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Abstract

Cross-cutting of a tree into a set of assortments (»bucking pattern«) presents a large potential 
for optimizing the volume and value recovery; therefore, bucking pattern optimization has been 
studied extensively in the past. However, it has not seen widespread adoption in chainsaw buck-
ing, where time consuming and costly manual measurement of input parameters is required for 
taper curve estimation. The present study investigated an alternative approach, where taper 
curves are fit based on terrestrial laser scanning data (TLS), and how deviations from observed 
taper curves (REF) affect the result of bucking pattern optimization. In addition, performance 
of TLS was compared to a traditional, segmental taper curve estimation approach (APP) and 
an experienced chainsaw operator’s solution (CHA).
A mature Norway Spruce stand was surveyed by stationary terrestrial laser scanning. In TLS, 
taper curves were fit by a mixed-effects B-spline regression approach to stem diameters ex-
tracted from 3D point cloud data. A network analysis technique algorithm was used for bucking 
pattern optimization during harvesting. Stem diameter profiles and the chainsaw operator’s 
bucking pattern were obtained by manual measurement. The former was used for post-operation 
fit of REF taper curves by the same approach as in TLS. APP taper curves were fit based on 
part of the data. For 35 trees, TLS and APP taper curves were compared to REF on  tree, trunk 
and crown section level. REF and APP bucking patterns were optimized with the same algorithm 
as in TLS. For 30 trees, TLS, APP and CHA bucking patterns were compared to REF on 
operation and tree level.
Taper curves were estimated with high accuracy and precision (underestimated by 0.2 cm on 
average (SD=1.5 cm); RMSE=1.5 cm) in TLS and the fit outperformed APP. Volume and value 
recovery were marginally higher in TLS (0.6%; 0.9%) than in REF on operation level, while 
substantial differences were observed for APP (–6.1%; –4.1%). Except for cumulated nominal 
length, no significant differences were observed between TLS and REF on tree level, while APP 
result was inferior throughout. Volume and value recovery in CHA was significantly higher 
(2.1%; 2.4%), but mainly due to a small disadvantage of the optimization algorithm.
The investigated approach based on terrestrial laser scanning data proved to provide highly 
accurate and precise estimations of the taper curves. Therefore, it can be considered a further 
step towards increased accuracy, precision and efficiency of bucking pattern optimization in 
chainsaw bucking.
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1. Introduction
In primary production environments characterized 

by small margins, such as forestry, efficient use of re-
sources is crucial. During timber harvesting, trees are 
felled, delimbed and cross-cut (»bucked«) into a set of  

pieces (»bucking pattern«) of certain length, diameter, 
and grade (»assortments«) with a respective value. 
This process is a critical step in converting standing 
timber into end products, as it predetermines and lim-
its the number, type and value of products that can be 
produced from the logs (Pnevmaticos and Mann 
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1972). Thus, it presents the greatest potential for opti-
mizing volume and value recovery besides sawing of 
bucked logs at the mill (Faaland and Briggs 1984). Fur-
ther, it greatly affects the return to the supplier and 
worth to the buyer in the subsequent processing and 
sale stages (Eng and Wythe 1982).

Bucking pattern optimization aims at »choosing 
the most profitable combination of log lengths, diam-
eters and qualities, from a normally very large set of 
stem conversion alternatives (Näsberg 1985)« with the 
aim of »converting a single tree stem into smaller logs 
in such a way that the total stem value, according to a 
given price list for logs, is maximized (Näsberg 1985)«. 
Due to the decision complexity, mathematical model-
ling methods, such as linear (e.g. Smith and Harrell 
1961) and dynamic programming (e.g. Pnevmaticos 
and Mann 1972, Faaland and Briggs 1984, Puumalainen 
1998), as well as network analysis (e.g. Sessions et al. 
1988), heuristic (e.g. Laroze and Greber 1997), genetic 
algorithm or fuzzy logic techniques (Kivinen 2007) 
have been considered for optimizing bucking patterns 
on stem, stand and forest level. In the first case, each 
tree pattern is optimized, while solutions are derived 
for stem classes or whole stands in the latter (Laroze 
1999).

During the 1980s, several software programs for 
stem-level bucking pattern optimization were devel-
oped, e.g. AVIS in New Zealand (Geerts and Twaddle 
1984) or BUCK (Oregon State University; Sessions et 
al. 1988). These could be operated on handheld com-
puters and thus allowed bucking pattern optimization 
at the stump. Their effect on volume and value recov-
ery was studied during several subsequent studies 
(Garland et al. 1989, Sessions et al. 1989, Olsen et al. 
1997, Bowers 1998). In these, gross value, net value and 
volume recovery increases of 3.2% to 14.2%, 3.4% to 
6.5% and 2.8% to 8.4% were observed, respectively.

However, differently to processing of trees by har-
vesters or with processors, where bucking pattern op-
timization is a feature offered by many manufacturers 
today (Labelle et al. 2017) and both individual stem 
value and demand restrictions are considered through 
value and demand matrices (Kivinen 2007), mobile 
device-based bucking pattern applications for use in 
bucking by chainsaw context have not seen substantial 
uptake in practice.

One of the main disadvantages in chainsaw buck-
ing is the additional time consumption associated with 
the bucking pattern optimization process. For effective 
bucking pattern optimization, the algorithm must be 
fed with information about the stem form and the dis-
tribution of surface grade along its length. This infor-
mation must be acquired by a visual inspection of the 
stem and a series of manual diameter and length mea-

surements. From this data, the stem diameter profile 
along its length – the taper curve – is derived and the 
grades are assigned to its portions. BUCK, for exam-
ple, requires measurements of stem diameter at each 
major change in taper, so at least at the felling cut, at 
the end of butt swell and topping length, as well as the 
measurement location. The additional time consump-
tion for these tasks amounted to 0.8 minutes and 0.9 
minutes, respectively. Thus, direct costs of felling and 
bucking increased by about one third due to manual 
measurements (Olsen et al. 1991). Even more recent 
applications, such as »Virtual Tree Bucking« for iOS 
(Corvallis Microtechnology Inc., OR, U.S.A.) or »T4E 
Bucking App« (Latschbacher GmbH, Kronstorf, 
Austria, Erber et al. 2019) for Android OS devices, 
require manual measurements. In case of the T4E 
Bucking App, they are partially estimated (felling 
diameter, crown base diameter, topping diameter po-
sition) from other tree parameters. However, manual 
measurements associated with taper curve estimation 
still account for about 50% of the time consumption of 
working with the app, not considering related data 
entry (Erber et al. 2021).

Terrestrial laser scanning offers the possibility to 
obtain taper curves efficiently and with high accuracy 
(Liang et al. 2014). It was employed in a bucking pat-
tern optimization context as early as 2008 by Murphy 
(2008) in Douglas-fir (Pseudotsuga menziesii (Mirbel) 
Franco) stands. In this study, the observed total vol-
ume and stand value were found to be within 7% of 
actual estimates. Since then, accuracy and precision of 
terrestrial laser scanning and the capabilities of related 
applications have improved substantially. Therefore, 
stationary terrestrial laser scanning is currently con-
sidered the most precise system for providing 3D 
point cloud data in a forest environment, capable of 
capturing stem diameter up to 1 cm accuracy (Liang 
et al. 2014). These properties also make it an important 
component in the concept of »precision forestry«, 
which aims at providing and analyzing high-resolu-
tion information about forest stands to improve deci-
sion processes and forest management (Kovácsová 
and Antalová 2010). The range of potential applica-
tions has expanded rapidly over the last decade and 
includes navigation of machines in the stand (Keefe et 
al. 2019), forest inventory applications (Ritter et al. 
2017) or support and documentation of harvesting op-
erations (Talbot et al. 2017).

Terrestrial laser scanning constitutes a promising 
alternative for taper curve acquisition in chainsaw 
bucking, due to higher accuracy and precision of taper 
curve estimation and less time consumption for man-
ual measurements during harvesting. However, nei-
ther the use of terrestrial laser scanning in bucking 
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pattern optimization in chainsaw bucking, nor the ef-
fects of deviations between observed and estimated 
stem diameters on the result of bucking pattern opti-
mization have been investigated so far.

Accordingly, the aim of the present study was to 
investigate if individual tree taper curves can be esti-
mated accurately enough based on terrestrial laser 
scanning data by a mixed-effects B-spline regression 
approach to allow bucking pattern optimization in 
chainsaw bucking. Further, the effect of deviations 
between estimated and observed taper curves on the 
results of bucking pattern optimization was quanti-
fied. In addition, laser scanning data based taper 
curves were compared to taper curves derived by a 
segmental taper curve approach used in an earlier ap-
plication. Finally, bucking patterns were compared 
regarding volume and value recovery between laser 
scanning data-based taper curves, segmental ap-
proach-based taper curves and to the pattern imple-
mented by an experienced chainsaw operator.

2. Materials and Methods

2.1 Study Site and Operation
The study area was located near Soboth (46° 40' 

21.1" N 15° 02' 10.1 "E), province of Styria, Austria, 
which is part of the forest enterprise Waldgut Feistritz, 
Staudacher & Co Holzverwertung KG. Situated be-
tween 1120 m and 1160 m a. s. l.; it has a NE aspect and 
is moderately  sloped (25%). The site was covered by 
a 21.5 ha, 86 year-old stand, dominated by Norway 
Spruce (Picea abies L.) and interspersed with single 
trees of European larch (Larix decidua Mill.), Fir (Abies 
alba Mill.) and European beech (Fagus sylvatica L.). It 
stocked on a highly productive (average annual incre-
ment per hectare of 13 m³) dystric cambisoil. Natural 
regeneration was abundant and dominated by Nor-
way spruce (Picea abies (L.) H. Karst.) of 0.1 to 1.0 m 
height. According to forest inventory, stocking volume 
was 649 m³ ha-1 over bark.

On a 1.2 ha harvesting area, a secondary felling 
treatment was performed and about one third of the 
total stocking volume was removed in single tree se-
lection. Felling and processing were conducted motor-
manually by two chainsaw operators employed by the 
forest enterprise. Trees were extracted in tree length 
method with a forestry tractor with winch. On the for-
est road, the trees were cut-to-length by a third opera-
tor and piled with the forestry tractor. Before the op-
eration, all trees to be removed had been marked by 
the forest enterprise forester.

2.2 Study Layout
The study consisted of two parts, with the second 

drawing on the results of the first. Part one investi-
gated the accuracy and precision of taper curve esti-
mation based on terrestrial laser scan data and by a 
traditional segmental approach. It included three sce-
narios, each representing a different dataset and/or 
taper curve estimation approach. In the first (TLS), 
taper curves were estimated using a mixed-effects B-
spline regression approach, based on terrestrial laser 
scanning data. Then, a segmental approach, based on 
manually collected tree parameters, similar to that 
implemented in the T4E Bucking App, was employed 
in the second scenario (APP). In the third scenario 
(REF), the taper curve was estimated by the same ap-
proach as in TLS, but based on manually collected 
stem diameter data. It was considered to represent the 
»true« taper curve, as the stem diameter could be es-
tablished without the limitations of terrestrial laser 
scanning, namely a lack of sufficient data points in the 
crown layer due to shadowing effects and crown 
movement due to wind (Liang et al. 2014, Vaaja et al. 
2016, Hyyppä et al. 2020). Therefore, it acted as refer-
ence for evaluation of taper curve estimation accuracy 
and precision in TLS and APP scenarios.

In part two, a modified version (preferred nominal 
length functionality added) of the bucking pattern op-
timization algorithm implemented in the T4E Bucking 
App was applied to each tree taper curve under the 
TLS, APP and REF scenarios. These were supplement-
ed by the pattern implemented by the chainsaw op-
erator (scenario CHA). Subsequently, TLS, APP and 
CHA patterns were compared to the pattern in REF to 
evaluate the effect of the taper curve estimation meth-
od on volume and value recovery and to compare the 
algorithm performance to the solution of the experi-
enced chainsaw operator.

2.3 Field Study

2.3.1 Terrestrial Laser Scanning and Taper Curve 
Estimation Algorithm

In June 2020, the stand was scanned using a FARO 
Focus3D X330 terrestrial laser scanner (Faro Techno
logies Inc., Lake Mary, FL, USA). Scanning was per-
formed in a multi-scan mode, with 28 scans in total, 
obtained from different positions. The scanner posi-
tions were regularly distributed across the entire area 
of the forest stand with a distance of 20 m between the 
neighboring positions. The actual scanner positions 
were chosen in the field, guided by visual assessment 
of the local visibility conditions. The coregistration of 
the raw scan data and the point cloud extraction were 
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performed with FARO SCENE 6.2 software (Faro 
Technologies Inc., Lake Mary, FL, USA). For further 
details on the scanner, hardware parameter settings, 
scanning layout and point cloud processing, the read-
er is referred to Ritter et al. (2017) and Gollob et al. 
(2019). Because of possible shadowing effects, the 3D 
point clouds from stationary laser scanning can be in-
complete in upper crown sections (Liang et al. 2018). 
To avoid that relevant data was missing, the height of 
each tree was additionally measured with a Vertex IV 
ultrasonic hypsometer (Haglöf Sweden AB, Långsele, 
Västernorrland, Sweden).

The stem positions and diameters were automati-
cally derived using the methodology demonstrated in 
Gollob et al. (2020). The point cloud of each tree was 
extracted in the form of an upright-oriented cylinder 
centered on the tree and with a buffer width equal to 
diameter at breast height plus 1 m. Subsequently, 
these point clouds were stratified by extracting 15 cm 
thick slices every 50 cm along the stem length. If a 
layer contained less than 50 points, it was excluded 
from analysis. Finally, a circle, representing the stem 
diameter at this position was fit to each layer. To this 
end, the circular cluster method of Müller and Garlipp 
(2005), implemented in R-package »edci« (Garlipp 
2018), was employed, as it is robust and efficient rela-
tive to the noise points created by branches or needles.

Finally, individual taper curves were fitted for each 
tree using a mixed-effects B-spline regression approach 
(Kublin et al. 2013), implemented in the R-package 
»TapeR« (Kublin and Breidenbach 2013). The data was 
stored in Microsoft Excel .csv files and included stem 
diameters estimated at 1 cm intervals.

To allow selection of the associated taper curve 
during bucking pattern optimization, the tree ID as-
signed to each tree in the point cloud was applied to 
all trees marked for removal by the forester with spray 
colour.
2.3.2 Bucking Pattern Optimization Algorithm  
and Settings

For bucking pattern optimization, the network 
analysis technique described by Sessions et al. (1988) 
was used. It considers stems as a network of nodes, 
whose spacing is defined by permissible log lengths, 
each with a cumulated monetary value defined by the 
previous logs grade, volume and price. For optimiza-
tion, the path leading to the node with the largest mon-
etary value is retraced.

The bucking pattern optimization algorithm was 
implemented in R statistical software (R Core Team 
2018) and largely matched the T4E Bucking App pro-
totype, described in detail in Erber et al. (2021). For the 
present study, it had to be modified regarding the fol-

Table 1 Permissible assortments by category, grade and respective 
nominal length and revenue by diameter class, provided by forest 
enterprise (Kremser 2020)

Category 
and grade

Nominal 
length, m

Diameter class
Revenue, 
Euro m–3

Saw logs 
ABC

4.00

5b+, 5a 38.00

4b, 4a, 3b, 3a, 2b, 2a 73.00

1b 56.00

Saw logs 
CX, Br

4.00

5b+, 5a 32.00

4b, 4a, 3b, 3a, 2b, 2a 42.00

1b 36.00

Industrial 
wood IF

2.00–4.001 1a, 1b, 2a, 2b, 3a, 3b, 4, 5a, 
5b+

33.00

1 at centimeter intervals

lowing aspect: theoretically, industrial wood logs 
could have been cut to any length between 2.00 m and 
4.00 m; however, the enterprise policy was to cut logs 
of either 2.00 m or 4.00 m length wherever possible 
and to consider any other lengths only if topping di-
ameter limits could not be met. To reflect this in the 
algorithm, a preferred nominal length option was 
implemented. It prioritized the desired lengths and 
considered others only in case of the last log. To com-
ply with the different taper curve estimation ap-
proaches, the prototype was adapted regarding their 
derivation and input. For operation, a definition of the 
permissible assortments in terms of nominal length, 
diameter class, grade and price per m³ (Table 1) was 
required, which was provided by the forest enterprise 
and entered into a Microsoft Excel sheet in the format 
required by the algorithm. In addition, the desired 
minimum topping diameter (7 cm over bark (OB)) and 
user-specific excess length (4 cm) were specified. The 
latter was added to the default excess length according 
to Austrian Timber Trade Guidelines (1.0% (coniferous 
species) or 1.5% (broadleaf species) of the nominal 
length, with a minimum of 6 cm, regardless of nominal 
length and species; Wiener Börse AG 2006).

2.3.3 Data Collection During Harvesting
Felling and processing of trees was conducted in 

the period 27th–29th July, 2020 by a professional chain-
saw operator with more than 30 years of experience in 
motor-manual harvesting operations. To avoid inter-
ference with regular work and to ensure work safety, 
the study trees were felled in batches of two to three 
in different parts of the stand. Thus, the chainsaw op-
erator and the researchers could switch between these 
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and maintain a safe distance. After felling and delimb-
ing, the chainsaw operator visually assessed the sur-
face grade along the stem and marked grades and 
grade borders with red spray color. In addition, he 
indicated his personal bucking pattern choice by 
scratching the bark with the chainsaw.

After the chainsaw operator had left for work in a 
different part of the stand, the researchers proceeded 
with tree data collection. Diameters were measured 
crosswise with a caliper in millimeter precision, and 
lengths were measured in centimeter precision using 
a forestry tape measure. Each tree species, ID, stump 
height (measured on the uphill side) and individual 
grade section lengths were established. Data was en-
tered into a Microsoft Excel data input spreadsheet on 
a laptop and imported into the bucking optimization 
algorithm. The corresponding taper curve was select-
ed from the filed TLS taper curves by tree ID, and 
trimmed to felled tree length by subtracting stump 
height. Subsequently, grades were allocated along the 
stem length as entered. The taper curve UB (under 
bark) was established by subtracting (double) bark 
thickness estimated with the function developed by 
Altherr et al. (1978). Based on the taper curve UB, a 
value-optimized bucking pattern was derived. The 
result was provided in tabular form of a Microsoft 
Excel spreadsheet. It included – for each log – tree spe-
cies, nominal log length, excess length (including a cut 
slit allowance of 1 cm), actual log length, start, mid and 
end position on the stem, UB mid diameter, diameter 
class, grade, revenue per m³, volume UB and revenue. 
In addition, the estimated topping length, as well as 
totals of nominal log length, excess length, actual log 
length, volume and revenue were provided.

Each log mid-diameter position and topping 
length were sought out and the stem diameter was 
measured. If the position coincided with a knot or 
branch, diameters below and above were measured 
and averaged. If topping diameter deviated from the 
required limit, actual topping length was established 
by measuring stem diameter in upward or downward 
direction, until it matched. In addition, felling diam-
eter was measured.

Finally, the bucking pattern implemented by the 
chainsaw operator (CHA) was established. Records 
included actual log length, log mid-diameter and 
grade.

2.4 Data Analysis

2.4.1 Preparation
In a first step, all collected data were checked for 

completeness, consistency, and plausibility. Analyses 

were carried out in R statistical software (R Core Team 
2018) and Microsoft Excel.

In APP scenario, taper curves were established by 
the segmental approach implemented in the T4E 
Bucking App (Erber et al. 2021). To this end, the stem 
was divided into three segments, whose shape was 
approximated by geometric solids: Firstly, a truncated 
neiloid between felling diameter and DBH, secondly, 
a truncated cone above DBH and below crown base, 
and thirdly, a paraboloid above crown base in case of 
coniferous species. Break point diameters were de-
rived from the pre-operation measurements (DBH), or 
were estimated (felling diameter and crown base 
diameters) by existing functions that were fitted to 
Austrian national forest inventory data (Eckmüllner et 
al. 2007). The latter functions required the elevation 
above sea level as input. It was set to 1.130 m, the aver-
age elevation of the harvesting site. Trunk and crown 
lengths were established by extracting crown base 
height from terrestrial laser scanning data and sub-
tracting stump height from crown base height and 
crown base height and stump height from tree height.

In case of REF scenario, taper curve estimation was 
based on all manually measured OB stem diameters. 
This included the observed OB log mid-diameters in 
TLS and CHA bucking patterns, OB stem diameters at 
the estimated and actual topping length, as well as OB 
felling diameters. For estimation, the same method as 
in TLS scenario was used.

For bucking pattern optimization in APP and REF 
scenarios, the same algorithm as in TLS scenario was 
employed and results were provided in the same format.

2.4.2 Evaluation of Taper Curve Estimation  
Accuracy and Precision and Comparison of  
Bucking Patterns

Taper curves UB for each individual tree in TLS, 
APP and REF scenarios were merged into one dataset. 
Subsequently, TLS and APP taper curves were statisti-
cally compared with the REF taper curve in terms of 
the bias and the root mean square error (RMSE) and 
with respect to the felled tree stem length and the 
trunk and crown section level.

Five out of 35 stems had been bucked into logs and 
piled before the researchers were able to record the 
chainsaw operator’s bucking pattern. Therefore, com-
parison of bucking patterns had to be limited to the 30 
complete datasets.

Within each scenario, every tree estimated topping 
length was compared to observation. If estimated top-
ping length exceeded observation, it was checked 
whether the stem length at which the small end of the 
top end log (implemented topping length) exceeded 
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observed topping length. If this was the case, top end 
logs were shortened to comply with observed topping 
length and their volume and value were recalculated. 
If the shortened log nominal length fell below the per-
missible minimum of 2.0 m, the log was discarded. No 
action was taken when observation exceeded estimat-
ed topping length, as lengthening of already cut logs 
was considered impractical.

TLS, APP and CHA scenario bucking patterns 
were compared to REF regarding the number of logs, 
nominal log length, volume and value recovery on 
operation and tree level. Deviations were described 
statistically and graphically. On tree level, pairwise 
t-tests on a 0.05 alpha-level were employed to assess 
statistical significance. Finally, the distribution of the 
assessed grades was examined in terms of the afore-
mentioned criteria.

3. Results

3.1 Taper Curve Estimation Accuracy and  
Precision

In total, 35 mature Norway spruce (Picea abies (L.) 
H. Karst.) trees were felled, delimbed and cross-cut. 
Their average DBH and height were 37.2 cm (SD=6.5) 
and 30.94 m (SD=2.97), respectively. Mean stump 
height was 0.23 m (SD=0.07), while average trunk and 
crown lengths were 13.45 m (SD=2.93) and 17.26 m 
(SD=3.57), respectively, which corresponded to a life 
crown ratio of 55.6% (SD=9.3).

OB stem diameter in TLS (–2.7% (SD=9.6)) and APP 
(–2.9% (SD=13.7)) was lower than in REF scenario on 
average (Table 2). As indicated by the substantial dif-
ference in RMSE (–0.6 cm or –28.5%), TLS taper curves 
provided a more accurate fit. TLS estimates of the OB 
stem diameter had a higher accuracy and precision, 
regardless of the level of measurement (whole tree, 
trunk and crown section level).

In the trunk section (Table 2, Fig. 1 (a) and (b)), the 
average deviation from REF was relatively low in 
both scenarios (TLS: –0.2% (SD=4.0); APP: 0.3% 
(SD=5.5)). Whereas the TLS estimates of the OB stem 
diameter showed a slight underestimation for the 
lower part of the trunk, the APP estimates were 
slightly high. For TLS, no trend regarding over- or 
underestimation was observed in the upper trunk. In 
contrast, APP showed an underestimation in this 
part. However, the largest deviations in both direc-
tions were observed in the root collar part below 
DBH; if this part was not considered, average devia-
tions decreased considerably and RMSEs improved 

on tree (TLS: –0.1 cm (SD=1.3)/1.3 cm; APP: –0.8 cm 
(SD=1.9)/2.0 cm) and trunk level (TLS: 0.1 cm 
(SD=1.0)/1.0 cm; APP: 0.1 cm (SD=1.7 cm)/1.7 cm).

In the crown section, the average deviation (Table 
2) of the APP estimates was considerably larger than 
those of TLS. APP also had a tendency to underesti-
mate OB stem diameters at mid-crown (Fig. 1 (c) and 
(d)). However, this comparison also included crown 
section parts above the observed topping length, 
which are of no practical relevance to bucking pattern 
optimization. If these were not considered (in addition 
to disregarding the root collar part below DBH), aver-
age deviations decreased on tree level (TLS: –0.1 cm 
(SD=1.3); APP: –0.7 cm (SD=2.0)), while RMSEs did not 
improve (TLS: 1.3 cm; APP: 2.2 cm). On crown level, 
the same behavior was observed (TLS: 0.2 cm 
(SD=1.6)/1.6 cm; APP (–1.7 cm (SD=1.8)/2.5 cm).

3.2 Bucking Pattern Comparison

3.2.1 Topping Length Estimation and Effect of 
Deviations

It was not possible to establish the observed top-
ping length for two trees because of excessive stem 
break during felling. Thus, their estimated and ob-
served topping length could not be compared. Inves-
tigation of the remaining 28 cases revealed that top-
ping length underestimation occurred more 
frequently than exact estimation or overestimation 
(Table 3). Further, topping length was significantly 
underestimated on average in all scenarios. In case of 
TLS, topping diameter had been measured at the esti-
mated topping length. Mean deviation was –1.9 cm 
(SD=2.4 cm), which constituted a significant underes-
timation (p=<0.001). Implemented topping length was 

Table 2 Descriptive statistics of deviation of over bark stem diam-
eter in TLS and APP scenario taper curves from REF taper curve

Scenario Section
Deviation, cm

Mean SD Min Max Median RMSE

TLS

Whole 
tree

–0.2 1.5 –13.2 14.9 –0.1 1.5

Trunk –3.3x10–2 1.4 –13.2 14.9 0.1 1.4

Crown –0.3 1.5 –3.9 2.6 –0.2 1.5

APP

Whole 
tree

–0.7 2.0 –8.7 8.6 –0.5 2.1

Trunk 0.2 1.8 –8.7 8.6 0.2 1.8

Crown –1.4 1.8 –6.1 3.3 –1.3 2.3
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Fig. 1 Deviation of over bark stem diameter from REF taper curve in TLS and APP scenario taper curves: Observation (grey) and deviation 
trend (LOESS fit; light gray line) for trunk and crown sections in TLS (a, c) and APP (b, d) scenarios. The black line indicates zero, the black, 
dashed lines 1–3 cm deviation

shorter than the observed topping length in most 
cases and differences were statistically significant in 
all scenarios (Table 3).

In CHA scenario, implemented topping length was 
shorter than observed topping length in most cases 
and significantly shorter on average (Table 3). How-
ever, no significant deviation from REF was observed 
on average (p=0.753). Contrarily, average topping 

length was significantly shorter than in REF in TLS 
(p=0.021) and APP (p=0.003) scenarios.

The excess of the observed versus the implemented 
topping length ranged from 0.83 m (CHA) in the best 
case to 2.88 m (REF) in the worst case. Associated total 
loss of volume and value were minimal, though, and 
ranged from 0.01 m³ UB to 0.02 m³ UB (–0.01% to 
–0.03%) and 0.20 Euro to 0.55 Euro (–0.01% to –0.02%).



G. Erber et al.	 Stem-Level Bucking Pattern Optimization in Chainsaw Bucking Based on Terrestrial Laser … (287–301)

294	 Croat. j. for. eng. 43(2022)2

3.2.2 Operation Level
The 30 trees bucking patterns consisted of between 

205 and 214 logs (Table 4, Fig. 2a) in total. Compared to 
REF, a smaller number of logs was bucked in TLS (–7) 
and APP (–4). Cumulated nominal log length in TLS 
(–26.05 m; 3.3%) and APP (–73.25 m; –9.3%) was lower 
than with REF (Table 4, Fig. 2b). Total log volume 
(Table 4, Fig. 2c) in TLS was slightly larger (0.24 m³ UB; 
0.6%) than in REF, while it was considerably lower 
(–2.60 m³ UB; –6.1%) with APP. Total value (Table 4, Fig. 
2d) in TLS was 24.94 Euro (0.9%) higher than REF. 
Contrarily, it was distinctively lower in APP (–110.51 
Euro; –4.1%).

The bucking patterns implemented by the chain-
saw operator exceeded that of the other scenarios in 
general, regardless of the parameter (Table 4, Fig. 2). 
However, while the number of logs (+2; 0.9%) bucked 
by the chainsaw operator and cumulated nominal log 
length were only marginally higher (0.20 m; <0.1%) 
than in REF, recovered volume and value recovery 
surpassed REF more markedly by 0.84 m³ UB (2.0%) 
and 64.02 Euro (2.4%).

Though grade distribution along the stem length 
had been the same in all scenarios, actual shares of 
grades differed between scenarios to some degree, and 
markedly between APP and the others (Table 4, Fig. 2). 
In APP, the share of ABC grade saw logs in total nom-
inal log length, total volume and total value was no-
ticeably higher. Vice versa, shares of CX saw log grade 
and IH industrial wood grade were lower than in all 
other scenarios. Comparison of APP and REF shares 
suggested that this can be mainly explained by con-
siderably lower absolute values for all parameters in 
IH industrial wood grade, and, to a lesser degree, in 
saw logs grades.

3.2.3 Tree Level
The average number of logs per tree in TLS (–3.4%) 

and APP (–2.0%) was slightly lower than in REF (Table 
5, Table 6); contrarily, it was marginally higher in CHA 
(0.8%); however, none of these differences were statis-
tically significant.

In average, the cumulated nominal length per tree 
(Table 5, Table 6) in TLS (–3.3%) was significantly low-
er than in REF, but average deviation was much small-
er than in APP (–9.2%). In the latter case, average 
nominal log length was significantly shorter (p=<0.001) 
than in REF. For CHA, no significant difference in cu-
mulated nominal length per tree was observed.

While average total volume per tree in TLS did not 
differ significantly from REF, the opposite was true for 
APP and CHA scenarios (Table 5, Table 6). In these, it 
was either considerably smaller (APP; –6.3%) or slight-
ly larger (CHA; 2.1%). The pattern of significant de-
viations of value followed that of volume: total aver-
age value in TLS (0.9%) was slightly, but not 
significantly higher than in REF, while significant 
deviations in opposite directions were observed for 
APP (–4.1%) and CHA (2.4%). On a Euro per m³ basis, 
average value did not differ from REF in any of the 
scenarios.

Contrary to total tree values, on grade level, sig-
nificant deviations from REF were only observed in 
APP scenario (Table 6). In this scenario, the average 
number of logs and cumulated nominal log length per 
tree in ABC saw log and IH industrial wood grades 
were lower than in REF. The same was observed for 
average total volume and total value per tree in case 
of CX saw log and IH industrial wood grades.

Table 3 Comparison of estimated topping length and implemented topping length to observed topping length. Numbers in brackets represent 
the respective share in the scenario total

Comparison Scenario n

Cases, n Deviation

Underestimated/ 
shorter

Exact estimation/ 
match

Overestimation/ 
longer

Mean
Standard 
deviation

p

Estimated vs. 
observed

topping length

REF 28 (100%) 18 (64.3%) 0 (0.0%) 10 (35.7%) –0.55 1.33 0.018

TLS 28 (100%) 23 (82.2%) 2 (7.1%) 3 (10.7%) –1.05 1.22 <0.001

APP 28 (100%) 19 (67.9%) 0 (0.0%) 9 (32.1%) –0.89 1.42 0.002

Implemented 
vs. observed

topping length

REF 28 (100%) 20 (71.4%) 0 (0.0%) 8 (28.6%) –0.89 1.16 <0.001

TLS 28 (100%) 26 (92.9%) 0 (0.0%) 2 (7.1%) –2.02 2.46 <0.001

APP 28 (100%) 22 (78.6%) 1 (3.6%) 5 (17.8%) –3.05 4.00 <0.001

CHA 28 (100%) 22 (78.6%) 1 (3.6%) 5 (17.8%) –1.01 1.28 <0.001
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Fig. 2 Comparison of bucking patterns on operation level: totals of number of logs (a), nominal length (b), volume under bark (c) and value 
(d) and their distribution across grades by scenario

4. Discussion
The applicability of terrestrial laser scanning tech-

nology has been rapidly enhanced over the last de-
cade. However, further progress is considered as key 
to establish this technology in practical applications 
and complete digitalization of the information flow in 
forestry (Talbot et al. 2017). Terrestrial laser scanning 
has been successfully tested in forest inventory appli-
cations, in which precise stem volume estimations 
could be achieved through algorithms that demon-

strated a high robustness under manifold scenarios 
(Liang et al. 2014, 2018, Gollob et al. 2019, 2020). The 
present study confirmed that taper curves can be esti-
mated very accurately and precisely using laser scan-
ning data. Further, estimation was more accurate and 
precise than by a traditional segmental approach. With 
respect to bucking pattern optimization, it entailed a 
more favorable result regarding volume and value 
recovery, which was similar to that of an experienced 
chainsaw operator.
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Table 4 Comparison of bucking pattern parameters on operation 
level: scenario totals and distribution across grades. Numbers in 
brackets represent the respective share in the scenario total

Parameter Scenario Total
Saw log grades

Industrial wood 
grades

ABC CX IH

Number of 
logs, n

REF
212 

(100.0%)
120 

(56.6%)
23 

(10.8%)
69 (32.5%)

TLS
205 

(100.0%)
118 

(57.6%)
23 

(11.2%)
64 (31.2%)

APP
208 

(100.0%)
116 

(55.8%)
23 

(11.1%)
69 (33.2%)

CHA
214 

(100.0%)
121 

(56.5%)
23 

(10.7%)
70 (27.7%)

Nominal 
length, m

REF
791.35 

(100.0%)
480.00 
(60.7%)

92.00 
(11.6%)

219.35 (27.7%)

TLS
765.30 

(100.0%)
472.00 
(61.7%)

92.00 
(12.0%)

201.30 (26.3%)

APP
718.10 

(100.0%)
464.00 
(64.6%)

92.00 
(12.8%)

162.10 (26.3%)

CHA
791.55 

(100.0%)
484.00 
(61.1%)

92.00 
(11.6%)

215.55 (27.2%)

Volume,  
m3 UB1

REF
42.50 

(100.0%)
31.21 

(73.4%)
5.61 

(13.2%)
5.68 (13.4%)

TLS
42.74 

(100.0%)
31.55 

(73.8%)
5.81 

(13.6%)
5.38 (12.6%)

APP
39.90 

(100.0%)
30.92 

(77.5%)
4.86 

(12.2%)
4.12 (10.3%)

CHA
43.34 

(100.0%)
31.97 

(73.8%)
6.01 

(13.9%)
5.36 (12.4%)

Revenue, 
Euro

REF
2678.24 
(100.0%)

2255.04 
(84.2%)

235.62 
(8.8%)

187.58 (7.0%)

TLS
2703.18 
(100.0%)

2281.73 
(84.4%)

244.02 
(9.0%)

177.43 (6.6%)

APP
2567.73 
(100.0%)

2230.30 
(86.9%)

201.66 
(7.9%)

135.77 (5.3%)

CHA
2742.26 
(100.0%)

2313.07 
(84.3%)

252.42 
(9.2%)

176.77 (6.4%)

1 UB = under bark

The low RMSE of taper curve estimation in TLS 
scenario was comparable to recent studies (Liang et al. 
2014, 2018, Hunčaga et al. 2020). Accuracy and preci-
sion of the estimation was higher in the (branchless) 
trunk section than in the crown section. This is simply 
because a large proportion of the laser beams is re-
flected by the foliage on branches in the upper tree 

sections (Hyyppä et al. 2020). This phenomenon re-
sults in a lack of sufficient data points in the crown 
layer, an issue frequently occurring in (stationary) ter-
restrial laser scanning (Liang et al. 2014). Further, the 
precision of the scan is likely affected by trees swaying 
in the wind (Vaaja et al. 2016). This may explain some 
of the observed deviations between the TLS and REF 
taper curves.

In some cases, the estimated taper curves did not 
properly fit to the manual measurements from the 
area near the tree top, in that the diameter observa-
tions were significantly larger than estimations. The 
possible explanations are manifold and include e.g. 
tree height measurement errors or taper irregularities 
caused by snow breakage. The former issue could 
have been resolved by extra field measurements of 
felled trees. However, such measurements were not 
conducted and would not have been possible in many 
cases due to frequent fragmentation of tree tops after 
felling. Alternatively, tree height could be derived in 
one pass and sufficiently accurate and precise by sur-
veying the stand with a portable laser scanning system 
(PLS) (Gollob et al. 2020, Balenović et al. 2021). How-
ever, the larger deviations of the estimated stem curves 
might also be introduced by the natural boundary 
conditions of the underlying B-spline basis functions.

Taper curves could not be estimated with the same 
accuracy and precision by the traditional segmental 
approach. It should be noted, however, that this ap-
proach had originally been developed for estimation 
of standing tree volume in forest inventories, where it 
was not the aim to provide a perfect representation of 
the taper curve. Considering that, it performed well. 
However, it is particularly vulnerable to height errors 
by design, as tree height enters into the functions for 
estimating felling diameter and crown base diameter. 
Again, this issue could have been mitigated by mea-
suring the crown section length in the field. However, 
as the decision to include the segmental approach in 
the comparison had been taken post-operationally, 
these were not conducted.

Bucking patterns established in TLS were very 
similar to patterns in REF, except for nominal length. 
This may be explained by both the slight underestima-
tion of stem diameter in general, and a marginally 
larger one in the crown section, which was most likely 
caused by one or a combination of the abovemen-
tioned issues related to missing data points, wind and 
tree height.

In APP, substantially lower totals of nominal 
length, volume and revenue than in REF and TLS sce-
narios were observed across all grade categories and 
particularly in industrial wood grade. For higher 
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Table 5 Comparison of bucking pattern parameters on tree level: mean, standard deviation, min, max and median by scenario

Parameter Scenario Mean Standard deviation Minimum Maximum Median

Number of logs, n

REF 7.07 0.74 6.00 9.00 7.00

TLS 6.83 0.94 4.00 8.00 7.00

APP 6.93 1.78 3.00 9.00 7.00

CHA 7.13 0.73 6.00 8.00 7.00

Nominal length, m

REF 26.38 2.58 21.65 30.90 26.45

TLS 25.51* 3.53 16.00 31.00 26.13

APP 23.94* 5.31 12.00 30.90 25.85

CHA 26.39 2.62 21.15 30.20 26.45

Volume, m3 UB1

REF 1.42 0.57 0.53 2.97 1.43

TLS 1.43 0.61 0.43 2.87 1.37

APP 1.33* 0.56 0.37 2.58 1.34

CHA 1.44* 0.58 0.52 2.56 1.43

Value, Euro

REF 89.27 35.88 27.06 182.79 92.49

TLS 90.11 39.45 18.10 190.51 94.23

APP 85.59* 36.65 17.27 169.37 90.34

CHA 91.41* 36.21 26.67 186.32 92.98
1 UB = under bark, * = significantly (α=0.05) different from REF

Table 6 Deviation of TLS, APP and CHA bucking pattern parameters from TLS on tree level: mean, standard deviation and p-value by sce-
nario and grade

Scenario TLS APP CHA

Parameter Grade n Mean SD p n Mean SD p n Mean SD p

Number of logs, n

All 30 –0.23 0.77 0.109 30 –0.13 1.43 0.614 30 0.07 0.58 0.536

ABC2 30 –0.07 0.25 0.161 30 –0.13 0.35 0.043 30 –0.03 0.32 0.573

CX2 14 0.00 0.00 – 14 0.00 0.00 – 14 0.00 0.00 –

IH3 29 –0.10 0.62 0.375 25 0.40 0.91 0.038 30 0.03 0.69 0.769

Nominal length, m

All 30 –0.86 2.25 0.041 30 –2.44 3.74 0.001 30 0.01 1.18 0.976

ABC2 30 –0.27 1.01 0.161 30 –0.53 1.38 0.043 30 0.13 0.73 0.326

CX2 14 0.00 0.00 – 14 0.00 0.00 – 14 0.00 0.00 –

IH3 29 –0.38 1.32 0.129 25 –0.90 1.81 0.021 30 –0.13 1.23 0.578

Volume, m3 UB1

All 30 0.01 0.10 0.665 30 –0.09 0.16 0.007 30 0.03 0.04 <0.001

ABC2 30 0.01 0.07 0.407 30 –0.01 0.11 0.631 30 0.03 0.07 0.061

CX2 14 0.01 0.03 0.146 14 –0.05 0.09 0.041 14 0.03 0.08 0.203

IH3 29 –0.01 0.04 0.284 25 –0.04 0.04 <0.001 30 –0.01 0.04 0.185

Value, Euro

All 30 0.83 6.35 0.479 30 –3.68 9.81 0.049 30 2.13 3.68 0.004

ABC2 30 0.89 5.64 0.395 30 –0.82 8.23 0.587 30 1.93 5.24 0.053

CX2 14 0.60 1.45 0.146 14 –2.43 3.75 0.031 14 1.20 3.35 0.203

IH3 29 -0.26 1.23 0.262 25 -1.17 1.29 <0.001 30 -0.36 1.42 0.176
1 UB = under bark, 2 ABC, CX = saw log grades, 3 IH = industrial wood grade
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sensitivity of APP to input parameter inaccuracies and 
its general tendency to underestimate upper trunk and 
crown section stem diameters, this was not surprising. 
However, deviations in volume and value were lower 
than in Erber et al. (2021; –8.8% and –8.6%), where 
broadleaf trees had been harvested.

The bucking pattern implemented by the chainsaw 
operator was advantageous to those of TLS and APP 
regarding all investigated parameters. In case of REF, 
differences were only marginal, and CHA advantage 
regarding revenue can largely be traced back to one 
tree. In that case, the first 3.03 m at the butt end of the 
stem were classified as industrial wood grade, fol-
lowed by ABC saw log grade. The chainsaw operator 
chose to buck an industrial wood grade log of 3 m 
nominal length, followed by an ABC sawlog grade log. 
Contrarily, the bucking pattern optimization algo-
rithm bucked a 2 m and a 4 m industrial wood grade 
log before continuing with ABC sawlog grade logs. 
This was due to the current implementation of the pre-
ferred nominal length option, which considers nomi-
nal lengths other than the preferred ones only if top-
ping length was exceeded, but not when exceeding a 
grade section border. Though not comprehensible at 
first glance, the algorithms decision obviously ren-
dered an optimum result under abovementioned re-
strictions.

Finally, it must be noted that the study was limited 
regarding the range of bucking alternatives, with only 
one permissible nominal length for the saw log assort-
ments and two preferred permissible nominal lengths 
for industrial wood within a narrow range of two me-
ters. Therefore, the bucking decision was not a very 
complex one, and the algorithms strengths most likely 
have been more apparent with more options. Due to 
this and to the fact that its result was compared to only 
one very experienced operator, no statement can be 
made about potential for improvement of bucking de-
cisions by bucking pattern optimization. Answering 
this question would require a separate investigation, 
similar to Pickens et al. (1993) and ideally a controlled 
study in a professional training setting, with operators 
of different experience level.

From a time consumption and cost point of view, 
one may argue that stationary terrestrial laser scan-
ning is a time-consuming endeavour and that time 
consumption and cost would only shift from manual 
measurement during harvesting to scanning of the 
stand and processing of the data previous to the op-
eration. However, terrestrial laser scanning data hold 
considerable potential and added value for other ap-
plications, e.g. forest inventory (Gollob et al. 2019) or 
as a basis for the »digital twin« (Rossmann et al. 2010) 

of the forest in the context of digitalization and indus-
try 4.0 applications. Therefore, it is unlikely that data 
would be solely collected for bucking pattern optimi-
zation and its respective share in the effort would be 
a minor one. Further, recent availability of mobile ter-
restrial laser scanning, in the form of PLS (Gollob et al. 
2020, Hyyppä et al. 2020) have considerably increased 
survey speed, e.g. almost five times in the case of 
Gollob et al. (2020). Finally, data may also be collected 
time- and cost-efficiently by unmanned ground vehi-
cles in the future (Pierzchała et al. 2018).

Moreover, terrestrial laser scanning is a worth-
while investment with regard to bucking pattern op-
timization in any case due to improved stem represen-
tation. Further, it allows to perform a rough, 
automated grading of the stem regarding stem geom-
etry and surface characteristics, such as sweep, taper 
and branchiness before felling (Pyörälä et al. 2019), 
which could then be fine-tuned by the chainsaw op-
erator on site. Finally, grading by the user could be 
aided by prevention of undercutting individual grade 
topping diameter limits, as well as pointing out man-
datory cross-cutting points to avoid excessive sweep.

The bucking algorithm itself could be enhanced by 
more sensitive consideration of grade borders and of 
different types of cost to optimize contribution mar-
gins. To better match contractual obligations, demand 
restrictions could be implemented, similar to harvest-
ers (Kivinen et al. 2007).

Successful implementation of bucking pattern op-
timization in chainsaw bucking, however, will largely 
depend on whether it can be integrated into an easy-
to-use system. As the present study showed, terres-
trial laser scanning clearly enhances the process by 
replacing a significant proportion of manual measure-
ments related to taper curve estimation. By operating 
the algorithm on a device with a larger screen (e.g. a 
small, rugged tablet), usability could be facilitated fur-
ther. However, having to take off gloves for data entry 
may add discomfort, especially in wintertime. To 
avoid manual entry, a mixed-reality solution integrat-
ed into the chainsaw operator’s helmet, as demon-
strated by Wagner (2019), supplemented by voice con-
trol could be employed.

5. Conclusions
The proposed approach for acquiring stem diam-

eter data and fitting of taper curves for bucking pattern 
optimization provided estimations of taper curves 
with high precision and accuracy, on tree, trunk and 
crown section level, and was favorable to that of a 
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traditional segmental approach in all aspects. There-
fore, the investigated approach can be considered very 
well suited for the task. However, its application suf-
fered from the typical challenges of terrestrial laser 
scanning, and that of stationary types in particular 
(shadowing effects, wind). Therefore, and to further 
reduce the time consumption for data aqusition, fu-
ture developments should focus on portable terres-
trial laser scanning platforms and on integrating pro-
cedures to aid the grading process (stem geometry, 
surface characteristics).

The adequacy of the approach was also reflected 
by the result of the bucking pattern optimization, 
which was superior to that of the traditional approach 
and comparable to an experienced chainsaw opera-
tor’s solution. The latter’s slight advantage regarding 
value recovery resulted from an issue in the bucking 
pattern optimization algorithm, which can be easily 
resolved by reprogramming. Considering the chain-
saw operator’s inherent advantage regarding aware-
ness of tree dimensions, the investigated approach 
performed highly satisfactorily.

For its enhancement of the optimization result and 
substantial reduction of time consumption for manual 
measurements, the investigated approach can be con-
sidered a further step towards increased accuracy, 
precision and efficiency of bucking pattern optimiza-
tion in chainsaw bucking.
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