
Software Defect Prediction using Deep Learning
by Correlation Clustering of Testing Metrics

953

Original Scientific Paper

Kamal Kant Sharma
Department of Information Technology, KIET Group of Institutions, Delhi-NCR, Ghaziabad
Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
knmietkamal@gmail.com

Amit Sinha
Department of Information Technology, ABES Engineering College, Ghaziabad
Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
amit.sinha@abes.ac.in

Arun Sharma
Department of AI and Data Sciences
Indira Gandhi Delhi Technical University for Women, Delhi, India
arunsharma2303@gmail.com

Abstract – The software industry has made significant efforts in recent years to enhance software quality in businesses. The use of
proactively defect prediction in the software will assist programmers and white box testing in detecting issues early, saving time and
money. Conventional software defect prediction methods focus on traditional source code metrics such as code complexities, lines of
code, and so on. These capabilities, unfortunately, are unable to retrieve the semantics of source code. In this paper, we have presented
a novel Correlation Clustering fine-tuned CNN (CCFT-CNN) model based on testing Metrics. CCFT-CNN can predict the regions of source
code that contain faults, errors, and bugs. Abstract Syntax Tree (AST) tokens are extracted as testing Metrics vectors from the source
code. The correlation among AST testing Metrics is performed and clustered as a more relevant feature vector and fed into Convolutional
Neural Network (CNN). Then, to enhance the accuracy of defect prediction, fine-tuning of the CNN model is performed by applying
hyperparameters. The result analysis is performed on the PROMISE dataset that contains samples of open-source Java applications such
as Camel Dataset, Jedit dataset, Poi dataset, Synapse dataset, Xerces dataset, and Xalan dataset. The result findings show that the CCFT-
CNN model increases the average F-measure by 2% when compared to the baseline model.

Keywords: Software Engineering, Software Testing, Abstract Syntax Tree, Machine Learning, Convolution Neural Network

1. INTRODUCTION

Software engineering is a vast field that is extensively
used in software-based industrial applications. Humans
have become increasingly reliant on software-based ap-
plications in subsequent years, with software function-
ality being regarded as the most important aspect of
customer experience [1]. Numerous consequences, like
a breakdown of software functioning and incorrect out-
put, could arise during real-time software-based appli-
cations, resulting in consumer dissatisfaction. Nonethe-
less, when a large number of activities are processed and
performed by software, the software's performance may
be reduced. Real-time applications frequently experi-
ence software failures and flaws. Program error appears
when performance differs from predicted results, caus-
ing disagreement between real and necessary software
functioning, often known as a software flaw or bug [2].
As the need for user apps grows, so do the complexities
of software applications, which has an impact on the op-

erations of numerous software corporations and leads
to the production of inadequate software uses. Due to
a large number of software applications, experts find
it difficult to identify, locate, and discover software de-
fects. Moreover, in the field of software fault prediction
and diagnosis, defect density is a challenging problem.
Previous research and expertise in this field can help
forecast software product faults. Initially, manual test-
ing was used to uncover software defects in the soft-
ware industry. In the overall development of a program,
manual software testing demands 27% human labor [3].
Manual testing takes more time and labor, and it can't
catch all of the faults in the program. Defect forecasting
models are commonly employed by companies to solve
this problem. During the development process, these
models allow firms in fault forecasting, effort estimate,
software reliability testing, risk assessment, and other
functions [4]. This can also contribute to minimizing risk
by utilizing software quality forecasting models early in

Volume 13, Number 10, 2022

954 International Journal of Electrical and Computer Engineering Systems

the software development lifecycle (SDLC), resulting in
increased customer contentment and cost reductions,
as well as reduced human work. To solve the problem
of software fault forecasting, many strategies have been
developed. In this context, software metrics are useful
for forecasting software product problems by exam-
ining the link between software metrics and output
product reliability. Process metrics, project metrics, and
product metrics are the three types of software metrics.
Software development and maintenance utilize process
metrics to ensure the software's operation and longev-
ity. Product metrics explain different attributes like lay-
out features, quality level necessity, and performance
level need for any specific software program, whereas
project metrics offer various parameters including the
total number of developers, developer expertise, work
scheduling, organization, and software size [5].

Machine learning and data mining approaches are re-
garded to be the most effective in the field of software
engineering and fault predictions. Machine learning is
highly utilized in a variety of implementations due to
its potential to meet or surpass human-level functional-
ity. The accessibility of huge data samples, high-speed
processing techniques, and their capabilities to accom-
plish excellent functionality has developed the way for
DNNs to enter safety-critical applications which include
automated vehicle driving, healthcare diagnostic test,
safety, and so on. Because such implementations are
safety-critical, sufficient testing of these machine learn-
ing is required before implementation. Nevertheless,
unlike conventional software, machine learning lacks a
clear control-flow structure. They learn their judgment
call strategy by instructing on a big dataset and progres-
sively modifying variables utilizing various means to
accomplish the required precision. As a result, conven-
tional software checking techniques such as operational
coverage, branch coverage, and so forth cannot be im-
plemented in machine learning, posing a challenge to
their usage in safety-critical implementations [1].

Conventional software screening techniques per-
form badly when implemented in machine learning
since machine learning code contains no details about
a machine learning internal decision-making rationali-
ty. Machine learning comprehends its regulations from
instructing information and does not have the control-
flow structure found in conventional software [3]. As a
result, conventional coverage criteria such as code cov-
erage, branch coverage, functional coverage, and so
on are inapplicable to machine learning. Fig 1 depicts
a high-level depiction of the majority of established
Whitebox evaluation techniques for machine learning.
The machine learning, evaluation inputs, and coverage
metric are used as inputs to the evaluation procedure
to guarantee that all sections of the program logic have
been examined. An oracle determines whether the
machine learning action is accurate for the examined
inputs. A coordinated test input generation technique
can also be utilized to produce test input information

with wider reach and expose more corner case behav-
ioral patterns. Established analysis techniques typically
produce either an estimate of system appropriateness
or an adversarial ratio [3].

Fig 1. Representation of Testing using Machine
Learning

Machine learning (ML) systems are highly being used
in safety-critical areas as a result of subsequent advance-
ments in the domains [4]-[10]. As a result, several soft-
ware analysis techniques are necessary to guarantee
the dependability and security of ML systems. Because
ML framework regulations are interpreted from training
information, it is challenging to understand the execu-
tion regulations for every ML system behavior. At the
same time, Random Testing (RT) is a prominent testing
technique, and it does not require any understanding of
software execution. As a result, RT is an excellent choice
for evaluating ML systems. Furthermore, the established
methods for evaluating ML frameworks rely highly on RT
by labeled testing datasets. Random Testing (RT), being
one of the most basic and widely used software screen-
ing techniques, could be used to evaluate ML systems.
The advantage of RT is that it is simple in theory and con-
venient to apply [5]. Most notably, if researchers have no
understanding of software execution, it could be the
only practicable method [6]. Undoubtedly, due to the
change in advancement framework caused by ML, this
feature is also an essential advantage for evaluating ML
systems [7]. Conventional software is built axiomatically
by attempting to write down the regulations as program
codes, and the system's behavior is controlled by these
known regulations. The execution guidelines for ML sys-
tems, on the other hand, are derived inductively from re-
training information and are not precisely known to us.
Because of the paradigm shift, several of the key charac-
teristics of ML systems have no source code. As a result,
RT is an excellent evaluation technique for ML systems.
In reality, the conventional way for evaluating ML sys-
tems is to collect and physically categorize as much test
information as possible, then utilize this data to evaluate
ML systems using the RT technique [8].

2. RELATED WORK

Gerasimou et al. [8] focused on altering typical soft-
ware engineering assessment requirements to increase
certainty in their right conduct. Nevertheless, they fall

955Volume 13, Number 10, 2022

short of representing the essential features that these
systems display. Wang et al [9] presented Robustness-
Oriented Assessment, a unique assessment methodol-
ogy (RobOT). A major component of RobOT is a quan-
titative assessment of 1) the utility of every testing
ground in enhancing model durability (typically via ad-
ditional training) and 2) the model resilience improve-
ment's converging reliability. Guo et al [10] presented
Audee, a unique method for evaluating DL systems
and locating flaws. Audee uses a search-based method
and three distinct mutation algorithms to produce a
variety of testing cases by combining model architec-
tures, variables, evaluations, and inputs. Audee can
identify three different kinds of problems: logical flaws,
failures, and Not-a-Number (NaN) issues. Ma et al [11]
presented a mutation assessment method for DL sys-
tems to evaluate the integrity of testing information. To
achieve so, they provided a collection of source-level
mutation operators to introduce flaws into the sources
of DL, in a similar manner as mutation assessment in
conventional software (i.e., training data and training
programs). Ma et al [12] presented DeepGauge, a col-
lection of multi-granularity evaluating requirements
for DL systems that tries to generate a multi-faceted
depiction of the testing ground, in this study. On two
well-known databases, five DL systems, and four state-
of-the-art confrontational threat approaches against
DL, the in-depth examination of their recommended
assessment requirements is proven. DeepGauge's po-
tential utility offers insight into the development of
more comprehensive and powerful DL systems. Du et
al [13] took the initial move toward evaluating RNN-
based stateful DL systems in this research. They charac-
terized RNN as an abstract state transition system, from
which they derived a series of stateful DL-specific test-
ing coverage requirements. Wang et al [14] presented
a new method for detecting challenging specimens in
real-time. When they applied mutations to the DNN,
they found that adversarial specimens are substantially
more sensitive than regular specimens. They initially
constructed a vulnerability metric. CBIL is the name of
the hybrid model that was proposed by Farid et al. [15].
CBIL can identify problematic parts of source code. It
does it by pulling vector representations of Abstract
Syntax Tree (AST) tokens out of the source code. The
transformation of integer vectors into dense vectors
can be accomplished through mapping and word em-
bedding. The AST tokens' semantics are then extracted
by a CNN, which stands for the convolutional neural
network. After then, the Bidirectional Long Short-Term
Memory (Bi-LSTM) system will retain the most impor-
tant features while ignoring the less important features
to improve the accuracy of software defect prediction.
Fan et al. [16] developed a hierarchical method to au-
tomatically evaluate the degree of similarity between
mapped statements and tokens using a variety of dis-
tinct algorithms. The author was able to identify wheth-
er or not each of the compared algorithms provides
erroneous mappings for a sentence or the tokens that

make up the claim by doing the comparison. The study
of the results reveals that the precision is between 0.98
and 1.00, and the recall is between 0.65 and 0.75.

3. METHODOLOGY

Human error is the primary cause of software bugs.
There will be a defect (fault, bug) in the code because
of these mistakes. There is no bug-free software. The
majority of applications are classed as Critical, High,
Medium, or Low because of the number of flaws they
include. Problems of all sizes can be caused by the Met-
rics used.

Defect prediction is used to identify the sections of
software that are most likely to cause problems in fu-
ture versions. Choosing the appropriate testing Metrics
is the first process. Then, if there are any errors in the
data, it is marked as defective. Otherwise, it is marked
as clean. The key features or testing Metrics of each
software code file are extracted and collected. This step
is critical. Finally, the model is constructed and tested
using the labeled data and collected features. Finally,
machine learning is used to determine whether or not
the new instance is faulty or otherwise clean.

In the model, there are two datasets: the training set
is used to create and train the model, and the test set is
used to evaluate and evaluate the trained model. Soft-
ware defect prediction models can be divided into two
categories. Within-Project Defect Prediction (WPDP) and
Cross-Project Defect Prediction (CPDP) are two types
of defect prediction. As a result of this, WPDP uses data
from previous editions of the project. The same project is
used for both the training and testing sets.

Fig 2. Flowchart of Methodology

956 International Journal of Electrical and Computer Engineering Systems

Two separate projects are used to train and evaluate
the application in the CPDP, with the training set com-
ing from one project and the test set coming from a
separate platform. In this paper, we have adopted the
CPDP model for performance evaluation.

In this paper, cascaded correlation clustering fine-
tuned CNN model is proposed and termed (CCFTCNN).
Fig. 2 depicts the complete framework for the proposed
software testing module using machine learning. In
this paper, testing Metrics are extracted using Abstract
Syntax Tree (AST) for all java sources in the learning and
testing groups. The vector of textual characters is then
transformed into a numeric vector by creating map-
ping dictionaries between symbols and numbers. Then,
text encoding is used to convert every numeric vector
into a dense vector. Finally, the resulting dense vector is
utilized as information for developing and training the
proposed framework i.e., CCFTCNN. Then its functional-
ity is examined using the PROMISE database.

3.1 DATA PREPROCESSING

In this stage, data is pre-processed before learning to
increase its correctness and address the class balanc-
ing problem, which might have an adverse effect on
the outcomes of the framework.

3.2 AbSTRACT SYNTAx TREE (AST)

Initially, an Abstract Syntax Tree (AST) is developed
for the chosen Java items in the PROMISE database.
Furthermore, the types of AST nodes that will be cre-
ated as symbols are as follows: (1). Control flows ele-
ments, like if/while/do words, which are documented
as node kinds. (2). nodes of class example constructions
and technique incantation that are reported without
parenthetical as the titles of types or techniques (3).
proclamation elements, including technique/catego-
ries/ declarations, whose titles are marked. Other AST
nodes are deleted because they can have an impact on
the significance of the AST nodes that have been cho-
sen. Figure 6 depicts the chosen AST nodes. To convert
the source code into AST, researchers use the Python
package "java lang".

3.3 MAPPING TOKENS

Textual elements are generated for each file when-
ever the source code is translated. However, using them
immediately as inputs into a DL framework is problem-
atic. As a result, the text characters must be converted
to an integers vector. The spectrum of one to the entire
amount of characters is used to build the mapping be-
tween text characters and numbers. As a result, every
word will be represented by a single number. To trans-
form all textual characters into a series of numbers, the
"Keras Text tokenization utility" module is used. The size
of all integer vectors must be consistent. The length that
has been determined would be chosen. As a result, if the
vector size is less than the specified value, it is filled in

with 0. Furthermore, if the vector size exceeds the speci-
fied value, the excess size will be eliminated.

3.4 CLASS IMbALANCE HANDLING

Majority of the cases, the information is unbalanced
because the amount of damaged documents is lesser
than the number of good documents. As a conse-
quence, the forecasting outcomes would be labeled
as clear because cleaned records make up most of the
data. For handling class imbalance correlation cluster-
ing is performed here. Traditional ways of removing
data imbalance include logistic regression, up-sam-
pling, down-sampling, and over-sampling [17]. This ap-
proach is less accurate than PCA-based data imbalance
elimination. PCA may be used to reduce a high-dimen-
sional point to a lower-dimensional point, and then fil-
ters can be used to rank the relevance of the chosen
features. The variance-covariance structure of a group
of variables is described by principal component analy-
sis (PCA) in terms of fewer new variables that are linear
combinations of the original variables. The additional
variables may be readily produced via eigenanalysis
of the original data's covariance matrix or correlation
matrix. It is advisable to do PCA on the sample correla-
tion matrix if the variables are assessed on scales with
widely differing ranges or if the units of measurement
are not comparable. Finally, the PCA provides a new
PC transform that is constructed by utilizing the data
correlation matrix to select the best PCs among all of
the features. Therefore, after encoding of data, PCA is
applied to them to handle their class imbalance issue.

3.5 RELEvANT FEATURE ExTRACTION

The Data attributes are fed into this algorithm and
relevant features are extracted. Finding the character-
istics of features as well as selecting meaningful and
non-redundant features from such information is a
big challenge. Various evaluation metrics are used in
feature selection features to find the optimal feature
subset, yet they do not search for feature structures.
Clustering is a more effective method that recognizes
the structure of features and eliminates noisy or un-
necessary information. In this paper, we have applied
correlation clustering is used.

To uncover the structure of the database as well as
build the clusters, the K-means clustering algorithm is
utilized. As initial cluster centers, choose 'k' features at
random from the original dataset D. The cluster is given
to the most comparable item based on the distance be-
tween both the features and the cluster mean. Within
every cluster, a new mean number is evaluated. The
procedure was repeated till there was no further re-
distribution of features from any of the clusters. A user
must define the number of clusters in advance when
using the k-means clustering algorithm. In this work,
two clusters are created on the whole dataset. The Eu-
clidean distance function is used to determine the simi-
larity between the two features, as indicated in Eq (1):

957Volume 13, Number 10, 2022

(1)

Where, A= [a1, a2] and B= [b1, b2] are testing feature
vectors.

After the clusters have been constructed, the features
that do not fit into any of them are removed. The next
step is to clear each cluster of duplicated features. This
correlation filtering technique is employed to do this. Eq.
(1) is used to compute the correlation between features.
Pearson's linear correlation coefficient is defined for fea-
tures P having values p as well as classes Q with values q,
where P and Q are viewed as random variables:

(2)

Algorithm 1: Correlation Clustering of Testing Metrics

Input: Data Attributes, D {d1, d2, d3,….dn}
No. of clusters, n
Output: Optimal Features, F
Procedure
1: Begin
2: Initialize, k cluster centers
3: Calculate Euclidian Distance between D and k
 (Eq. 1)
4: Join closet cluster based on similarity
5: Compute new mean
6: Repeat steps 3 to 5 until the Convergence
 criteria met
7: Remove irrelevant features in D
8: For i:1 to i<=k
9: Calculate correlation (Eq. 2)
10: Select best features (F)
11: End
12: Return F
End

3.6 FINE-TUNED CNN CLASSIFICATION

In the fine-tuned model, the output from the last
convolution block of ResNet-50 is cascaded with
denseconv layers with parametric ReLU activation and
batch normalization layers. This network is retrained
and features were extracted from the proposed fine-
tuned model and further flattened to classify the data.
Fine-tuning was performed by applying a parametric
ReLU activation layer and using a hybrid loss function.
This loss function is designed to solve the problem of
class imbalance. The loss function is described below:

(3)

Where, J = Number of loss functions, I = Number of
layers in the model and Lij = Focal loss

For fine-tuned model, parametric ReLU is adopted
because it fine-tunes the learning parameters on its
learning rate without any vanishing gradient problem.

4. RESULT ANALYSIS

4.1 DATASET DESCRIPTION

From the PROMISE database, seven open-source ini-
tiatives built in Java were selected. It's a publicly avail-
able database that's utilized to forecast software flaws.
These initiatives include an XML converter, a textual
web search engine, and data communication drivers,
among others. Table 1 contains information on every
initiative, such as its title, two releases, overall docu-
ments, and fault percentage. Every initiative has two
deployments, the first of which is utilized for training
the framework and the second of which is employed to
evaluate it. The initiatives in PROMISE include standard
characteristics for every Java file. Table 2 lists all of the
testing metrics.

Table 1. Description of the PROMISE dataset

Project Releases Total files

camel 1.0, 1.2, 1.4, 1.6 2784

Jedit 3.2, 4.0, 4.1, 4.2, 4.3 1749

Poi 1.5, 2.0, 2.5, 3.0 1378

Synapse 1.1, 1.2 478

Xalan 2.4, 2.5, 2.6, 2.7 3320

Xerces 1.2, 1.3 893

Table 2. Testing Metrics of PROMISE Dataset

Testing Metrics

Weighted methods per class Lines of code

Depth of inheritance Response of class

No. Of children Data access metric

Coupling between object classes Measure of aggregation

The measure of function abstraction Afferent coupling

Lack of cohesion in methods Efferent coupling

Cohesion among methods of a class Inheritance coupling

Lack of cohesion in methods Average method complexity

No, of public methods Coupling between methods

4.2 EvALUATION METRICS

The confusion matrix is utilized to demonstrate the
performances of proposed frameworks. It incorporates
the forecasting findings of the framework. It also pro-
duces the following groups of outcomes: True Positive
(TP), False Positive (FP), True Negative (TN), and False
Negative (FN) (FN). Where TP represents the number
of anticipated faulty codes which are already faulty, TN
represents the number of anticipated non-faulty codes
which are already non-faulty, FP represents the amount
of anticipated faulty documents that are correct, and
FN represents the amount of anticipated correct docu-
ments that are faulty. The used Metrics in this paper are
discussed below:

(4)

958 International Journal of Electrical and Computer Engineering Systems

(5)

(6)

(7)

4. 3 IMPLEMENTATION DETAILS

This section presents the training details of the pro-
posed software testing model for fault prediction. For
the experiment, we used python for training and test-
ing purposes. For this, the entire dataset is divided into
a 70:30 ratio. The minimum batch size for the training
autoencoder was taken to be 128. The maximum ep-
och was taken to be 100. Notably, these model utilizes
approx. 10GB RAM on high-performance GPU comput-
ing. Therefore, this model was trained on computing
service provided by google i.e., google colab.

4. 4 RESULT ANALYSIS

Fig-3(a)-3(f) shows the model accuracy for six datas-
ets Camel Dataset, Jedit dataset, Poi dataset, Synapse
dataset, Xerces dataset, and Xalan dataset. The accu-
racy is given for training and validation sets. The ep-
och varied from 0-100 at the x-axis. Because for every
graph the convergence rate is for less than 100 epochs.

Fig-3(a) shows the training and validation accuracy for
Camel Dataset. The graph converges at initial epochs
nearly in between 20-40. The average accuracy for
Camel dataset is 95 %. Fig-3(b) shows the training vs
validation accuracy over the number of epochs varied
from 0-100 for JEDIT dataset. The accuracy varied from
0-20 epochs and then start to converge after 20 ep-
ochs. The average accuracy for JEDIT dataset is 97%. For
the Synapse dataset, Fig-3(c) demonstrates the train-
ing versus validation accuracy across a range of epochs
from 0-100. The accuracy ranged from 0 to 60 epochs,
and after 60 epochs, it began to converge. The Synapse
dataset has an average accuracy of 88 percent.Fig-3(d)
shows the training vs validation accuracy for the Poi da-
taset over a range of epochs from 0-100. The accuracy
ranged from 0 to 20 epochs, and it started to converge
after 20 epochs. The Poi dataset has a 79 percent ac-
curacy rate. The training vs validation accuracy over a
range of epochs from 0-100 is shown in Fig-3(e) for the
Xalan dataset. The precision fluctuated from 0 to 20 ep-
ochs, and it started to converge before 20 epochs. The
accuracy of the Xalan dataset is 77 percent on average.
Fig-3(f) shows the training vs validation accuracy for
the Xerces dataset across a range of epochs from 0-100.
The accuracy fluctuated from 0 to 20 epochs, with the
accuracy beginning to converge after 20 epochs. The
Xerces dataset is 95.4 percent accurate on average.

(a)

(c)

(b)

(d)

959Volume 13, Number 10, 2022

(e) (f)
Fig. 3. Training and Validation Accuracy over Given Datasets

Table 3 shows the Accuracy, Precision, Recall, and F–
Measure comparison of all the datasets. For camel da-
taset Accuracy, Precision, Recall, and F–Measure is 95
%. For Jedit dataset accuracy is 97 %, precision is 96.7
%, Recall is 96.9% and F-Measure is 97 %. For Poi data-
set accuracy is 82 %, precision is 80 %, Recall is 82 %
and F-Measure is 79 %. For Synapse dataset accuracy is
82 %, precision is 77 %, Recall is 81% and F-Measure is
78 %. For Xalan dataset accuracy is 80 %, precision and
Recall are 79 % and F-Measure is 77 %. For Xerces data-
set accuracy is 96 %, precision is 95.6 %, Recall is 96 %
and F-Measure is 95.4 %. Overall for all dataset average
accuracy is 88.6 %, average precision is 85.5 %, average
Recall is 88.3 % and average F-Measure is 86.9 %. The
maximum accuracy I attained with the Jedit dataset i.e.
97 %. Maximum Precision is attained by Jedit i.e.96.7
%. Maximum recall and F-measure are also maximum
for Jedit Dataset around 96.9 % and 97 % respectively.
Table 4 shows the comparison of different techniques
discussed in [15] like RF, DBN, CNN, RNN, and BCIL
along with our proposed work. It is clear from the table
that our proposed method surpasses all the techniques
given in [15] for all six datasets used in our study. For
camel dataset, our evaluated f-measure is 95 %, which
is 55.4 % higher than the lowest F-measure attained
in RF[15]. Similarly, for Jedit dataset F-measure is 97%
which is 49% higher than DBN[15] technique. For poi
dataset, our proposed work is 13% better than the RF
dataset. For Xalan F-measure is 77% and for Xerces it is
95.4 which is 77% better than the RF[15].

Accuracy Precision Recall F_measure

Camel 0.95 0.95 0.95 0.95

Jedit 0.97 0.967 0.969 0.97

Poi 0.82 0.80 0.82 0.79

Synapse 0.82 0.77 0.81 0.78

xalan 0.80 0.79 0.79 0.77

xerces 0.96 0.95.6 0.96 0.954

Average 0.886 0.855 0.883 0.869

Table 3. Performance of Proposed Model

Table 4. F-measure of Proposed
and State-of-art models

Project RF
[15]

DbN
[15]

CNN
[15]

RNN
[15]

CbIL
[15]

SMO
[18] Ours

Camel 0.396 0.335 0.505 0.515 0.935 0.427 0.95

Jedit 0.550 0.480 0.631 0.595 0.850 0.734 0.97

Poi 0.669 0.780 0.778 0.722 0.852 0.390 0.79

Synapse 0.414 0.503 0.512 0.487 0.889 0.617 0.88

xalan 0.638 0.681 0.676 0.606 0.716 0.432 0.77

xerces 0.185 0.261 0.311 0.262 0.951 0.612 0.954

Average 0.475 0.506 0.5688 0.5311 0.865 0.535 0.885

5. CONCLUSION

Software testing is the most critical element in the
development life cycle since software systems are con-
tinually developing. Deep learning has subsequently
made significant progress in automatically extracting
semantic characteristics and improving software de-
fects predictions performance and accuracy. This study
presents the Correlation Clustering fine-tuned CNN
(CCFT-CNN) model. It aids in improving code review
and software testing by predicting the parts of source
code that are faulty. The CCFT-CNN model is tested on
the Camel Dataset, Jedit Dataset, Poi Dataset, Synapse
Dataset, Xerces Dataset, and Xalan Dataset from the
PROMISE dataset. The findings show that CCFT-CNN
outperforms the existing models of Random Forest,
DBN, CNN, RNN, and CBIL in terms of performance.
The proposed CCFT-CNN outperforms the RF model,
which has the lowest F-Measure in the baseline model,
by 41%. For the DBN, CNN, and RNN models, the CCFT-
CNN improves by 37.9%, 34.7 percent, and 35.4 per-
cent, respectively. CBIL, on the other hand, has the best
performance in the baseline model, and its comparison
improves the outcome by 2%. Quality measures such as
defect density, defect kinds, and defect severity should
be included in the future. CCFT-CNN may also be used
on a variety of open-source projects developed in a va-

960 International Journal of Electrical and Computer Engineering Systems

riety of programming languages. Furthermore, to im-
prove the quality of public datasets, new data prepara-
tion methods should be included.

6. REFERENCES

[1] F. Salfner, M. Lenk, M. Malek, “A survey of online
failure prediction methods”, ACM Computing Sur-
veys, Vol. 42, No. 3, 2010.

[2] N. S. Chauhan and A. Saxena, “A green software
development life cycle for cloud computing”, IT
Professional, Vol. 15, No. 1, 2013, pp. 28-34.

[3] J. Wang et al. "Robot: robustness-oriented test-
ing for deep learning systems”, Proceedings of the
IEEE/ACM 43rd International Conference on Soft-
ware Engineering, Madrid, Spain, 22-30 May 2021.

[4] J. W. Duran and S. C. Ntafos, ‘‘An evaluation of ran-
dom testing,’’ IEEE Transactions on Software Engi-
neering, Vol. SE-10, No. 4, 1984, pp. 438-444.

[5] S. Anand et al. ‘‘An orchestrated survey of method-
ologies for automated software test case genera-
tion”, Journal of Systems and Software, Vol. 86, No.
8, 2013, pp. 1978-2001.

[6] H. B. Braiek, F. Khomh, ‘‘On testing machine learn-
ing programs”, arXiv:1812.02257, 2018.

[7] S. Abrecht et al. "Testing deep learning-based
visual perception for automated driving”, ACM
Transactions on Cyber-Physical Systems, Vol. 5,
No. 4, 2021, pp. 1-28.

[8] S. Gerasimou et al. "Importance-driven deep
learning system testing”, Proceedings of the IEEE/
ACM 42nd International Conference on Software
Engineering, Seoul, Korea, 5-11 October 2020.

[9] J. Wang, et al. "Robot: robustness-oriented test-
ing for deep learning systems Proceedings of the
IEEE/ACM 43rd International Conference on Soft-
ware Engineering, Madrid, Spain, 22-30 May 2021.

[10] Q. Guo et al. "Audee: Automated testing for deep
learning frameworks”, Proceedings of the 35th
IEEE/ACM International Conference on Automat-

ed Software Engineering, Melbourne, VIC, Austra-

lia, 21-25 September 2020.

[11] L. Ma et al. "Deepmutation: Mutation testing of

deep learning systems”, Proceedings of the IEEE

29th International Symposium on Software Reli-

ability Engineering, Memphis, TN, USA, 15-18 Oc-

tober 2018.

[12] L. Ma et al. "Deepgauge: Multi-granularity testing

criteria for deep learning systems”, Proceedings

of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, September

2018, pp. 120-131.

[13] X. Du et al. "Deepcruiser: Automated guided

testing for stateful deep learning systems”, arX-

iv:1812.05339, 2018.

[14] J. Wang et al. "Adversarial sample detection for

deep neural network through model mutation

testing”, Proceedings of the IEEE/ACM 41st Interna-

tional Conference on Software Engineering, Mon-

treal, QC, Canada, 25-31 May 2019.

[15] A. B. Farid, E. M. Fathy, A. S. Eldin, L. A. Abd-Elmegid,

“Software defect prediction using hybrid model

(CBIL) of convolutional neural network (CNN) and

bidirectional long short-term memory (Bi-LSTM)”,

PeerJ Computer Science, Vol. 7, 2021, pp. 1-22.

[16] Y. Fan, X. Xia, D. Lo, A. E. Hassan, Y. Wang, S. Li, “A

Differential Testing Approach for Evaluating Ab-

stract Syntax Tree Mapping Algorithms”, Proceed-

ings of the IEEE/ACM 43rd International Confer-

ence on Software Engineering, Madrid, Spain, 22-

30 May 2021., pp. 1174-1185.

[17] S. Goyal, “Handling Class-Imbalance with KNN

(Neighbourhood) Under-Sampling for Software

Defect Prediction”, Artificial Intelligence Review

2021 553, Vol. 55, No. 3, 2021, pp. 2023-2064.

[18] Z. Sun, J. Zhang, H. Sun, X. Zhu, “Collaborative filter-

ing based recommendation of sampling methods

for software defect prediction”, Applied Soft Com-

puting, Vol. 90, 2020, p. 106163.

