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Summary 

Great importance is had in understanding the current situation of maritime transport and 

making predictions about its future. Maritime transport is an essential part of transportation, 

and correctly predicting installed main engine power has great significance in maritime 

transport with regard to fuel consumption and the generation of emissions. Nonlinear regression 

is a method with great potential in making predictions, as it allows for more realistic models to 

be developed using multiple variables. Vessels' dimensions of carrying capacity, gross tonnage, 

length, and breadth significantly impact the required main engine power. This article will 

calculate and estimate the installed main engine power for bulk carriers through nonlinear 

regression using data for the as yet highest number of bulk carriers (n = 9,174 ships) and 

compare the results with the studies in the literature. The developed model has an accuracy of 

93.2% for six different bulk carrier types (Small, Handysize, Handymax, Panamax, Capesize, 

and Large Capesize). In addition, the study calculates the emissions these ships produce (NOx, 

SO2, CO2, HC, PM), estimating and demonstrating a nonlinear linear regression model for these 

ships' emission amounts. The performed analyses have found the main engine power required 

per unit of load to decrease as ship size increases. However, these analyses also show the 

emissions generated per unit of load to decrease as size increases, with Large Capesize vessels 

being found to have the lowest fuel consumption and emission generation per unit of load. 

Keywords: bulk carrier; engine power; nonlinear regression; maritime transport; emission 

1. Introduction 

Calculating and estimating a ship’s main engine power is essential in terms of economics, 

as well as for comprehensively calculating emissions and their various sub-components. The 

use of data in the literature for improving ship emission calculations significantly developed 

with Eyring et al.'s two-part study [1, 2] that used 1950-2000 data to make short-term (until 

2020) and long-term (until 2050) predictions. They estimated carbon emissions based on a 

technology-driven model and a business-as-usual model for an all-diesel fleet. In addition, 

Kalajdzic [3] investigated bulk carriers' power reduction concerns in light of the new energy 

efficiency rules. 

Heating, ventilation, and air conditioning systems are significant power consumers on 

ships that run at a constant load, and using a variable speed compressor in its place has 

significantly reduced emissions [4]. Başhan et al. [5] compared emissions versus fuel types for 

diesel generators used in crane operations and found them to have roughly 40% lower costs 
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compared to Marine Gas Oil by calculating NOx, SO2, CO2, PM, and HC emissions. Engine 

power probabilities are used to calculate NOx emissions for bulk carriers, and the certified 

values are shown to require refinement by using weighted factors; doing this revealed 7% lower 

emissions at sea and 32% lower at port [6]. The methods have also been shown to overestimate 

SO2 emissions. The recommendation is that onboard controls are more effective at reducing 

SO2 emissions due to the variable sulphur content found in marine fuels [7]. Another issue 

regarding emission reduction is having ship designs satisfy current energy efficiency 

requirements [8]. 

Tasdemir et al. [9] used artificial neural networks (ANN) and a fuzzy expert system to 

predict performance and emissions for a gasoline engine. Their results showed ANN and fuzzy 

expert systems to be reliable for practical designs and experimental work in the automotive and 

engineering fields. Özener et al. [10] investigated the ANN approach for estimating engine 

emissions and performance of a turbocharged engine, showing both ANN to be effective and 

neural network performance to be increasable with the use of additional relevant input data. 

Abramowski [11] used neural networks to apply a seven-variable solution vector for 

optimizing cargo ship design parameters. This parametric model is particularly suitable for 

determining effective ship power due to the model’s simplicity. Gurgen et al. [12] used ANNs 

to estimate chemical tanker characteristics in the preliminary ship design stage, revealing ANNs 

to have prediction levels that significantly match the sample data for chemical tankers. 

Meanwhile, Jeon et al. [13] used ANN to predict ship fuel consumption using the vast volume 

of data collected from smart ships to streamline a model for predicting fuel consumption; this 

proved to be more accurate than the polynomial regressions, thus supporting vector machines. 

De Winter et al. [14] showed random forest regressors to provide better estimations than the 

empirical design equations, therefore demonstrating a practical application for naval architects. 

Okumuş et al. [15] studied main and auxiliary ship engine power using regression-based 

machine learning algorithms to increase the accuracy of ship engine power estimation and allow 

for the construction of more environmentally friendly ships. Due to their importance in 

providing data for fuel consumption and exhaust emissions, the Gaussian mixture model and 

deep neural network have also been studied over large vessels to predict main engine power 

[16]. 

Sahin et al. [17] set out to develop an ANN approach to forecast the Baltic Dry Index, a 

shipping sector indicator of global economic activity. Using Baltic Dry Index data from 2010-

2016, they developed three ANN models: one involving weekly data from the Baltic Dry Index, 

one on weekly data regarding crude oil prices, and a combination of the two. Next, Cong et al. 

[18] looked at multivariate nonlinear regression to optimize emissions for a dual-fuel marine 

engine and showed this method to be applicable for optimizing engine parameters regarding 

various variables. Yang et al. [19] also used an ANN model to predict efficiency and emissions 

in a gasoline engine. Their results emphasized how one ANN model can take the place of 

several other traditional design testing methods to predict emissions and efficiency more 

accurately and cost-effectively. 

Adamowski et al. [20] compared multiple linear and nonlinear regression with ANN, 

wavelet ANN, and autoregressive integrated moving average methods to predict water demands 

in Montreal. They found the wavelet ANN to have the best accuracy at predicting water 

demands based on daily data from 2001-2009 involving precipitation, temperature, and water 

demand. Adamowski et al. concluded this model to be particularly effective for estimates, 

which leads one to wonder about its effectiveness in other areas and fields. Gunes et al.'s [21] 

study also aimed to conduct nonlinear regression and ANN analyses to run estimates of tanker 

main engine power. Their regression analyses revealed one model to provide the best estimation 

for this, with the ANN analysis further improving its estimation strength. 
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One prolific set of studies in the literature involves Yildiz [22] developing a new model 

to predict the residual resistance of a trimaran vessel using an ANN and Cepowski's [23] 

development of a transfer function for bulk carriers to forecast added wave resistance from 

irregular head waves using an ANN with several inputs. Cepowski [24] then went on to use 

simple linear regression and multivariate linear regression analyses to approximate the 

preliminary parametric design of new container ships and the required main engine power based 

on data regarding the length between perpendiculars and the total number of containers to be 

carried for ships constructed between 2005-2015. Cepowski [25] used more comprehensive 

data for ships built between 2000-2018. He again used regression analyses to estimate total 

engine power, now using ship deadweight and TEU together with ship velocity for greater 

accuracy. Previous regressions [26] were found to be only accurate for medium-size ships or 

average speeds in the case of MAN Diesel’s nominal engine power diagrams. The new 

estimator was accurate for contemporary ships, applicable to preliminary ship design, and able 

to help develop ship design theory. Cepowski [27] also used an ANN possessing a 6-neuron 

input (each with hidden layers) and a single-neuron output to again forecast ship added-

resistance in normal head waves, this time involving the design elements of ship length, breadth, 

draught, and Froude number. Cepowski and Chorab [28] further studied ANNs for estimating 

engine power and fuel consumption of bulk carrier, tanker, and container ships’ engines to 

update propulsion system design equations, with the inputs for the ANN being deadweight, 

TEU capacity, and ship speed. Meanwhile, Xhaferaj [29] compared the accuracy of a computer 

algorithm built to forecast ship resistance and power regarding standard hulls. 

The present study looks at the most comprehensive analyses regarding calculations and 

estimations of ships' installed main engine power and performed nonlinear regressions to cover 

all ship types and sizes instead of just certain ones. Bejan et al.'s [30] study had previously 

presented the relationship between size (Dead Weight Ton, DWT) and main engine power by 

using a power law regression model for all ship types and sizes. This current study estimates 

main engine power and emission amount by considering not only DWT, but also many other 

main factors, including GT, L, B, T, an also computes emission amounts. 

2. Materials and Methods 

2.1 Database 

This study uses the Marine Traffic Database [31], as it offers the most comprehensive 

data on ships, which is needed for conducting the analyses. The database contains over 80 

technical specifications (e.g., type, shipbuilder, year built, draught, depth, DWT, Gross Tonnage 

[GT], engine power) of around 1 million ships and thus can be considered an up-to-date 

document regarding the world fleet. The database also has 75 subcategories for ships, with the 

Marine Traffic webpage showing 11,351 active bulk carriers, of which this paper uses 9,174 

(80%) in the analysis, with bulk carriers categorized under six groups (i.e., Small, Handysize, 

Handymax, Panamax, Capesize, and Large Capesize) for making detailed analyses. The 

analyses only consider the ships with active statuses, ignoring those with under construction, 

cancelled order, decommissioned, lost, laid up, or under repair statuses. In addition, Very Large 

Bulk Carriers (VLBCs), these have been excluded from the analyses due to their small number. 

Table 1 provides scantling information regarding the bulk carrier types. 
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Table 1 Bulk carrier types [32,33] 

Bulk carrier types Dimensions 
Ship size 

(scantling) 

Small 

Overall ship length up to 
approx. 115 m 

Up to 10,000 

DWT 

Handysize 

Scantling draught up to 
approx. 10 m 

10,000-35,000 

DWT 

Handymax 

Overall ship length (re: port facilities in Japan) 
max. 190 m 

35,000-55,000 

DWT 

Panamax 

Ship breadth equal to 

Overall ship length up to (re: port facilities) 

Overall ship length up to (re: canal lock chamber) 

Passing ship draught up to 

max.: 

32.2 / 32.3 m 

225 m 

294.13 m 

12.04 m 

55,000-80,000 

DWT 

Capesize 

Breadth 

approx. 43-45 m 

for 90,000-180,000 

DWT 

80,000-200,000 

DWT 

Large Capesize 

Breadth 
above 50 m 

200,000-300,000 

DWT 

VLBC (Very Large Bulk Carrier) 

Overall ship length 
above 330 m 

More than 

300,000 DWT 

Figure 1 shows the number of bulk carriers used in this analysis based on type. While 

Panamax is the most common type with 3,035 ships, the second most common is Capesize with 

2,393. Handymax and Handysize types respectively number 1,651 and 1,647, while Large 

Capesize and Small ships have the lowest numbers with 246 and 158, respectively. 

 

Fig. 1 Number of bulk carriers 

Figure 2 lists the number of bulk carriers by ship’s flag. Panama ranks first with 2,206 

ships. The reason is the taxation advantage presented by ships bearing the Panama flag. The 

Marshall Islands rank second with 1,321 ships, and Liberia is third with 1,004. 
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Fig. 2 Flags of the bulk carriers 

Figure 3 shows the bulk carriers’ main engine RPM values. While ships operating in the 

90-99 RPM range rank first with 1,703 ships, ships in the 120-129 RPM range rank second with 

1,620. Third place sees 1,145 ships operating in the 100-109 RPM range, and fourth has 1,003 

ships operating in the 110-119 RPM range. Fifth place has 835 ships operating in the 80-89 

RPM range, and sixth place has 440 ships operating in the 130-139 RPM range. Ships operating 

in other RPM ranges correspond to 9.4% of all ships and have RPM values of less than 80 or 

greater than 140. RPM data directly affects a ship's economic navigation, slow steaming status, 

and produced power and therefore the amount of fuel it consumes. 

 

Fig. 3 RPM of the bulk carriers’ main engine 

Figure 4 shows the average speed of bulk carriers while underway. The ships can be seen 

to mainly operate between 7-13 knots, with most ships operating at a speed of 11 knots, 

followed by 12 and then 10 knots. The percentage of bulk carriers operating at speeds under 7 

knots or over 13 knots is 11%. 
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Fig. 4 Average speed of the bulk carriers 

Table 2 contains the technical characteristics of the 9,174 bulk carriers used in this study. 

These characteristics include average GT, DWT, year of construction, breadth, installed engine 

power, and draught for each type of ship. This situation reveals the current state of the bulk 

carrier market and draws a projection of fleets' need to renovate their ships and what size to 

build new ships. 

Table 2 Summary of bulk carriers’ average technical information 

 
Small Handysize Handymax Panamax Capesize 

Large 

Capesize 

Ave. GT 3,458.83 17,885.19 26,476.98 35,809.98 66,205.76 106,364.03 

Ave. DWT 5,379.71 28,345.62 44,178.94 64,521.15 125,809.97 206,992.89 

Ave. Year Built 2006 2006 2007 2010 2011 2012 

Ave. Breadth 15.28 26.77 30.63 32.30 39.41 49.96 

Ave. Engine Power 1,780.29 6,084.15 7,699.34 9,114.20 13,684.95 17,193.03 

Ave. Draught 5.14 7.87 8.89 10.02 12.27 13.63 

 

2.2 Nonlinear Regression 

Nonlinear regression examines data fitted to a mathematical model given as a function. 

Simple linear regression establishes a linear relationship between two variables, whereas 

nonlinear regression establishes nonlinear correlations [34]. Cakici and Aydin used a nonlinear 

regression method for ship design and prediction [35]. The model's objective is to minimize the 

residual sum of squares (RSS), a measure of the variance between the observations of Y and 

the nonlinear function used to forecast Y. A nonlinear regression equation has the following 

general form: 

Y(x) = f (xi, (c1 + c2 + …, + cn) + (a1 + a2 + …, + an))    (1) 

where Y is the estimate of the dependent variable (engine power), and Equation (1) has the 

coefficients c0, c1, …, cn as regression weight coefficients showing how the independent 

variables affect the dependent variable. 

Ri = Yi – f(xi, (c1 + c2 + …, + cn) + (a1 + a2 + …, + an))    (2) 

Equation (2) shows R as the residual value, which is the difference between the actual 

value and the mean value that the model predicts for that actual value. 

In Equation (2), all variables should be written as a matrix to calculate the regression 

coefficients. 
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Equation (3) shows the D matrix cannot be inverted because it is not square. To invert it, 

it is turned into a square matrix by adding the transpose of the D matrix (DT) to both sides as: 

DTΔA = DTR         (4) 

where ∆A is the coefficient from the nonlinear regression, which is calculated as: 

ΔA = (DT ΔD)-1DTR        (5) 

Equation (4) allows the regression coefficients (c1 + c2 + …, + cn) and power coefficients 

(a1 + a2 + …, + an) to be calculated for the minimum RSS and high coefficient of determination 

(R2). The least-squares method (LSM) is used to calculate the best algorithm of the RSS for the 

nonlinear regression. When finding the minimum RSS using LSM, all coefficients are 

calculated for this result. LSM asserts the curve that best fits a given set of observations to have 

the minimum RSS from the provided data points as shown in Equation (6). 

i

2n

i xi 1

R

RSS y f

            (6) 

To find the best model, the study analyses the parameters in combination with DWT, 

Length, Draught, Breadth, and Gross Tonnage to find the best estimate of ship power. Table 3 

shows the Pearson correlation for the ship particulars, with draught having the smallest 

correlation compared to all other parameters and as such has been removed from the models. 

Table 3 Pearson correlation for the ship's particular 

Parameter Engine Power DWT Length Draught Breadth Gross Tonnage 

Engine Power 1 0.95 0.941 0.554 0.93 0.954 

DWT 0.95 1 0.958 0.559 0.943 0.998 

Length 0.941 0.958 1 0.568 0.934 0.96 

Draught 0.554 0.559 0.568 1 0.546 0.561 

Breadth 0.93 0.943 0.934 0.546 1 0.953 

Gross Tonnage 0.954 0.998 0.96 0.561 0.953 1 

 

To calculate the nonlinear problem, the study uses the Levenberg-Marquardt (L-M) 

algorithm [36], which combines the Gauss-Newton and steepest descent methods. The 

technique is effective in most situations and has become the standard for nonlinear least square 

routines. 

2.3 Initial Values and Normalization 

Choosing meaningful initial values (c1 or a1) is the essential part of the L-M algorithm, 

as the results are affected by the initial selected values. For this reason, a new algorithm was 

developed for identifying significant initial values. First, a power law fitting of the y-value was 

performed against each x-variable, using this on the fitted slope to provide the initial coefficient 
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estimate for each x-variable. This method of defining the initial coefficient gives reasonable 

values for calculating all parameters in the nonlinear regression. 

Several methods exist for normalizing data. In our analysis, all values are divided by their 

maximum value, thus converting the value from 0 to 1 in order to find a reasonable result from 

the analysis. Table 4 shows the normalization of the parameters and the derivative parameters. 

For weighting, the variance ~ yfit method is used due to the accuracy of current data trends. 

Table 4 Normalization of the parameters 

New parameter Calculation Maximum values 

DWT* DWT / DWTmax 211182 

GT* GT / GTmax 109716 

L* L / Lmax 312 

B* B / Bmax 50.5 

 

 

2.4 Emissions 

Emission factors are required to calculate emissions. Table 5 shows the types of emissions 

generated in bulk carriers based on energy consumed (kWh). ENTEC [37] calculated the 

values in the table for 31,000 ships worldwide. 

Table 5 Emission factors for “at sea” operations [g/kWh] regarding bulk carriers in 2020 [37] 

NOX SO2 CO2 HC PM 

15.3 10.6 627 0.59 1.61 

 

Equation (7) shows the calculation of annual emissions as follows: 

E = P×EPP×YWH×10-6         (7) 

where E is emissions (tons), P is installed engine power (kW), EPP is emissions per unit of 

engine power (g/kWh), and YWH is yearly working hours (h). 

3. Results and Discussion 

Equation (8) defines the nonlinear model for estimating engine power and emissions for 

all sizes of bulk carrier types. 

3 41 2 aa a*

1 2 3 4

a* * *c  c  cDWT GT L B c          (8) 

where β correlation function, ci, and ai are the respective regression and power 

coefficients. The individual correlation for engine power was analyzed with a single correlation. 

Engine power’s relation with DWT / DWTmax is shown in Figure 5a, with GT / GTmax in Figure 

5b, with L / Lmax in Figure 5c, and with B / Bmax in Figure 5d. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5 Correlation between engine power and DWT / DWTmax (a), GT / GTmax (b), L / Lmax (c), and B / Bmax (d). 

The initial coefficient of the parameters shown in Figures 5a, 5b, 5c, and 5d are listed in 

Table 6. These initial values provided high correlation results in the nonlinear regression, with 

better nonlinear regression results depending on reasonable initial values. 

Table 6 Initial coefficients of the parameter 

Parameter ci ai R2 

DWT 18,808 0.592 0.918 

GT 19,171 0.65 0.925 

L 19,788 1.909 0.897 

B 21,092 1.943 0.866 

 

Tables 7 and 8 show the results of performing the nonlinear regression analysis over the 

model created according to Equation (8) covering all bulk carrier types (R2 = 0.932). 

Table 7 Power coefficients of engine power emission factors based on Equation (8). 

a1 a2 a3 a4 

0.445 0.635 2.018 1.880 
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After finding power coefficients for the installed main engine power and emissions 

(Table 7) using Equation (8), regression coefficients for engine power were also found using 

nonlinear regression. Table 8 additionally shows the regression coefficients for the emission 

factors. All the coefficient in Table 7 and Table 8 can be used in Equation (8) to estimate main 

engine power and the amount of the emissions (NOx, SO2, CO2, HC and PM). 

Table 8 Regression coefficients for engine power and emission factor based on Equation 8. 

Correlation functions (β) c1 c2 c3 c4 

Engine power 703 16,004 1,011 1,271 

NOX 1.08×104 2.45×105 1.5×104 1.94×104 

SO2 7.45×103 1.70×105 1.07×104 1.35×104 

CO2 4.41×105 1.00×107 6.34×105 7.97×105 

HC 4.15×102 9.44×103 5.96×102 7.50×102 

PM 1.13×103 2.58×104 1.63×103 2.05×103 

 

The difference between the actual and estimated values shows the success of the 

nonlinear model. The present model also has very high prediction. As seen in Figure 6, the 

difference between the actual and estimated values is quite low. Error rates for 6,519 ships (71% 

of all ships) are less than 10% and between 10%-20% for 2,021 ships (22% of all ships). This 

model’s estimations successfully estimate engine power using the ship parameters DWT, GT, 

L, and B. 

 

Fig. 6 The difference between the real engine power and the estimated values. 

Table 9 shows the total emission amounts in bulk carriers as calculated using Tables 7 

and 8. When examining the total emission amounts, the ships that cause the most emissions are 

seen to be Capesize-type ships, producing 37% of the total emissions from bulk carriers. After 

Capesize ships, Panamax ships cause the second highest total emissions at 32%, with 

Handymax-type ships in third at 14%, Handysize ships in fourth at 11%, and Large Capesize 

ships in fifth at 5%. The ship type that causes the least emissions overall is the small ship type 

at 0.1%. 
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Table 9 Total amount of annual emissions [tons] for the bulk carrier types 

Bulk Carrier Type Total NOX Total SO2 Total CO2 Total HC Total PM 

Small 0.025×106 0.017×106 1.05×106 0.989×103 2×103 

Handysize 0.92 ×106 0.636×106 37×106 0.035×106 96×103 

Handymax 1.16×106 0.807×106 47×106 0.044×106 122×103 

Panamax 2.5×106 1.7×106 105×106 0.099×106 271×103 

Capesize 3.0×106 2.08×106 123×106 0.115×106 316×103 

Large Capesize 0.388×106 268×103 15×106 0.014×106 40×103 

 

Table 10 shows bulk carriers’ ratio of total emissions to load carried. While the ships with 

the lowest emissions per unit of load (DWT) are Small, the ships with the most emissions per 

unit load are the Large Capesize ships. Ship size increases are closely related to the energy 

demand per load unit, as studies have shown increased vehicle or animal size to decrease the 

energy demand per unit of load carried [27], [36]. Therefore, as the power consumed per unit 

of load decreases, the amount of emissions generated per unit of engine power also decreases. 

Table 10 Emissions per load (DWT) for the bulk carrier type 

Bulk Carrier Type ∑NOX/∑DWT ∑SO2/∑DWT ∑CO2/∑DWT ∑HC/∑DWT ∑PM/∑DWT 

Small 3.04×10-2 2.10×10-2 1.24×100 1.17×10-3 3.20×10-3 

Handysize 1.97×10-2 1.37×10-2 8.07×10-1 7.60×10-4 2.07×10-3 

Handymax 1.60×10-2 1.11×10-2 6.56×10-1 6.17×10-4 1.68×10-3 

Panamax 1.30×10-2 8.98×10-3 5.31×10-1 5.00×10-4 1.36×10-3 

Capesize 9.99×10-3 6.92×10-3 4.09×10-1 3.85×10-4 1.05×10-3 

Large Capesize 7.62×10-3 5.28×10-3 3.12×10-1 2.94×10-4 8.02×10-4 

 

Table 11 shows the average emissions bulk carriers generate. The table calculates the 

total emissions for each ship type by dividing by the total number of that ship. While small 

ships produce the fewest emissions on average, Large Capesize ships produce the most. As a 

result, average emissions increase in proportion with ship size, while the emissions produced 

per unit of load decrease. 

Table 11 Average amount of annual emissions (tons) by bulk carrier ship type 

Bulk Carrier Type Ave. of NOX  Ave. of SO2  Ave. of CO2 Ave. of HC Ave. of PM 

Small 163.4 113.2 6,697.4 6.3 17.2 

Handysize 558.5 387.0 22,888.6 21.5 58.8 

Handymax 706.8 489.7 28,964.9 27.3 74.4 

Panamax 836.7 579.7 34,287.6 32.3 88.0 

Capesize 1,256.3 870.4 51,482.8 48.4 132.2 

Large Capesize 1,578.3 1,093.5 64,680.2 60.9 166.1 

 

4. Conclusions 

Emissions have been a significant threat to the environment since the Industrial 

Revolution, and the most critical factor behind emissions is undoubtedly transportation. 

Maritime transport makes up a considerable part of all transportation activities, and the most 

crucial element in calculating marine emissions is the proper calculation of main engine power. 
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The main engine power of bulk carriers of known length, breadth, DWT, and GT can be 

calculated with a low error rate using nonlinear regression analysis by developing the 

calculations with data from the most extensive number of ships in the literature (N = 9,174). 

This study has conducted a holistic assessment of bulk carrier emissions by calculating 

generated emissions in addition to bulk carriers' main engine power and uses the analyses 

performed herein to provide method of calculating the emissions of bulk carriers based on 

installed engine power. In addition, the effects of emissions have been calculated not only for 

general bulk carriers but also for six main groups based on ship size. 

Power demand per unit of load is lower for larger ships than for smaller ships. Thus, 

smaller ships are used for domestic transportation, while bigger ships are used for international 

transport. Because bigger ships are more efficient than smaller ships, their travel range is greater 

than for small ships. This is also valid for emissions per unit of load. Therefore, bigger ships 

produce fewer emissions per unit of load compared to smaller ships. 

Regarding average generated emissions, the biggest ships have the highest emissions, 

while the smallest ships have the lowest emissions. Capesize and very Large Capesize ships do 

not have suitable ports worldwide. Because a limited number of countries such as China, 

Singapore, the United States, and Italy have such ports, these countries and the cities and inland 

waters where these ports are located are exposed to more intense emissions. 

Ships take up the largest share of transportation, and their volume of emissions is 

relatively high. Due to the carbon tax, ships now need to seek alternative fuels or improve their 

current emissions. In addition, they must reduce their emissions indirectly by slowing down 

due to engine power and shaft power limitations based on IMO’s mandatory ruling for existing 

ships. Therefore, logistic time will take longer because of ships’ decreased speeds. This article 

reveals the advantages and disadvantages of the various carrier ship types, and this information 

will be beneficial for those ordering ships to be newly built with regard to what would be the 

most advantageous. 

5. Abbreviation List 

ANN  Artificial Neural Network 

Ave.  Average 

B   Breadth 

DWT  Deadweight Tonnage 

E   Emissions 

EPP  Emissions per unit of power 

GT  Gross Tonnage 

HC  Hydrocarbons 

L   Overall Length 

L-M  Levenberg-Marquardt 

LSM  Least-Squares Method 

MGO  Marine Gas Oil 

P   Engine Power 

PM  Particulate Matter 

RSS  Residual Sum of Squares 

T   Draft 

TEU  Twenty-Foot Equivalent Unit 
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VLSFO  Very Low Sulphur Fuel Oil 

YWH  yearly working hours 

β   Correlation functions 
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