
New Graphical Software Tool for Creating Cause-
Effect Graph Specifications

Ehlimana Krupalija, Šeila Bećirović, Irfan Prazina, Emir Cogo, and Ingmar Bešić

Abstract— Cause-effect graphing is a commonly used black-box
technique with many applications in practice. It is important to be
able to create accurate cause-effect graph specifications from
system requirements before converting them to test case tables
used for black-box testing. In this paper, a new graphical software
tool for creating cause-effect graph specifications is presented. The
tool uses standardized graphical notation for describing different
types of nodes, logical relations and constraints, resulting in a
visual representation of the desired cause-effect graph which can
be exported for later usage and imported in the tool. The purpose
of this work is to make the cause-effect graph specification process
easier for users in order to solve some of the problems which arise
due to the insufficient amount of understanding of cause-effect
graph elements. The proposed tool was successfully used for
creating cause-effect graph specifications for small, medium and
large graphs. It was also successfully used for performing different
types of tasks by users without any prior knowledge of the
functionalities of the tool, indicating that the tool is easy to use,
helpful and intuitive. The results indicate that the usage of
standardized notation is easier to understand than non-
standardized approaches from other tools.

 Index terms—software quality, black-box testing, cause-effect
graph, graphical software tool.

I. INTRODUCTION
Cause-effect graphing (CEG) was introduced as a black-box

testing technique in 1970 as a new way of generating test cases
for a given software product functionality [1]. It was later
adopted as a standard black-box testing method in works such
as [2], [3], [4] and [5]. Cause-effect graph specifications contain
three different types of elements: nodes (causes, intermediates
and effects), logical (Boolean) relations and dependency
constraints. After creating the cause-effect graph specification
from system requirements, different algorithms based on back-
propagation of effect values through the graph such as [4], [6]
and [7] can be used for deriving test case tables. These test case
tables are then used for black-box testing the desired system.

The main difficulty in the usage of cause-effect graphs arises
due to the large dimensionality of test cases. Each node can be
in one of two states – active or inactive, which is why the total

Manuscript received July 26, 2022; revised October 10, 2022. Date of
publication November 29, 2022. Date of current version November 29, 2022.
The associate editor prof. Tihana Galinac Grbac has been coordinating the
review of this manuscript and approved it for publication.

Authors are with the Department of Computer Science and Informatics,
Faculty of Electrical Engineering, University of Sarajevo, Bosnia and
Herzegovina (emails: ekrupalija1@etf.unsa.ba, sbecirovic1@etf.unsa.ba,
iprazina1@etf.unsa.ba, ec15261@etf.unsa.ba, ingmar.besic@etf.unsa.ba).

Digital Object Identifier (DOI): 10.24138/jcomss-2022-0076

number of test cases is 2number of causes. It is very important to
correctly specify all logical relations and constraints between
causes and effects of the graph before generating the test case
table by using the available algorithms. Usage of constraints
reduces the feasible test case subset size, making the test case
selection process easier and less costly [8]. Unfortunately, the
definition of the most commonly used back-propagation
algorithm for deriving test case tables from [4] contains many
inconsistencies. Additionally, different types of constraints are
often misinterpreted by users, which is why their usage is often
omitted (e.g. MSK constrains in [9] and [10]). All of these
problems are pointed out and explained in detail in [11]. Test-
case-description-related problems (e.g. incomprehensible,
abstract and poorly documented test cases) also pose a critical
problem [12], which is why it is very important to correctly
derive cause-effect graph element descriptions from system
requirements. The lack of verification of the conformance of the
cause-effect graph with the specification of the desired system
leads to many problems with test case derivation from cause-
effect graph specifications. For this reason, the usage of
machine learning methods [13] and natural language processing
algorithms [14] has recently been proposed for automatically
converting system requirements to cause-effect graph
specifications.

Another factor which increases the amount of errors in the
cause-effect graph specification process is the misuse of
graphical notation for representing cause-effect graph elements.
Different types of notation are present in the available cause-
effect graphing works and the lack of standardization between
different approaches makes this process more error-prone.
Some non-standard approaches regarding the notation used for
depicting different logical relations are similar to the
standardized notation such as [15], whereas in other cases such
as [16] the notation is very different and may be hard to
understand. Additionally, omitting intermediate nodes can lead
to specifications which do not conform to system requirements
or result in incorrect test case tables, as noted in [11]. This
problem is also addressed in [14], which accentuates the
importance of the conformance of cause-effect graph
specifications and formal system requirements.

A limited number of software tools for aiding the process of
creating cause-effect graph specifications is available. Most of
these tools are not open-source and are not available for free
usage. Only one available tool [17] contains graphical elements,
whereas other tools such as [18] and [7] focus on the application
of different CEG algorithms for deriving test case tables from
cause-effect graph specifications provided by the user. The

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022 311

1845-6421/12/2022-0076 © 2022 CCIS

Original scientific article

mailto:ekrupalija1@etf.unsa.ba
mailto:sbecirovic1@etf.unsa.ba
mailto:iprazina1@etf.unsa.ba
mailto:ec15261@etf.unsa.ba

aforementioned problems with the cause-effect graph
specification process accentuate the necessity of a new software
tool for making this process easier for domain experts and end
users.

In this paper, a new graphical software tool for creating
cause-effect graph specifications is introduced. The tool is
open-source and can be used for free. It is designed for defining
all cause-effect graph elements, including different node types,
logical relations and constraints. The purpose of the tool is to
reduce the amount of errors in the cause-effect graph
specification process. The generated cause-effect graphs can
then be used for deriving test case tables for black-box testing
different types of systems. The tool currently does not support
any algorithms for test case table derivation, however it was
designed in such a way that the introduction of such
functionalities can be easily incorporated into the tool in the
future. The expected contributions of the work include:
• Introduction of a new software tool which uses standardized

graphical notation for creating cause-effect graph
specifications. The tool can also be used for exporting the
specifications to .txt files and importing these files for later
reuse and modification. Usage of this tool can help in
reducing the time for generating black-box tests for a given
system based on system requirements and offer output that
conforms to the standard accepted notation present in the
available literature.

• Analysis of the scalability of the graphical-tool-based
approach for the specification of cause-effect graphs. Using
a variety of small, medium and large graphs presented in
related work, the proposed tool was evaluated in order to
confirm that it can be successfully used for creating both
simple and complex cause-effect graph specifications.

• The comparison of available software tools to the newly
introduced graphical software tool in terms of usage of
graphical elements and usability. Usability of the newly
proposed tool and its comparison to other available tools
were evaluated by conducting surveys for user-based
evaluation.

This work is structured as follows. In section II, cause-effect
graphs are introduced and their main elements are explained in
detail. Background and related work are also discussed in this
section. In section III, the graphical user interface and
functionalities of the proposed software tool are explained. The
evaluation of the graphical tool by using different examples
from the relevant literature and other available tools is
summarized in section IV. Two surveys were conducted for
determining the usability of the new software tool and for
comparison with other existing approaches. Section V contains
the explanation of internal and external threats to validity of the
conducted study, as well as its limitations. In section VI, the
overall analysis of the software tool is conducted with its
comparison to earlier approaches. Recommendations for further
research and possible future enhancements of the tool are also
given in this section.

II. PRELIMINARIES AND RELATED WORK

This section contains the necessary preliminaries for
understanding the cause-effect graph specification process. In

Section II.A. all types of cause-effect graph elements are
defined: different types of nodes, logical relations and
dependency constraints, which will be used in the proposed
graphical software tool. Section II.B. contains the explanation
of all related work in the field of research, including the wide
usage of cause-effect graphs for different applications, available
types of graphical notation and a systematic review of existing
CEG software tools.

A. Cause-effect Graph Specification Elements

Cause-effect graph specification and its elements are defined
and explained in many works such as [1], [2] and [4]. Every
cause-effect graph contains three different types of elements –
graph nodes, logical relations and dependency constraints. All
defined graph nodes, regardless of their type, can be in one of
two states – active (1) or inactive (0). Cause-effect graphs can
contain three different types of nodes:

1) Causes, which are used to describe different variables
or events which result in the activation of effects in the system.
Cause nodes are always placed on the left side of the graph.
Causes are denoted as Ci (where i > 0 represents the number of
the node). Every cause-effect graph must have at least one cause
node.

2) Effects, which are used to describe different variables
or events which are triggered by the causes of the system. Effect
nodes are always placed on the right side of the graph. Effects
are denoted as Ei (where i > 0 represents the number of the
effect node). Every cause-effect graph must have at least one
effect node.

3) Intermediates, which are used as helpers for capturing
different logical relations between cause nodes. The purpose of
these nodes is to reuse the effects of logical relations as causes
for other logical relations. Intermediate nodes are always placed
between the causes and effects of the graph. Intermediates are
denoted as Ii (where i > 0 represents the number of the
intermediate node). Usage of intermediates is optional.

Six different logical relations can be defined between graph
causes, intermediates and effects. Due to the initially intended
purpose of cause-effect graphs for testing hardware logical
circuits in [1], truth tables of logical relations are very similar
to those of logical gates. In addition to the four standard logical
relations: DIR (direct), NOT (negation), AND (conjunction)
and OR (disjunction), two additional relations (which are
omitted in some works such as [4] and [19]) can be used:
NAND (Peirce arrow) and NOR (Sheffer stroke). The direct
and negation logical relations are unary, meaning they have
exactly one cause and one effect node, whereas all other logical
relations are n-ary, meaning they have n > 1 causes and one
effect node. The truth table for all six logical relations is shown
in Table I, where nodes (labeled as N1 and N2) represent causes
and the operation result represents the resulting effect value
(value of 0 means that the effect is not activated and vice versa).
Only N1 values are used for determining the results of the direct
and negation relations, which are unary.

Five different dependency constraints can be defined
between graph causes or effects: EXC (exclusion), INC
(inclusion), REQ (required), MSK (masking) and EXC Δ INC
(one and only one – exclusive inclusion). All constraints except
for MSK are defined on causes, whereas the MSK constraint is

312 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

defined on effects. Intermediates cannot be used in constraints.
EXC, INC and EXC Δ INC constraints are n-ary, meaning they
have n > 1 causes, whereas REQ and MSK constraints are
binary, meaning they are defined on exactly two nodes. The
truth table for all five constraints is shown in Table II, where
depending on the type of the constraint, nodes N1 and N2 can
either represent causes or effects, whereas the operation result
represents the resulting test case feasibility (value of 0 means
that the test case is not feasible and vice versa).

TABLE I

TRUTH TABLE FOR ALL LOGICAL RELATIONS
Cause values Resulting effect value
N1 N2 DIR NOT AND OR NAND NOR
0 0 0 1 0 0 1 1
0 1 0 1 0 1 1 0
1 0 1 0 0 1 1 0
1 1 1 0 1 1 0 0

TABLE II

TRUTH TABLE FOR ALL CONSTRAINTS
Node values Resulting test case feasibility
N1 N2 EXC INC REQ MSK EXC Δ INC
0 0 1 0 1 1 0
0 1 1 1 1 1 1
1 0 1 1 0 1 1
1 1 0 1 1 0 0

B. Related Work

Cause-effect graphs have been applied to many problems
used in many areas such as telecommunication distributed
systems [20], quantum programming [10], knowledge
assessment [21], automatic college placement process [22] and
high-speed safety-critical railway systems [9]. Due to their
similarity to digital circuits [4], cause-effect graphs can be
applied to a variety of problems that require logical relation
modeling, in order to determine which test cases are feasible so
the overall number of tests can be reduced. Cause-effect graphs
have also been combined with other techniques, such as
pairwise testing [23], UML model transformations [24] [25]
and Boolean differentiation [26] [7].

The wide usage of cause-effect graphs as a black-box testing
technique accentuates the importance of the process of correctly
defining cause-effect graph specifications, which is imperative
in order to correctly derive black-box test cases for the desired
system. In some of the aforementioned works, constraint usage
is omitted, which results in more feasible test cases than what is
truly defined by system requirements. For example, in [9] the
MSK constraint is not used between effect nodes. However, the
effects are simultaneously exclusive and the existence of this
constraint is necessary for removing infeasible test cases. In
[22], the test case table contains test cases which do not conform
to the presented cause-effect graph specification (e.g. when C6
is active, E2 is not set to active although these two nodes are
connected by using the DIR logical relation). This indicates that
cause-effect graph elements are used incorrectly or their usage
is omitted in multiple available works, which results in incorrect
feasible test case table specifications.

Different works use different types of graphical notation for
describing cause-effect graphs, sometimes introducing

elements which are hard to understand as they do not conform
to any introduced standard. Due to these inconsistencies, it is
important to analyze the standard accepted CEG graphical
notation and its variations. In cases where multiple different
proposed notations exist and are widely used, such as in case of
entity relationship diagrams (ERDs), methods for conversion
between different notations and detailed descriptions of
differences between accepted standards are necessary [27].
However, in cause-effect graphs there is only one general
standard and notations which do not conform to this standard
are present only in a small number of available works. The
initial graphical notation for representing cause-effect graph
elements was introduced in [1]. This notation is very simple and
includes the usage of different types of letters for representing
logical relations and constraints (e.g. A for conjunction and O
for disjunction). Full lines are used for connecting nodes by
logical relations and dashed lines are used for connecting nodes
by constraints.

Although the usage of full and dashed lines was adopted by
all later works, many changes were made in the graphical
notation for representing logical relations. Most works [2] [3]
[4] [7] use graphical elements instead of letters to represent
logical relations (e.g. wavy line for negation, arch and the
symbol “˅” for disjunction) and this type of notation is
considered as the general standard. However, some approaches
use graphical notation which significantly differs from the
standardized notation. For example, in [21] arrow tips are used
for connecting nodes by logical relations, although arrow tips
are standardly used only for representing the direction of the
REQ and MSK constraints. In [15], logical relations are
represented through the usage of bounding boxes and different
symbols (e.g. AND instead of A for conjunction). A novel
graphical notation with many differences to the general
standard was proposed in [16]. This notation is more suited for
the requirement elicitation process and introduces many new
types of cause-effect graph elements such as membership and
interactions. However, CEG representations created by the
usage of this novel approach cannot be directly used for
deriving test case tables and an algorithm for performing this
conversion has yet to be introduced.

The development of software tools for aiding the process of
cause-effect graph specification began with the introduction of
TELDAP (Test Library Design Automation Program) in the
initial work that introduced cause-effect graphs as a black-box
testing technique [1]. TELDAP was an APL/360 program
capable of processing cause-effect graph specifications and
converting them to test case tables. TELDAP is outdated and no
longer supported, so it will be omitted by this study.
BenderRBT [17] is a commercial software tool for creating
cause-effect graph specifications through a graphical user
interface. This tool is not free for usage and does not use
standard graphical notation. In fact, the graphical notation used
in this tool does not conform to any of the previously mentioned
works (e.g. no works use the symbol “=” for describing the DIR
relation, the definition of the MSK constraint does not conform
to the definition present in the standard literature, etc.).

Problems arising due to a low number of available software
tools for creating CEG specifications were reported as far back
as 1997 in [28]. Since then, several new CEG software tools

E. KRUPALIJA et al.: NEW GRAPHICAL SOFTWARE TOOL FOR CREATING CAUSE-EFFECT GRAPH SPECIFICATIONS 313

have been introduced. Cause-effect graph software testing tool
(CEGSTT) [18] is another tool for creating cause-effect graph
specifications. It is not open-source nor available for free usage.
This tool does not contain graphical elements, nor does it
generate the graphical description of a cause-effect graph. Test
generator for cause-effect graphs (TOUCH) [7] is a recently
proposed software tool and it also does not contain graphical
elements for cause-effect graph specifications. However, this
tool is open-source [29] and cross-platform unlike BenderRBT
and CEGSTT, which only run on the Microsoft Windows
operating system. TOUCH supports test case table derivation
by using many proposed algorithms based on Boolean
experssions, whereas BenderRBT and CEGSTT use only the
common Myers’ backward-propagation algorithm for this
purpose. Korean requirement analyzer for cause-effect graphs
(KRA-CE) [30] is another recently proposed software tool
which automatically converts system requirement descriptions
to cause-effect graph specifications and test case tables.
However, this approach is localized to the Korean language and
does not contain graphical elements of cause-effect graph
specifications. The tool is cross-platform but it is currently not
open-source.

Table III contains a comparison of the previously described
currently available CEG software tools. The number of
available tools is limited and only one tool is open-source and
can be used for free. Only one tool, which is commercial and
not available for free usage, contains graphical and non-
standardized elements of cause-effect graphs. Additionally,
works which focus on applying the cause-effect graphing
technique on different types of problems contain
inconsistencies regarding notation usage and conformance to
system requirements. All of the aforementioned drawbacks
serve as the main motivation for the development of the new
software tool proposed in this work. This tool, named ETF-RI-
CEG, is an open-source graphical software tool. The primary
goal of this tool is to enable users to create cause-effect graphs
by using standardized graphical notation. Test case derivation
is a functionality that is not yet supported. However, the
import/export feature present in this tool makes it possible to
save and reuse cause-effect graph specifications. In this way,
new, upgraded versions of the tool in the future can be used for
generating test case tables for the previously created cause-
effect graphs and their graphical specifications.

TABLE III
COMPARISON OF AVAILABLE CEG SOFTWARE TOOLS

Tool Type of
specification

Graphical
notation

Test case
derivation

Cross-platform Availability Import/
export feature

BenderRBT [17] Graphical Custom Myers’
algorithm

No Commercial .CEG

CEGSTT [18] UI - Myers’
algorithm

No Not open-source Unknown

TOUCH [7] [29] UI - multiple
algorithms

Yes Open-source .Graphml

KRA-CE [30] Textual - C3tree
algorithm

Yes Not open-source Unknown

ETF-RI-CEG Graphical Standard No No Open-source .Txt

III. THE PROPOSED GRAPHICAL SOFTWARE TOOL
The proposed graphical software tool is named ETF-RI-

CEG. The tool is a desktop application developed by using the
.NET 5 framework and the C# programming language in the
Windows Forms application template type. .NET 5 version of
the framework is cross-platform and supported on Microsoft
Windows, Mac OS and Linux operating systems. However, in
order to be able to run the tool on Mac OS or Linux, Wine needs
to be installed as the Windows Forms template execution is not
yet supported. Only the installation of .NET 5 Runtime is
required to be able to run the tool on Microsoft Windows. The
software tool is open-source and available for free usage. It can
be accessed online on GitHub1. The user manual of the tool
contains specifications on how to build and use the application.

When the proposed tool is first opened, it contains an empty
panel and options to add graph nodes, logical relations and
constraints. Multiple operations can be performed with graph
nodes in the proposed tool. New nodes can be added to the
graph, existing nodes can be moved on the graph or deleted
from the graph entirely. Adding and moving nodes is done by
using the drag-and-drop operation on the panel, whereas node
removal is performed by using the list of existing nodes and the

1 ETF-RI-CEG can be accessed by using the following link:
https://github.com/ehlymana/ETF-RI-CEG-Graphical

Delete button. New nodes are always assigned the lowest
unclaimed number for its type (e.g. if nodes C1 and C3 are
defined in the graph, the new node will be denoted as C2). After
deleting a node from the graph, all logical relations and
constraints that contain this node are also deleted.

Multiple operations can be performed with logical relations
and constraints of the graph. New relations and constraints can
be added to the graph or deleted from the graph entirely. All
operations on logical relations and constraints are done in the
same way. The graphical representation of logical relations and
constraints after they are added to the graph in the graphical tool
is shown in Fig. 1 (all types of logical relations) and Fig. 2 (all
types of constraints). This representation uses the standardized
graphical notation from [4] and [7].

Adding and removing logical relations and constraints is
done in the same way for all different types in the graphical
software tool. Adding a new logical relation or constraint is
more complex than adding nodes, because all nodes which are
part of the desired logical relation or constraint need to be
selected. To make the selection process easier for the user,
every selected node is marked with a black box. Removing
existing logical relations and constraints in the proposed tool

314 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

https://github.com/ehlymana/ETF-RI-CEG-Graphical

works in the same way as removing an existing node, by
selecting the desired logical relation or constraint from the
corresponding list and clicking on the Delete button.

Fig. 1. Representation of logical relations in the graphical software tool: a)
DIR relation, b) NOT relation, c) AND relation, d) OR relation, e) NAND

relation, f) NOR relation

Fig. 2. Representation of constraints in the graphical software tool: a) EXC

constraint, b) INC constraint, c) EXC Δ INC constraint, d) REQ constraint, e)
MSK constraint

After defining the desired cause-effect graph, it can be saved

for later usage by using the Import/Export option. The exported
.txt file contains the structure of the graph (graph nodes, their
locations, logical relations and constraints) created in the
graphical software tool, as shown in Fig. 3. The contents of the
file are easily readable and can be used for importing the graph
for later usage in the proposed tool. When importing an existing
graph file, the user is prompted to choose the desired exported
file that contains the graph definition, after which the graph is
shown on the panel of the tool, where it can be modified.

Fig. 3. Contents of the .txt file generated by using the Export feature in the
graphical software tool, which show the structure of the graph (graph nodes,
logical relations and constraints)

IV. EVALUATION
Evaluation of the proposed graphical tool was done by using

three different approaches. First, multiple cause-effect graphs
of different sizes from the standard literature were used for
checking whether ETF-RI-CEG is scalable to graph size during
the CEG specification process. The newly proposed tool was
also compared to the only other currently available software
tool which contains graphical elements, BenderRBT. Example
graphs and a user survey were used for this purpose. User-based
evaluation was also used for determining the overall usability
of ETF-RI-CEG and multiple usability metrics were calculated
based on the gathered information from multiple users.

A. Evaluation of Software Tool Scalability

In order to validate that the newly introduced graphical
software tool can be applied for successfully creating CEG
definitions, the following examples from the relevant literature
were used:

1) A small cause-effect graph (n = 6 cause and effect
nodes) from [4] which is shown in Fig. 4. This representation
uses the standard accepted graphical notation and contains
causes, effects, intermediates and different types of logical
relations, as well as a single constraint. Fig. 5 shows the
definition of the same cause-effect graph in the proposed tool.
It is visible that the two graphs are nearly identical due to the
fact that the same notation is used for representing the graph.
The only difference can be seen in the naming convention for
nodes – the original representation uses numbers associated
with the system requirements, whereas the proposed tool
explicitly defines the type and number for every node shown on
the graph.

E. KRUPALIJA et al.: NEW GRAPHICAL SOFTWARE TOOL FOR CREATING CAUSE-EFFECT GRAPH SPECIFICATIONS 315

Fig. 4. Example cause-effect graph from [4] which contains three cause nodes,

three effect nodes, one intermediate node, four logical relations and one
constraint

Fig. 5. The output of the proposed graphical software tool for the cause-effect

graph defined in Fig. 4

2) A medium cause-effect graph (n = 10 cause and effect
nodes) from the original work that introduced the cause-effect
graphing technique [1] which is shown in Fig. 6. This graph
uses graphical notation proposed in the original work (A
represents the AND relation, O represents the OR relation, etc.).
Fig. 7 shows the definition of the same cause-effect graph in the
proposed graphical software tool, where the standardized
graphical notation is used to represent logical relations and one
intermediate node is visible on the graph. There are many
differences to the original representation including separate
numbering for different types of nodes and the usage of
improved graphical notation for representing logical relations.
The most important difference to the original representation is
the replacement of the EXC constraint originally defined on
nodes C1 and I1. Using intermediates in constraints is not
directly allowed in the proposed tool (because constraints can
only be defined on cause nodes). This relation was replaced by
putting an EXC constraint on both of the cause nodes that result
in the activation of the intermediate node I1 to capture the
desired relation.

3) A large cause-effect graph (n = 25 cause and effect
nodes) from [4] which is commonly used for comparison due to
its large size, which is shown in Fig. 8. Fig. 9 shows the
definition of the same cause-effect graph in the proposed tool.
Some of the differences to the original representation have
already been mentioned in previous examples, including
changes regarding node numbering. New intermediate nodes
were added to the graph in order to capture the NOT logical

relation prior to the usage of the desired nodes in binary logical
relations, because unary and binary logical relations cannot be
combined. The main difference to the original representation is
the replacement of the negated REQ constraint originally
defined on nodes C17 and C8. The usage of this constraint is not
directly allowed in the proposed tool (because constraint values
cannot be negated). This relation was replaced by using the
EXC Δ INC constraint (which renders two out of four
combinations C17-C8: 0-0 and 1-1 infeasible) combined with the
REQ constraint (which renders the third combination C17-C8: 0-
1 infeasible, leaving only the desired combination C17-C8: 1-0
feasible).

Fig. 6. Example cause-effect graph from [1] which contains six cause nodes,

five effect nodes, one intermediate node, six logical relations and two
constraints

Fig. 7. The output of the proposed graphical software tool for the cause-effect

graph defined in Fig. 6

316 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

Fig. 8. A very large cause-effect graph from [4] which contains eighteen cause
nodes, seven effect nodes, thirteen intermediate nodes, twenty logical relations
and twenty-four constraints

Fig. 9. The output of the proposed graphical software tool for the cause-effect
graph defined in Fig. 8

B. Comparison to Other Available Tools

In order to compare the understandability of the proposed
graphical software tool with existing approaches and tools, the
only available graphical tool – BenderRBT [17] [31] was used.
This tool enables users to graphically define cause-effect
graphs, but it does not use standardized graphical notation. An
example graph from [17] created by using this tool is shown in
Fig. 10, whereas the definition of the same cause-effect graph
in the proposed tool is shown in Fig. 11. There are many
differences between the representations created by BenderRBT

2 The user survey can be accessed by using the following link:
https://forms.gle/ypcHEP5YHkWC28FD6

and the proposed tool. In BenderRBT, nodes are not numbered
but instead contain descriptions related to system requirements.
Standardized graphical notation is not used to represent logical
relations or constraints.

Some differences which needed to be made have already
been mentioned, such as combining the usage of unary and
binary relations. The main difference to the original
representation is the replacement of the MSK constraint
originally defined on causes (which is forbidden, because the
MSK constraint can be applied only to effects). It was
additionally unclear what the meaning of the negated MSK
constraint present in Fig. 10 was. As explained by [31],
negation on the MSK relation is used in BenderRBT to
represent the subject of the MSK relation, whereas the other
links are used to represent the objects of the MSK relation. This
does not conform to the standard definition of the MSK relation
explained in Section II. Instead, it represents the REQ relation
between the subject and the objects of the MSK relation.
Therefore, the identified REQ relations were added to the graph
as a replacement for the incorrectly applied MSK relation.

Fig. 10. A cause-effect graph from [17] which contains six cause nodes, one
effect node, one intermediate node, two logical relations and two constraints

Fig. 11. The output of the proposed graphical software tool for the cause-

effect graph defined in Fig. 10

The presented example and the achieved results by
comparing the output of BenderRBT with the output of ETF-
RI-CEG could not be generalized, because this example might
not be representative of all BenderRBT outputs. In order to
improve the objectivity of the results, a user survey2 was
conducted. The survey contained multiple examples which can

E. KRUPALIJA et al.: NEW GRAPHICAL SOFTWARE TOOL FOR CREATING CAUSE-EFFECT GRAPH SPECIFICATIONS 317

https://forms.gle/ypcHEP5YHkWC28FD6

be found in the BenderRBT user manual [31] and their
representations created in ETF-RI-CEG. The survey focused on
comparing the different representations and getting information
from the users on which representation is easier to understand,
how complex they perceive the cause-effect graphs, whether
they can correctly identify results of logical relations and
constraints, etc. The survey was completed by 59 BSc and MSc
students of Faculty of Electrical Engineering, University of
Sarajevo. Their background knowledge of software testing and
cause-effect graphs is summarized in Table IV. Most
participants had little to no experience with software testing and
more than a third of participants had not heard of cause-effect
graphs before.

TABLE IV
STRUCTURE OF SURVEY PARTICIPANTS

Q1: How many years of experience in software testing do
you have?

< 1 year 1-2 years 2-3 years >3 years
35.59% 32.20% 25.42% 6.79%

Q2: Are you familiar with cause-effect graphs?

Yes No

62.70% 37.30%

Participants were shown three different cause-effect graph

specifications of varying complexities from BenderRBT and
their equivalent representations from ETF-RI-CEG. They were
also asked to choose the tool with a more intuitive UI. The
achieved results are shown in Fig. 12. The results show that in
all cases, a larger number of users chose cause-effect graphs
generated by the proposed tool as their preferred choice. It is
also visible that more users found the user interface of the
proposed tool more intuitive than the user interface of
BenderRBT.

Fig. 12. The results of survey regarding user preference of CEG specifications
generated by BenderRBT and ETF-RI-CEG software tools

The users’ knowledge of constraints and ability to correctly

identify cause-effect graph elements was also targeted by the
survey. They were asked which types of nodes the REQ and
MSK constraints are applied on, after which they were shown
two CEG specifications – one containing the MSK constraint
created by BenderRBT, and one containing the REQ constraint
created by ETF-RI-CEG. The results are shown in Table V. A
very low number of users correctly understood the REQ and
MSK relations (28.8% and 27.1% respectfully), whereas an

3 The user survey can be accessed by using the following link:
https://forms.gle/wbjFbfdf4LVkVrie7

even lower number of users correctly identified test cases
conforming to CEG specifications from BenderRBT and ETF-
RI-CEG (20.3% and 16.9% respectfully). Additionally, only
20.3% of users were able to correctly identify that the two CEG
representations generated by BenderRBT and ETF-RI-CEG
from Fig. 10 and Fig. 11 were equivalent.

TABLE V

SURVEY RESULTS – KNOWLEDGE OF CONSTRAINT APPLICATION
Q1: Which type of nodes can the MSK constraint be applied to?

Causes Effects Intermediates I don’t know
6.8% 27.1% 1.7% 64.4%

Identification of test cases from CEG MSK specification in BenderRBT

Correct answer Incorrect answers

20.3% 79.7%
Q3: Which type of nodes can the REQ constraint be applied to?

Causes Effects Intermediates I don’t know

28.8% 5.1% 5.1% 61.0%

Identification of test cases from CEG REQ specification in ETF-RI-CEG

Correct answer Incorrect answers

16.9% 83.1%

The users were also shown a cause-effect graph of high
complexity and its representations in BenderRBT and ETF-RI-
CEG. They were asked to identify the number of all types of
nodes contained in the graph and to rate the complexity of the
graph representations from 1 to 10. The cause-effect graph
representations generated by BenderRBT and ETF-RI-CEG
achieved an average complexity rating of 7.41 and 5.62
respectfully. The exact number of nodes (causes, intermediates
and effects) from representations generated by BenderRBT and
ETF-RI-CEG were correctly identified by 25% and 59.38% of
users respectfully. 57.6% of users answered that CEG nodes
with textual descriptions made it easier to understand system
requirements, whereas 49.2% of users answered that CEG
nodes without textual descriptions made it harder to understand
system requirements.

Other available tools (CEGSTT, TOUCH and KRA-CE) do
not contain graphical elements of cause-effect graphs, as their
primary purpose is the application of algorithms which are
meant to convert cause-effect graph specifications to test case
tables. Nodes and relations in these tools are instead defined by
using the provided user interface or textual files. For this reason,
the newly proposed tool could not be compared to these tools,
as there is no graphical output for comparison.

C. Evaluation of Usability

User-based evaluation of the newly proposed tool was
conducted by creating a remote usability survey3 [32]. The
survey contained directions on how to install ETF-RI-CEG and
12 tasks which the users needed to complete by using all
functionalities of the proposed tool. The questions contained in
the survey were based on the following user experience factors
[33]: ease of use, efficiency, helpfulness, intuitive operation,
learnability and simplicity. The survey was completed by 45
BSc and MSc students of Faculty of Electrical Engineering,

318 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

https://forms.gle/wbjFbfdf4LVkVrie7

University of Sarajevo. The achieved usability metric values as
defined in [32] are summarized in Table VI. The participants
were able to successfully complete 10.91 tasks out of 12 on
average with an overall average success rate of 90.92%, overall
average task accuracy of 74.81%, overall average efficiency of
0.285, overall average error rate of 3.96 and overall average
critical statement ratio of 11.14.

TABLE VI

USABILITY METRICS OF ETF-RI-CEG STUDY
Metric ETF-RI-CEG functionalities

Success rate Creating CEG
elements

Modifying
CEG elements

Export/Import
feature

0-33% tasks 2.2% 2.2% 0%

33%-66%
tasks

17.8% 11.1% 20%

66%+ tasks 80% 86.7% 80%

Average
success rate

87.83% 94.67% 93.33%

Task
accuracy

57.8% 86.7% 80%

Error rate 1.37 6.5 4.0

Efficiency 0.142 0.375 0.339

Average task
duration

4.07 minutes 2.31 minutes 2.36 minutes

Critical
statement

ratio

6.5 5.43 21.5

Different types of mistakes which the users of ETF-RI-CEG
reported are shown in Fig. 13. 43.8% of users did not report
making any mistakes, whereas 50% of users who reported
mistakes listed working with logical relations as the most
difficult. Mistakes while using some functionalities such as
element removal or the export/import feature were not reported
by any users of the tool.

Fig. 13. Types of mistakes reported by users evaluating ETF-RI-CEG

software tool

Users were asked to grade the proposed tool based on three
user experience factors: ease of usage, intuitivity and
helpfulness. The achieved results are shown in Fig. 14, where it
can be seen that the proposed tool achieved results higher than
90% for all three factors of usability. Users were also asked to
choose which functionalities they found easy and hard to use.
The easiest functionalities identified by users were moving
nodes (86.7%), adding nodes (84.4%) and the import feature
(84.4%), whereas the hardest functionalities identified by users

were adding complex logical relations (44.4%) and adding
constraints (71.1%).

Fig. 14. Evaluation of different user experience factors by users of ETF-RI-

CEG

D. Result Analysis

The achieved results when comparing the usage of notation
in the standardized literature to results achieved by using the
proposed tool from Section IV.A. indicate that standardized
graphical notation and outputs of different logical relations and
constraints are often violated by adding elements which are not
defined in the available literature. This results in confusing
CEG definitions with unclear relation outputs. Examples of
these violations can be seen in Fig. 6, where a constraint is used
on an intermediate node (although constraints cannot be defined
on intermediate nodes), in Fig. 8, where unary relations (NOT)
are combined with binary relations (AND) without the usage of
intermediate nodes, where negated REQ relation is used
(although the REQ relation cannot be negated), as well as in
Fig. 10, where the negated MSK relation is used (although MSK
relation cannot be negated) and where the MSK relation is used
on cause nodes (instead of on effect nodes) in a completely
misleading and confusing way, since the relation that wanted to
be captured between the causes was actually the REQ relation.

The newly proposed tool solves the aforementioned
problems by not allowing the user to manually specify anything
that is not supported by the standardized literature. This makes
it impossible to use an intermediate node in constraints or
negate constraints whilst creating a cause-effect graph
specification. These violations are not necessary and can be
remodeled by using supported relation types, as demonstrated
in all example graphs used for evaluation of the proposed tool.
The user survey showed that most users do not understand the
meaning and usage of the REQ and MSK constraints, which
makes the necessity of the usage of standardized notation with
explicitly defined truth tables even higher. This results in
standardized and easily understandable cause-effect graphs that
conform to standardized graphical notation and do not contain
elements that are difficult to understand due to their
inconsistencies with truth tables for logical relations and
constraints.

Results of the user survey of ETF-RI-CEG when compared
to the only other available software tool with the usage of
graphical elements, BenderRBT, indicate that CEG

E. KRUPALIJA et al.: NEW GRAPHICAL SOFTWARE TOOL FOR CREATING CAUSE-EFFECT GRAPH SPECIFICATIONS 319

specifications generated by the proposed tool are easier to
understand. The textual descriptions present in BenderRBT
representations did not make it significantly easier to
understand system requirements, and equivalent
representations from BenderRBT were rated as more complex
than representations from ETF-RI-CEG. Usability metrics of
the proposed tool indicate that most users were able to use the
tool successfully and that difficulties in this process occurred
when adding complex logical relations and constraints. It is
important to note, however, that most users had little to no
experience with cause-effect graphs and software testing in
general. They were not taught how to use the tool or offered an
user manual and they were still able to achieve an average
success rate of 90.92%. Over 90% of users rated ETF-RI-CEG
as easy to use, intuitive and helpful which indicates that the
proposed tool will achieve similar results in the future,
especially due to the fact that it will be open-source and free for
usage.

V. THREATS TO VALIDITY AND LIMITATIONS
The evaluation of the newly proposed graphical software tool

was conducted by using a large number of available cause-
effect graph examples from the standard literature. A total of 16
graphs were created successfully with an average size of N =
9.4 nodes. The import/export feature of the tool enables other
users to achieve the same results and access the successfully
created cause-effect graph specifications. Additionally, ETF-
RI-CEG is open-source and the exported generated cause-effect
graph specifications are available for free usage. Therefore, the
internal validity of this study has been achieved successfully
because the experiment can be repeated and same results can be
achieved without any external variables influencing the
outcome.

The surveys conducted for evaluating the usability of the
newly proposed tool and for comparing this tool with
BenderRBT features expose threats to the external validity of
the study. Both surveys were conducted in the form of a remote
usability survey, which might result to results which are
significantly biased. The participants of the surveys were
mainly BSc and MSc students of Computer Science and
Informatics, who had little to no experience in software testing.
The overall number of participants was 45 and 59, which might
not be a large enough sample for determining accurate results.
Around 60% of participants were familiar with cause-effect
graphs, although biased selection of subjects for taking the
survey was avoided in a similar way as described in [12]. No
training was provided to users before taking the survey, which
might have affected the achieved results and increased the
overall time required for completing tasks in the proposed
graphical software tool.

The structure of participants poses another threat to external
validity of the study. No domain or industrial experts were
included in the study due to their unavailability, which might
pose a problem in cases where open-source and industrial
development have many differences, as reported in [34]. If
BenderRBT was commonly used among domain experts in the
software development industry, the usability of this tool would
far outperform the usability of the newly proposed tool as the
users would be more familiar with its interface. These claims

cannot be proven or discarded due to the unavailability of this
type of data. However, both surveys were conducted by using
multiple consolidated factors from [33] for generating more
objective results. A similar problem with the structure of
participants and limited generalizability of the achieved results
was reported in [35], however the structure of study subjects
had a low impact on the achieved results due to the nature of the
study itself and its human-centered concepts. A similar
conclusion can also be derived for this study, because although
the subjects of the study had some prior experience in software
testing, they had not used neither ETF-RI-CEG nor BenderRBT
before. This may lead to more objective results than if the tools
were evaluated by domain experts who have had prior
experience with BenderRBT, as the familiarity with any of the
evaluated tools can affect the objectivity of the results and lead
to different usability metric values.

The main limitation of this study is the unavailability of
existing CEG software tools. Only one tool (TOUCH) is open-
source and can be freely accessed, whereas no other existing
tool could be successfully acquired by the authors of this paper.
Due to this drawback, the properties of other existing tools
could not be evaluated or validated (e.g. being cross-platform,
the file format supported by the import/export feature), which
is why the information from user manuals provided by the
authors of the tools was used as the only relevant source. If
BenderRBT had been available, a third survey requiring users
to perform the entirely same tasks as in the study focusing on
ETF-RI-CEG could have been conducted. These results could
have then been compared and a more objective comparison
between the usability of these two tools could have been made.

VI. CONCLUSION

Cause-effect graphing is a popular black-box testing
technique widely used for creating test case tables necessary for
executing black-box tests on the desired system. Problems with
creating test cases for a given system often arise due to the
insufficient amount of knowledge of cause-effect graph
elements. This leads to the improper usage of logical relations
and constraints while creating cause-effect graph specifications
from system requirements. The standardized graphical notation
is also often violated, resulting in specifications which are
difficult to understand as they do not conform to truth table
definitions and introduce elements without a sufficient amount
of explanation or methods for their conversion to the
standardized notation. A small number of software tools has
been proposed for aiding the process of creating CEG
specifications, however the available tools are mainly focused
on the application of algorithms for deriving test cases instead
of defining graphical cause-effect graph elements and most
tools are not available for free usage. The only available
graphical tool is commercial and does not use standardized
graphical notation.

In this paper, a new graphical software tool for creating
cause-effect graph definitions was presented. The tool aims to
overcome the existing difficulties of creating cause-effect graph
specifications which arise due to a poor understanding of
logical relations and constraints. It also aims to provide a new
and intuitive user interface that can help users create cause-
effect graph definitions in a fast and efficient way while using

320 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

standardized graphical notation without allowing the usage of
any non-standardized elements in cause-effect graphs.

Several approaches have been used to evaluate the newly
proposed software tool. The comparison between the graphical
representation of the graphs created by using the proposed
graphical software tool and the originally proposed
representations shows that the new tool is scalable and can be
used to successfully create specifications of cause-effect graphs
of different sizes. The only differences in the graphical
representations were a result of the improper usage of
standardized graphical notation in the original works.

The results obtained by using the proposed tool when
compared to the only other available graphical software tool
show that the usage of standardized graphical notation creates
specifications that are easier to understand than results obtained
by using non-standardized graphical notation. This was verified
by conducting a user survey, which showed that usage of textual
descriptions of system requirements did not significantly
improve the readability of cause-effect graph specifications.
Users rated CEG specifications generated by using the proposed
tool as less complex than the equivalent specifications
generated by using the other available graphical tool. Another
user survey which was conducted to evaluate the usability of
the proposed software tool showed that most users found the
proposed tool as helpful, easy and intuitive to use. High values
of usability metrics indicate that the newly proposed software
tool offers an intuitive and easily understandable output for
users who can use truth tables as help when choosing the desired
logical relations and constraints for cause-effect graph
specifications. In this way, standardized graphical notation and
explicit definitions can be used rather than non-standardized
approaches.

The proposed graphical software tool was developed in the
form of a desktop application. However, most tools are
nowadays cloud-based and allow online collaboration between
multiple users and an easily accessible user interface. Creating
a web-based version of the proposed tool would remove the
necessity of installation of prerequisites and the application
itself, making the software tool available to more users and on
multiple devices. Due to this, a web-application version of the
software tool should be created by using the latest technologies,
in order to make the tool fully cross-platform and widely used.

The output of the graphical software tool is the visual
representation of the defined cause-effect graph, as well as an
exported .txt file. This exported representation can potentially
be used for reusing the graph definition in order to create black-
box test case tables. This needs to be further explored for
upgrading the graphical software tool with a new feature –
automatically converting the graph definition into the desired
test case table. The usability of the proposed graphical software
tool would in this way be further improved and made
comparable with other available tools, which already contain
implementations of algorithms for test case table generating
process from cause-effect graph specifications.

REFERENCES

[1] W. R. Elmendorf, "Automated design of program test libraries," IBM

Technical Report TR 00.2809, 1970.
[2] S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and

Practice, 4th ed., New Jersey: Pearson Higher Education, 2010.
[3] M. E. Khan, "Different approaches to black box testing technique for

finding errors," International Journal of Software Engineering &
Applications, vol. 2, no. 4, pp. 31-40, 2011. doi:
10.5121/ijsea.2011.2404.

[4] G. J. Myers, T. Badgett and C. Sandler, The Art of Software Testing, 3rd
ed., New Jersey: John Wiley & Sons, Inc., 2012, pp. 61-80.

[5] N. Anwar and S. Kar, "Review paper on various software testing
techniques & strategies," Global Journal of Computer Science and
Technology, vol. 19, no. 2, pp. 43-49, 2019. doi:
10.34257/GJCSTCVOL19IS2PG43.

[6] P. R. Srivastava, P. Patel and S. Chatrola, "Cause effect graph to decision
table generation," SIGSOFT Software Engineering Notes, vol. 34, no. 2,
2009. doi: 10.1145/1507195.1507216.

[7] D. K. Ufuktepe, T. Ayav and F. Belli, "Test input generation from cause-
effect graphs," Software Quality Journal, vol. 29, pp. 733-782, 2021. doi:
10.1007/s11219-021-09560-3.

[8] S. Singhal, N. Jatana, B. Suri, S. Misra and L. Fernandez-Sanz,
"Systematic literature review on test case selection and prioritization: A
tertiary study," Applied Sciences, vol. 11, no. 24, 2021. doi:
10.3390/app112412121.

[9] L. Dou and W.-D. Yang, "Design of test case for ATP speed monitoring
function based on cause-effect graph," in 2019 CAA Symposium on Fault
Detection, Supervision and Safety for Technical Processes
(SAFEPROCESS), Xiamen, 2019. doi:
10.1109/SAFEPROCESS45799.2019.9213325.

[10] N. Oldfield, T. Yue and S. Ali, "Investigating quantum cause-effect
graphs," in 2022 IEEE/ACM 3rd International Workshop on Quantum
Software Engineering (Q-SE), Pittsburgh, 2022. doi:
10.1145/3528230.3529186.

[11] K. Nursimulu and R. L. Probert, "Cause-effect graphing analysis and
validation of requirements," in CASCON '95: Proceedings of the 1995
conference of the Centre for Advanced Studies on Collaborative
research, Toronto, 1995. doi: 10.5555/781915.781961.

[12] K. Juhnke, M. Tichy and F. Houdek, "Challenges concerning test case
specifications in automotive software testing: Assessment of frequency
and criticality," Software Quality Journal, vol. 29, pp. 39-100, 2021. doi:
10.1007/s11219-020-09523-0.

[13] B. Vogel-Heuser, V. Karaseva, J. Folmer and I. Kirchen, "Operator
knowledge inclusion in data-mining approaches for product quality
assurance using cause-effect graphs," International Federation of
Automatic Control (IFAC) PapersOnLine, vol. 50, no. 1, pp. 1358-1365,
2017. doi: 10.1016/j.ifacol.2017.08.233.

[14] W. S. Jang and R. Y. C. Kim, "Automatic generation mechanism of
cause-effect graph with informal requirement specification based on the
Korean language," Applied Sciences, vol. 11, no. 24, 2021. doi:
10.3390/app112411775.

[15] J. Lal and S. Singh, "From cause to effect: An empirical study of cause-
effect graphing testing techniques and its test measurement: A review,"
International Journal of Computer Science and Technology, vol. 3, no.
3, pp. 89-92, 2012.

[16] F. Huang and C. Smidts, "Causal mechanism graph - A new notation for
capturing cause-effect knowledge in software dependability," Reliability
Engineering & System Safety, vol. 158, pp. 196-212, 2017. doi:
10.1016/j.ress.2016.08.020.

[17] "Bender RBT (previously SoftTest/CaliberRBT)," BenderRBT Inc.,
[Online]. Available: https://benderrbt.com/bendersoftware.htm#rbt.
[Accessed 4 June 2022].

[18] B. Bekiroglu, "A cause-effect graph software testing tool," European
Journal of Computer Science and Information Technology, vol. 5, no. 4,
pp. 11-24, 2017.

[19] S. Agrawal, R. Venkatesh, U. Shrotri, A. Zare and S. Verma, "Scaling
test case generation for expressive decision tables," in 2020 IEEE 13th

E. KRUPALIJA et al.: NEW GRAPHICAL SOFTWARE TOOL FOR CREATING CAUSE-EFFECT GRAPH SPECIFICATIONS 321

International Conference on Software Testing, Validation and
Verification (ICST), Porto, 2020. doi: 10.1109/ICST46399.2020.00044.

[20] K. Nursimulu, Cause-effect validation of requirements for distributed
systems, Ottawa: University of Ottawa, 1994. doi: 10.20381/ruor-16800.

[21] N. Gavrilović and L. Lazić, "Knowledge assessment using cause-effect
graphing methods," in The Seventh International Conference on
eLearning (eLearning-2016), Belgrade, 2016.

[22] D. Jagli, T. Mamatha, S. Mahalingam and N. Ojha, "The application of
cause effect graph for the college placement process," International
Journal of Software Engineering & Applications (IJSEA), vol. 3, no. 6,
pp. 77-85, 2012. doi: 10.5121/ijsea.2012.3606.

[23] I. Chung, "Modeling pairwise test generation from cause-effect graphs as
a Boolean satisfiability problem," International Journal of Contents, vol.
10, no. 3, pp. 41-46, 2014. doi: 10.5392/IJoC.2014.10.3.041.

[24] S. Weißleder and D. Sokenou, "Cause-effect graphs for test models based
on UML and OCL," SoftwareTechnik-Trends, vol. 28, 2008.

[25] H. S. Son, Y. B. Park and R. Y. C. Kim, "Test case generation from
cause-effect graph based on model transformation," in 2014
International Conference on Information Science & Applications
(ICISA), Seoul, 2014. doi: 10.1109/ICISA.2014.6847468.

[26] T. Ayav and F. Belli, "Boolean differentiation for formalizing Myers'
cause-effect graph testing technique," in 2015 IEEE International
Conference on Software Quality, Reliability and Security - Companion,
Vancouver, 2015. doi: 10.1109/QRS-C.2015.31.

[27] I.-Y. Song, M. Evans and E. Park, "A comparative analysis of entity-
relationship diagrams," Journal of Computer and Software Engineering,
vol. 3, no. 4, pp. 427-459, 1995.

[28] A. Paradkar, K. C. Tai and M. A. Vouk, "Specification-based testing
using cause-effect graphs," Annals of Software Engineering, vol. 4, no.
1, pp. 133-157, 1997. doi: 10.1023/A:1018979130614.

[29] D. K. Ufuktepe, "TOUCH: Test generator for cause effect graphs,"
[Online]. Available: https://github.com/denizkavzak/TOUCH.
[Accessed 3 August 2022].

[30] W. S. Jang and Y. C. Kim, "Automatic cause-effect graph tool with
informal Korean requirement specifications," Applied Sciences, vol. 12,
2022. doi: 10.3390/app12189310.

[31] The BenderRBT Cause-Effect Graphing User Manual, 3rd ed.,
Queensbury: Bender RBT Inc., 2006.

[32] M. Freiberg and J. Baumeister, "A survey on usability evaluation
techniques and an analysis of their actual application," University of
Würzburg, Würzburg, 2008.

[33] A. Hinderks, D. Winter, M. Schrepp and J. Thomaschewski,
"Applicability of user experience and usability questionnaires," Journal
of Universal Computer Science, vol. 25, no. 13, pp. 1717-1735, 2019.

[34] M. Ulan, W. Löwe, M. Ericsson and A. Wingkvist, "Copula-based
software metrics aggregation," Software Quality Journal, vol. 29, pp.
863-899, 2021. doi: 10.1007/s11219-021-09568-9.

[35] C. Burnay, S. Bouraga, J. Gillain and I. J. Jureta, "What lies behind
requirements? A quality assessment of statement grounds in
requirements elicitation," Software Quality Journal, vol. 28, pp. 1615-
1643, 2020. doi: 10.1007/s11219-020-09521-2.

Ehlimana Krupalija received her B.Sc. and M.Sc.
degrees in 2018 and 2020 at the Department of Computer
Science and Informatics at the Faculty of Electrical
Engineering of the University of Sarajevo. She is
currently a teaching assistant and Ph.D. candidate at the
Department of Computer Science and Informatics of the
Faculty of Electrical Engineering, University of Sarajevo,
Bosnia and Herzegovina. Her research interests include
software quality, real-time systems, parallelization and

optimization techniques.

Šeila Bećirović received her B.Sc. and M.Sc. degrees in
2017 and 2019 at the Department of Computer Science
and Informatics at the Faculty of Electrical Engineering
of the University of Sarajevo. She is currently a teaching
assistant and Ph.D. candidate at the Department of
Computer Science and Informatics of the Faculty of
Electrical Engineering, University of Sarajevo, Bosnia
and Herzegovina. Her research interests include computer
networks and security, mobile application development

and operational research.

Irfan Prazina received his B.Sc. and M.Sc. degrees in
2013 and 2015 at the Department of Computer Science
and Informatics at the Faculty of Electrical Engineering
of the University of Sarajevo. He is currently a senior
teaching assistant and Ph.D. candidate at the Department
of Computer Science and Informatics of the Faculty of
Electrical Engineering, University of Sarajevo, Bosnia
and Herzegovina. His research interests include web
technologies, software testing and mobile application
development.

Emir Cogo received his B.Sc. and M.Sc. degrees in
2011 and 2013 at the Department of Computer Science
and Informatics at the Faculty of Electrical Engineering
of the University of Sarajevo. He is currently a senior
teaching assistant and Ph.D. candidate at the
Department of Computer Science and Informatics of the
Faculty of Electrical Engineering, University of
Sarajevo, Bosnia and Herzegovina. His research
interests include game development, computer graphics
and procedural modeling.

Ingmar Bešić graduated with distinction in 2000 at the
Department of Computer Science and Informatics of
Faculty of Electrical Engineering of the University of
Sarajevo. He received his M.Sc. degree in Software
Engineering in 2004 from the Keble College at the
University of Oxford. In 2016 he received his Ph.D.
degree at the Faculty of Electrical Engineering of the
University of Sarajevo. His research interests include
computer vision, real-time systems, software
engineering, artificial intelligence, bioinformatics,

computer assisted design and manufacturing and 3D scanning. He is currently
an associate professor at the Department of Computer Science and Informatics
of the Faculty of Electrical Engineering, University of Sarajevo, Bosnia and
Herzegovina.

322 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

	I. Introduction
	A. Cause-effect Graph Specification Elements
	B. Related Work
	Fig. 1. Representation of logical relations in the graphical software tool: a) DIR relation, b) NOT relation, c) AND relation, d) OR relation, e) NAND relation, f) NOR relation
	Fig. 2. Representation of constraints in the graphical software tool: a) EXC constraint, b) INC constraint, c) EXC Δ INC constraint, d) REQ constraint, e) MSK constraint
	Fig. 3. Contents of the .txt file generated by using the Export feature in the graphical software tool, which show the structure of the graph (graph nodes, logical relations and constraints)
	A. Evaluation of Software Tool Scalability

	Fig. 4. Example cause-effect graph from [4] which contains three cause nodes, three effect nodes, one intermediate node, four logical relations and one constraint
	Fig. 5. The output of the proposed graphical software tool for the cause-effect graph defined in Fig. 4
	Fig. 6. Example cause-effect graph from [1] which contains six cause nodes, five effect nodes, one intermediate node, six logical relations and two constraints
	Fig. 7. The output of the proposed graphical software tool for the cause-effect graph defined in Fig. 6
	Fig. 8. A very large cause-effect graph from [4] which contains eighteen cause nodes, seven effect nodes, thirteen intermediate nodes, twenty logical relations and twenty-four constraints
	Fig. 9. The output of the proposed graphical software tool for the cause-effect graph defined in Fig. 8
	B. Comparison to Other Available Tools

	Fig. 11. The output of the proposed graphical software tool for the cause-effect graph defined in Fig. 10
	Fig. 12. The results of survey regarding user preference of CEG specifications generated by BenderRBT and ETF-RI-CEG software tools
	C. Evaluation of Usability

	Fig. 13. Types of mistakes reported by users evaluating ETF-RI-CEG software tool
	Fig. 14. Evaluation of different user experience factors by users of ETF-RI-CEG
	D. Result Analysis

	Resulting effect value
	Cause values
	Resulting test case feasibility
	Node values
	Q1: Which type of nodes can the MSK constraint be applied to?
	I don’t know
	Intermediates
	Effects
	Causes
	64.4%
	1.7%
	27.1%
	6.8%
	Identification of test cases from CEG MSK specification in BenderRBT
	Incorrect answers
	Correct answer
	79.7%
	20.3%
	Q1: How many years of experience in software testing do you have?
	Q3: Which type of nodes can the REQ constraint be applied to?
	>3 years
	2-3 years
	1-2 years
	< 1 year
	I don’t know
	Intermediates
	Effects
	Causes
	6.79%
	25.42%
	32.20%
	35.59%
	61.0%
	5.1%
	5.1%
	28.8%
	Q2: Are you familiar with cause-effect graphs?
	Identification of test cases from CEG REQ specification in ETF-RI-CEG
	No
	Yes
	Incorrect answers
	Correct answer
	37.30%
	62.70%
	83.1%
	16.9%
	ETF-RI-CEG functionalities
	Metric
	Export/Import feature
	Modifying CEG elements
	Creating CEG elements
	Success rate
	0%
	2.2%
	2.2%
	0-33% tasks
	20%
	11.1%
	17.8%
	33%-66% tasks
	80%
	86.7%
	80%
	66%+ tasks
	93.33%
	94.67%
	87.83%
	Average success rate
	80%
	86.7%
	57.8%
	Task accuracy
	4.0
	6.5
	1.37
	Error rate
	0.339
	0.375
	0.142
	Efficiency
	2.36 minutes
	2.31 minutes
	4.07 minutes
	Average task duration
	21.5
	5.43
	6.5
	Critical statement ratio

