Abstract
As we age, remodeling takes place in our body, and while some changes can be attributed to the mere aging process, others can be attributed to an early pathological process of subclinical changes typical in atherosclerosis. Aging is an imminent part of life and is a risk factor for atherosclerosis and cerebrovascular disorders in both sexes. Once established, cerebrovascular diseases are strong contributors in worldwide morbidity and mortality scales, and stroke is the worldwide leading cause of mortality and disability in adults. Cerebrovascular disorders in Croatia are the second leading cause of mortality and the first in adult disability. In this article, we attempt to present all the changes of aging in the common carotid artery thus distinguishing them from a pathological processes.

Keywords: Aging, IMT (intimal-medial thickness), Arterial Stiffness, Arterial Compliance, Endothelial Dysfunction

Aging and carotid remodeling

Miljenka-Jelena Jurašić 1, Sandra Morovic 1, Vida Demarin 2

1 Poliklinika Aviva, Ulica Vladimira Nemeta 2, 10000 Zagreb, Croatia
2 International Institute For Brain Health, Ulica grada Vukovara 27/IV, 10000 Zagreb, Croatia

Correspondence: Miljenka-Jelena.Jurasic@poliklinika-aviva.hr
This article was submitted to RAD CASA - Medical Sciences as the original article

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 November 2022
Accepted: 13 December 2022
Published: 21 December 2022

Citation: Jurašić MJ, Morovic S, Demarin V. Aging and carotid remodeling. RAD CASA - Medical Sciences. 553-60-61 (2022): 60-68
DOI: 10.21857/ygjwrcp3ny

Copyright (C) 2022 Jurasic MJ, Morovic S, Demarin V. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Aging

Since life expectancy increased over the past few decades, the proportion of older people is increasing in many countries around the world. It is believed that proportion of people aged over 80 years will triple in the next 30 years. The most common health problems in old age are chronic diseases, primarily cerebrovascular (more often in women) and cardiovascular (more often in men). Underlying condition in both conditions is atherosclerosis, but atherosclerosis is not isolated, rather it affects all segments of the vascular system.

Previous research has established a positive connection between the reduced elasticity of the blood vessel wall and the frequency of stroke and other vascular diseases. However, Nagai et al. showed it is more specialized for atherothrombotic stroke compared to other forms of stroke, for example lacunar stroke. Furthermore, del Sol (2001) and Baldassare (2000) showed that a separate assessment of IMT in the common carotid artery (ACC) is useful as a surrogate for vascular disease risk assessment instead of recording risk factors. The Tromso study showed that an increase in IMT (thickening of the intimal and medial part of the arterial wall) is an independent predictor of heart attack, stroke in general and ischemic stroke in particular. Still, there are some changes in the vascular system that can be attributed solely to the aging process. The most important contributor to this statement comes from the BLSA study (Baltimore Longitudinal Study on Aging). Researchers of the BLSA study distinguish vascular aging as a physiological process that does not necessarily imply the onset of vascular disease. On the other hand, vascular disease is a condition mostly favored by unsuccessful aging and the loss of the natural balance of body processes. Additionally, it seems that not only exposure to various risk factors, but the time of exposure is what makes the difference of successful as opposed to unsuccessful aging. Namely, some of the changes characteristic of aging, such as the loss of elastin thus diminishing vascular elasticity, are observed at an earlier age in the population exposed to hypertension, hyperlipidemia or other vascular risk factors. It is considered that these people would have the earliest or pre-clinical/sub-clinical development of the vascular disease. Therefore, it is important to find methods by which it is possible to distinguish between normal vascular aging from vascular disease.

Subclinical carotid disease is characterized by asymptomatic changes in the blood vessels, the development of which started an unfavorable chain of events that often ends in a stroke. It is not entirely clear whether subclinical arterial changes represent a risk of developing the disease or a manifestation of an already developed disease. Subclinical changes represent a syndrome in which three main changes are recognized: the formation of carotid plaque, the occurrence of thickening of the IMT and distensibility disorder in the supply vessels of the brain. The subclinical atherosclerotic process of the carotid tree is quantified by measuring IMT thickening, quantitative and qualitative analysis of carotid plaques and by measuring elasticity indices such as arterial stiffness (AS), arterial compliance, extensibility (“distensibility”) and wall shear stress. Commonly, increased increased pulse pressure (PP) and pulse wave velocity (PWV) are used as AS measures. They are not synonyms, rather PWV will directly reflect the AS processes and PP will serve as a surrogate marker of AS.

Animal models

To accurately assess the function of the arterial wall, many simulations were performed using mathematical models of physiological conditions in which viscoelastic properties of blood, elastic modulus, shear stress of the wall and the degree of shear stress of the wall were investigated. However, in order to biologically evaluate vascular aging animal models such as rodents and non-human primates were initially used as models for the evaluation because they have been shown to be very similar to humans in terms of physiological and pathophysiological changes. The use of animal models has proven specific changes in the aorta of rodents that are regularly seen in the aging arteries are: increase in arterial diameter, arterial stiffness, and IMT. IMT increase is a process that involves the intimal layer, the medial layer and extracellular matrix. Following processes are specific for intimal changes: increase in smooth muscle cell thickness as well as extracellular matrix, increase in TGF-β (transforming growth factor - beta) with decreased anti proliferative response, increase in MMP-2 (metalloproteinase type 2 - zinc-dependent endopeptidase) and MMP-1 (metalloproteinase 1 – membrane type, MMP-2 activator), increased expression of ICAM-1 (interstitial adhesion molecule), increase in nitrates and nitrates as well as increased activity of ACE (angiotensin adhesion enzyme). Tunica media is involved with increase in layer thickness via increase in cell size, but decrease in cell number. The extracellular matrix is increased via increase in collagen content, increase in non-enzyme glycosylation processes that promotes greater number of collagen fibers, increase in fibronectin, increase in glycoasminoglycans and decrease in elastin by degradation and calcification. In addition to all this, endothelial dysfunction is promoted with specific changes in arterial vasoreactivity: decrease in nitric oxide (NO) with increase in superoxide and peroxinitrite and increased expression of adhesion molecules and permeability, decrease in angiogenesis with decrease in VEGF (vascular endothelial growth factor). All this predisposes overreactive response to arterial injury and overly active atherosclerotic process initiated with excessive lipid consumption. Furthermore, the expression of fibronectin and TGF-β are regulated with the help of angiotensin-II, and their role is to promote the formation of the extracellular matrix. Aortic MMP-2 is known to play a role in damage to the internal elastic
Vascular aging

Age is the most significant risk factor for development of any chronic disease making the detection of sub-clinical manifestation of vascular disease so interesting today. Therefore, response to a certain stimulus is measured. To perform specific risk factor analysis, respondents to a certain stimulus are divided into age subgroups and according to the representation of a particular indicator. If an indicator is singled out for its positive or negative impact on health, the first or last quartile or quintile is usually determined. People in these subgroups are still not considered diseased, but are at an increased risk of developing the disease, and that is a criterion of “unsuccessful” aging. The elasticity or AS of the carotid artery wall is a parameter used to test the mechanical ability of blood flow for adequate brain perfusion. Previous studies have established a negative relationship between the thickening of the blood vessel wall and the decrease in elasticity, thus explaining a predictive value for the occurrence of stroke. So far, studies have used the following approaches: conventional ultrasound machines (M mode analysis), intravascular ultrasound, phase contrast magnetic resonance angiography, “cine” magnetic resonance angiography and mathematical modeling or studies on models. The indicators used to assess AS are numerous, and often better adapted to laboratory than clinical conditions: intraluminal and extraluminal diameter of the artery, compliance, extensibility (“distensibility”), stiffness, pulse wave velocity and shear stress. A reflection of age-related changes is a trait of intrinsic AS. In addition to AS increase in aging, endothelial dysfunction and an increase in and arterial pressure (measured as pulse pressure) are, also, possible. Several indicators of AS have so far been validated as a measure of vascular age: β-stiffness, Ep and AC. The first two indices increase with increasing age, while the last one decreases. In addition to age, -stiffness is, also, associated with the chronic influence of smoking, and Ep with elevated blood pressure values. Combinations of individual factors create the personal vascular profile of each person and can help determine the degree of risk of developing arterial disease. Both changes occur simultaneously - endothelial dysfunction appears in the 6th decade, and at the same time there is a significant increase in PP or PWV. PWV is a non-invasive indicator of AS that depends on mean arterial pressure and the intrinsic response to increased arterial mechanical exertion. It is considered that elevated PWV values indicate an increased collagen content, a reduced elastin content and calcification of the tunica media. A significant increase in PWV is possible without simultaneous atherosclerotic changes in blood vessels. However, since PWV is also increased in hypertensive individuals, diabetics and people with atherosclerosis, it is believed that this connection does not only result from structural changes but also as a consequence of endothelial regulation of smooth muscle tone. Recently, research has shown that endothelial dysfunction can be assessed, in addition to changes in the arterial wall, by quantifying hematopoietic progenitor (EPC) cells in the blood. An increased number of EPCs is associated with an increased risk of mortality from cardiovascular disease, occurrence of a first cardiovascular event in life, acute myocardial infarction, total number of hospitalizations, and mortality from any cause. Therefore, the number of EPC cells can, also, be considered an indicator and biomarker of endothelial dysfunction. A bond between reduced mitotic index of individual tissue and increasing age is, also, observed. Endothelial aging is confirmed not only by enhanced α-galactosidase staining in the elderly, but, also, the expression of regulators of cell mitotic cycles such as telomere shortening and suppression of telomerase activity. Loss of telomere function promotes endothelial dysfunction, and suppression of telomere shortening has been shown to reverse endothelial dysfunction resulting from aging. Loss of telomere function is associated with the higher degree of atherosclerosis, pulse pressure and PWV (more pronounced in men). The role of aging in the development of vascular disease

Aforementioned mechanisms of vascular aging lead to several consequences. First of all, vascular remodeling by means of reduces NO production leads to increased AS, early signs of atherosclerosis and hypertension. Furthermore, AS increase then...
potentially leads to systolic hypertension, left cardiac hypertrophy, atherosclerosis and stroke. Lastly, decrease in physical activity will promote all those changes. Still, all the mechanisms of vascular aging are intertwined. Research has recently shown that all the aforementioned changes in metabolism, enzyme activity, cellular and endothelial changes have an important causal and promotional role in atherosclerosis, vascular inflammation, vascular remodeling and oxidative stress. Therefore, atherosclerosis is most likely a process resulting from the interaction of atherosclerotic process and the intrinsic arterial properties of aging. It means that the appearance of atherosclerosis at an earlier age is a reflection of accelerated aging on increased AS due to excessive exposure to classical risk factors (high blood pressure, smoking, increased amount of fat in the blood, diabetes, unhealthy diet, insufficient physical activity and genetics). However, the Rotterdam study showed that there is an association of increased AS measured in the aorta and carotid artery with carotid IMT increase and the degree of stenotic changes measured in both the carotid arteries and the aorta.

Morphological indicators of changes in arterial function in aging are increased diameter and thickening of the IMT. Changes called arterial remodeling are intimal hyperplasia and fibrocyte hypertrophy due to local changes in flow and wall loading forces—an adaptive mechanism that affects individual arterial segments and is not uniform along the entire length. They are characteristic of the aging process of large elastic arteries, and postmortem studies confirmed that thickened walls are the most common changes in the aorta associated with aging. Some authors believe that carotid IMT is only weakly associated with concomitant coronary disease, so it cannot be considered an accurate indicator of subclinical disease, but more likely a reflection of carotid remodeling. IMT measurement has been considered a marker of early atherosclerosis since the Dutch ARIC study, but it cannot be considered a risk factor for cerebrovascular diseases, as a reduction in IMT thickness does not lead to a reduction in risk. A French study showed that 66% of the variability of IMT ACC and 74.9% of ACI could be explained as a consequence of heredity. Fox hypothesized that the genes for IMT could be located on the 12th chromosome. Howard established on the data of the ARIC study that the IMT in men is always slightly higher - 0.8mm vs. 0.73 mm in women. Using the same data, Blakenhorn observed that the annual progression of IMT thickness was the smallest in the ACC (0.01 mm), followed by the carotid bifurcation (0.025 mm), and the largest was observed in the ACI (0.036 mm). Thirty eight percent of ACC IMT variability appears to be due to heritable factors. Almost at the same time, a group of Chinese researchers showed in their work that the genes that determine the characteristics of angiotensin converting enzyme (ACE) are also responsible for IMT, the diameter of the internal carotid artery (ACI), the elasticity and stiffness of the arteries.

The ARIC prospective study showed, by measuring the change in diameter, Ep, Young’s EC (elasticity coefficient) and β-stiffness index, that a decrease in arterial elasticity by one standard deviation increases the risk of developing hypertension by 15%. This influence is independent of the initial values of blood pressure in the examined group.

Although isolated systolic hypertension, most often after the age of 50 years, can be considered a good indicator, the Framingham study confirmed PP as a better predictor because it analyzes both systolic and diastolic pressure. Studies have shown that lowering the blood pressure values in hypertensive patients will not stop further vascular damage that has already started. In the future, we should aim to create medication with the potential to act not only on lowering blood pressure values, but also, that would influence vascular remodeling and reduce AS. Bussy et al. investigated AS in carotid arteries by determining and comparing a group of normotensive and hypertensive subjects by determining Young’s EC. The overall analysis did not indicate a difference, but the stratification of the subjects into tertile subgroups according to age showed that the intrinsic, or effective, AS of the material was increased only in younger hypertensive patients. Therefore, the influence of aging and hypertension does not have an additive effect on the increase in AS, and changes in elderly hypertensive patients directly correspond to increased blood pressure values. However, the increase in AS is observed with age, and a special place in research is occupied by the carotid artery, which is more susceptible to pathophysiological changes than some peripheral muscular arteries (eg. brachial or radial). At the age of 70, AS can have up to six times higher values than those at the age of 20, which is even more pronounced in the case of hypertension or diabetes.

As the AS of large elastic arteries becomes more and more rigid, there is an increase in central systolic pressure, a decrease in diastolic pressure, and a consequent increase in pulse pressure. Numerous studies have so far identified increased pulse pressure as an independent predictor of cardiovascular disease. Therefore, an increase in PWV most likely reflects: increased central systolic pressure, increased pulse pressure, and a change in AS structure/state. In the latest research, it has been confirmed that an increase in PWV with a simultaneous decrease in total compliance are independent predictors of the onset of cardiovascular diseases. One of the incriminating events in the body for such a development can be non-enzymatic glycosylation, which is increasingly pronounced in old age, especially in diabetics, so recently experiments have been made with drugs that would break these bonds.2

IMT measurement, aging and cerebrovascular risk factors

The usual approach to vascular risk factors in a cerebrovascular patient is to determine their the non-modifiable and modifiable risk factors. Non-modifiable risk factors are age, sex, race/
ethnicity and genetics, while modifiable ones are: high blood pressure, heart disease, diabetes, smoking, alcohol abuse, use of oral contraceptives, history of TIAs (transient ischemic attacks), elevated red blood cell count, elevated blood cholesterol and lipids, unhealthy diet, obesity, and physical inactivity. However, when all of them are excluded, about 60% of the causes of stroke remain unexplained. That is why nowadays the so-called "new" cardiovascular disease risk factors. These are, in order: lipid fractions, abdominal obesity, metabolic syndrome, elevated homocysteine levels in the blood, infection and inflammation, and subclinical carotid disease. In order to monitor IMT increase as a form of subclinical arterial wall changes, it is important to recognize the possible influence of the underlying cause. Elevated blood pressure is probably the most significant vascular risk factor, and by expressing systolic blood pressure values or PP, we can fairly accurately relate to the development of changes in IMT thickness in ACC. Other main factors that cause subclinical changes in arterial walls are: age, diabetes or impaired glucose tolerance, unregulated blood pressure, dyslipidemia and hyperhomocysteinemia. Factors such as smoking and excessive consumption of alcoholic beverages also promote the occurrence of these changes. Among the important newly discovered factors that stand out are C reactive protein levels (especially high sensitivity type), lipoprotein (a), fibrinogen and homocysteine levels, repeated vascular spasm and hemodynamic trauma.

For many years, neurologists have been researching and assessing risk for stroke by measuring IMT, and one of the first was the Finnish Kuopio study that observed an increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT and the Finnish Kuopio study that observed an increase in risk with the IMT and the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IMT increase in risk with the Finnish Kuopio study that observed an increase in risk with the IN)

The ARIC study showed an association between thickening of IMT and body mass index, especially if abdominal obesity as expressed by the waist-to-hip ratio is taken into account. In the same study, the association of IMT thickening with elevated blood fibrinogen values was confirmed. In addition to the harmful effects of smoking, there is a connection between thickening of the IMT and the regularly consumed amount of alcohol when it amounts to more than 30g per day when an elevated concentration of IL-6 can be measured in the blood. Among other inflammatory indicators, thickening of the IMT can be associated with an increase in the total number of leukocytes in the blood and an increased concentration of C reactive protein. Some people are, also, seropositive for Cl. pneumoniae. Elevated homocysteine values also cause IMT thickening in the ARIC study, and this is particularly useful in assessing early stage atherosclerosis.

Regular physical activity and optimal nutrition are effective in preventing the progression of IMT thickening in non-smokers. Other influences include the serum titer of antibodies to oxidized LDL cholesterol, increased copper values, and decreased selenium values in the blood as promoters of IMT thickening. Research on the endocrine system began when, after the administration of sex hormones, it was proven that the endocrine system plays an important role in the thickening of IMT, and most likely also a significant role in preserving the elastic properties of arteries. Pentz Vidović observed that after the application of hormone replacement treatment in menopausal women for 6 or 12 months, the return of thickened IMT values to baseline values is measured. Lack of thyroid hormone leads to a reversible thickening of IMT in ACC, so after the application of replacement treatment or after the normalization of thyroid gland function, a reduction of IMT to the value before the onset of the disorder is observed. Therapy with T4 hormone in hypothyroidism has the opposite effect. As for the medications use - Ca blockers in the ELSA and PREVENT studies, ACE inhibitors in the HOPE SECURE substudy, and beta blockers with statins in the ELVA study showed efficacy in reducing the progression of IMT thickening in patients who took these medications. Many large clinical studies have shown that the use of statins enables the regression of early changes: ACAPS (lovastatin), CLAS (colestipol), PLAC-II (paravastatin), MARS (lovastatin) and REGRESS (pravastatin). The ASAP study showed that atorvastatin is better than simvastatin. The ASAP study showed that taking 250 mg of slow-release vitamin C and 136 IU of vitamin E daily significantly reduced the annual progression of IMT thickening in men in 33% of cases and in women in 14% of cases. This influence is more significant in those people who have carotid plaques before starting vitamin therapy. Measurement of IMT is established and widespread among clinicians because it is a simple and reproducible method. Some authors use IMT measurement to assess the risk of cerebrovascular...
and cardiovascular disease.6,75 Zureik even proved that, by isolating certain serum enzymes, it is possible to biochemically monitor the frequency of carotid plaque occurrence. Namely, elevated values of elastase inhibitors in the serum of subjects during the four-year follow-up are proportional to the number of carotid plaques.76 The indicators that we measure in various places in the carotid tree can also be measured in the aorta, where the changes are visible even a little earlier in the timeline of pathological changes, and the measurement techniques do not differ.51

However, the thickening of the IMT can be a misleading indicator, because the changes on the walls do not take place evenly.77

For this reason, it seems prudent not to focus solely on IMT measurement, but include other measures of vascular aging and arterial remodeling.

Conclusion

Arterial remodeling is a physiological process that is primarily influenced by aging. Whether it reflects the traits of successful aging or strays from it determines the potential for future development of pathophysiological processes and, eventually, atherosclerosis with increased risk for cerebrovascular disease occurrence.

References:

1. Available at: www.who.int

72. Hosomi N, Mizushige K, Ohyama H, Takahashi T, Kitadai M, Hanaka Y et al. Angiotensin-converting enzyme inhibition with enalapril slows progressive intima-media...

