

5.1 Example 1 

In the numerical example in Figure 6, the bearing capacity of a simple beam is analysed under 
the action of the F and H forces. The load-bearing capacity of the beam is determined by the 
linear and nonlinear behaviours of the material, with and without the introduction of geometric 

nonlinearity. Input data: mechanical properties of steel material S 235 (σT = 235 MPa, σmax = 
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360 MPa, Es = 2,1×108 kN/m2). Figure 6b defines load capacity relation M-κ of cross-section 

b/h = 10/0,8 cm. 

 

  

 
a)   b) 

Figure 6. Example 1: a) beam A-B; b) diagram of the bearing capacity of the cross 
section 

The stiffness matrix of the system, equivalent nodal load vector, and displacement and rotation 
of the nodes are determined according to Figure 6. a) for the adopted generalised 
displacements as follows: 

[𝐾0]

=

[
 
 
 
 
 
 
 
 
 
 
 
 
3𝐸Ι𝐴−𝐼

𝐿3
+

12𝐸Ι𝐼−𝐼𝐼

𝐿3

6𝐸Ι𝐼−𝐼𝐼

𝐿2
−

3𝐸Ι𝐴−𝐼

𝐿2
−

12𝐸Ι𝐼−𝐼𝐼

𝐿3

6𝐸Ι𝐼−𝐼𝐼

𝐿2
0 0

6𝐸Ι𝐼−𝐼𝐼

𝐿2
−

3𝐸Ι𝐴−𝐼

𝐿2

3𝐸Ι𝐴−𝐼

𝐿
+

4𝐸Ι𝐼−𝐼𝐼

𝐿
−

6𝐸Ι𝐼−𝐼𝐼

𝐿2

2𝐸Ι𝐼−𝐼𝐼

𝐿
0 0

−
12𝐸Ι𝐼−𝐼𝐼

𝐿3
−

6𝐸Ι𝐼−𝐼𝐼

𝐿2

12𝐸Ι𝐼−𝐼𝐼

𝐿3
+

12𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿3
0 −

12𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿3

6𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿2

6𝐸Ι𝐼−𝐼𝐼

𝐿2

2𝐸Ι𝐼−𝐼𝐼

𝐿
0

4𝐸Ι𝐼−𝐼𝐼

𝐿
+

4𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿
−

6𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿2

2𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿

0 0 −
12𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿3
−

6𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿2

12𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿3
+

3𝐸Ι𝐼𝐼𝐼−𝐵

𝐿3

3𝐸Ι𝐼𝐼𝐼−𝐵

𝐿2
−

6𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿2

0 0
6𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿2

2𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿

3𝐸Ι𝐼𝐼𝐼−𝐵

𝐿2
−

6𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿2

4𝐸Ι𝐼𝐼−𝐼𝐼𝐼

𝐿
+

3𝐸Ι𝐼𝐼𝐼−𝐵

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

 
(26) 

[𝐾𝑔] = 𝐻 ⋅

[
 
 
 
 
 
 
 
 
 
 
 
 −

12

5𝐿

1

10

6

5𝐿
−

1

10
0 0

1

10
−

𝐿

5
−

2𝐿

15

1

10

𝐿

30
0 0

6

5𝐿

1

10
−

12

5𝐿
0

6

5𝐿
−

1

10

−
1

10

𝐿

30
0 −

4𝐿

15

1

10

𝐿

30

0 0
6

5𝐿

1

10
−

12

5𝐿
−

1

10

0 0 −
1

10

𝐿

30
−

1

10
−

𝐿

5
−

2𝐿

15]
 
 
 
 
 
 
 
 
 
 
 
 

; [𝑄] + [𝑆] =

[
 
 
 
 
 
0
0
𝐹
0
0
0]
 
 
 
 
 

; [𝑞] =

[
 
 
 
 
 
𝑣1

ϕ2

𝑣3

ϕ4

𝑣5

ϕ6]
 
 
 
 
 

 (27) 

The solution of the matrix system of equations is iteratively performed incrementally. The 
deformation and forces in the selected increments are determined using the direct iteration 
method (the secant stiffness method). In the elastic area of the material behaviour, the 
increments of the F force are 0,5 kN. After the yield strength of the material is reached, the 
change in the increment of the F force is 0,1 kN. The results of the displacement ratio in the 
middle of beam v3 and the F force in the linear analysis, analysis of geometric nonlinearity, and 
analysis of geometric and material nonlinearity are presented in Figure 7 and 8. 
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a)   b) 

Figure 7. Force–displacement relations: a) linear analysis and geometric nonlinearity 
analysis (EI = constant) [15]; b) analysis of geometric and material nonlinearity by the 

SCIA software package (EI ≠ constant) [15] 

 

Figure 8. Force–displacement relations in the analysis of geometric and material 
nonlinearity according to the described procedure (EI ≠ constant) 

The calculated results show a significant difference in the vertical displacement of the v3 beam 
in the analysis of geometric nonlinearity and simultaneous analysis of geometric and material 
nonlinearity. In the analysis of geometric nonlinearity, a linear increase in the displacement is 
observed that is caused by a decrease in the stiffness of the system owing to changes in 
geometry. The displacement increment becomes nonlinear using the simultaneous analysis of 
geometric and material nonlinearity after reaching the material flow limit, as shown in Figure 
8. When the normal force is higher, the yield strength of the cross-sectional material of the 
beam is reduced. 
 

5.2 Example 2 

In the numerical example shown in Figure 9. a), the displacements and rotations of the nodes 
of the finite elements of the frame are determined. The input data for the mechanical properties 
of the steel material are identical to those in Example 1. The frame girder is made of the HEA 
120 profile, for which the M-k bearing capacity scheme is shown in Figure 9. b). 
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a)   b) 

Figure 9. Example 2: a) frame A-B; b) adopted relation of the bearing capacity of 
profile HEA 120 

The load-bearing capacity of the beam is determined by the linear and nonlinear behaviours 
of the material, with and without the introduction of geometric nonlinearity. 

Table 1. Results of horizontal displacement calculation q22 in node VIII 
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Difference 
(%) 

2F 
(kN) 

I II III IV V VI VI-III

III
∙ 100 

V-IV

IV
∙ 100 

VI-I

I
∙ 100 

V-I

I
∙ 100 

II-I

I
∙ 100 SCIA Prezent 

q22 
(mm) 

Δq22 

(%) 

0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

10 6,0 6,1 6,0 6,1 6,1 6,0 0,0 -0,6 0,0 1,1 1,7 

20 12,0 12,3 12,0 12,3 12,3 12,0 0,0 0,0 0,0 2,5 2,5 

30 18,0 18,7 18,1 18,8 18,7 17,9 -1,1 -0,6 -0,6 3,8 3,9 

35 21,1 22,0 21,3 22,3 23,5 21,3 0,0 5,3 0,9 11,3 4,3 

37,5 22,6 23,6 23,0 24,2 26,5 23,9 3,9 9,3 5,8 17,1 4,4 

40 24,1 25,3 25,0 26,7 30,8 27,4 9,6 15,2 13,7 27,6 5,0 

42,5 25,6 26,9 28,4 31,3 36,9 32,3 13,7 18,0 26,2 44,3 5,1 

44 26,5 27,9 32,8 37,6 41,6 36,1 1,1 10,6 36,2 57,0 5,3 

44,75 26,9 28,4 39,1 48,1 43,8 38,1 -2,6 -8,9 41,6 63,0 5,6 

 
Figure 10. and Table 1. present an increase in the horizontal displacement in the 22 
generalised directions, depending on load F. A comparison of the results of the proposed 
calculation and those of the calculation by the SCIA software package is presented in a 
comparative graphic presentation. In the elastic area of the material behaviour shown in Figure 
10, the force–displacement relations are linear. After reaching the moment of the beginning of 
plastification of HEA 120 cross-section MT = 25 kNm, until the moment of complete 
plastification of the cross-section, the force–displacement relations are nonlinear. The increase 
in system deformation is significant with a further increase in the load to the limit value. At the 
maximum load of the system, two cases can occur: 1) breakdown of one or more sections in 
which the system becomes a mechanism and 2) loss of stability of one or more elements of 
the system. In both cases, large (finite) displacements occur in the system. 
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a)   b) 

Figure 10. Force–displacement relations: a) analysis of material nonlinearity (EI ≠ 
constant); b) analysis of geometric and material nonlinearity (EI ≠ constant) 

Node displacements and rotations are obtained from a system of nonlinear equations solved 
by iterative methods using the Mathematica software package [16]. 

6 Conclusions 

The introduction of geometric nonlinearity in the calculation of load-bearing systems is justified 
in constructions with slender elements. Geometric nonlinearity is handled by the geometric 
stiffness matrix of a finite element (beam). The nonlinear behaviour of the material is analysed 
based on its nonlinearity. The study results conclude that the shifts in accordance with the 
second-order theory are 6% higher than those of the linear system analysis. The force–
displacement ratio becomes nonlinear by introducing material nonlinearity into the calculation. 
In the case of the material behaviour above the yield strength, the displacements of the system 
calculated by introducing the nonlinearity of the material are 45% greater than the 
displacements in accordance with the linear theory. Using the simultaneous analysis of 
geometric and material nonlinearities, the displacements of the girders are approximately 63% 
greater than those according to the linear theory. The described calculation procedure provides 
solutions that describe the realistic behaviour of linear systems and determine the maximum 
load on the system. The load bearing on the girders is applied in increments ranging from zero 
to the maximum load. 
The analysis of the numerical examples conclude that by increasing the slenderness of the 
elements of the system, the possibility of plasticising the material of the cross-section of the 
element decreases. In slender elements, a loss of stability occurs before the plastification of 
the material. The loss of stability is caused by a change in the geometry of the system owing 
to a decrease in the rigidity of the elements. The stiffness of the slender elements decreases 
with an increase in the normal forces. 
Plastification of the material occurs when the elements are loaded during bending. 
Plastification first occurs at the node with the greatest bending moment. Plastification spreads 
to other zones of the elements; consequently, the rigidity of the entire system decreases with 
a further increase in the load. An increment in deformations and a redistribution of transverse 
forces occur with a decrease in the rigidity of the system. 
The results of the described procedure are compared with those obtained by the SCIA software 
package, in which the system is modelled using 2D finite elements. The described procedure 
for analysing the geometric and material nonlinearity of the system is suitable for determining 
the ultimate load, bearing capacity of the system in the form of force displacement, and stability 
of individual elements of the system under the real behaviour of the system. 
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