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Numbering of atoms in relatively large molecules, such as fullerenes appears for most part to
be arbitrary or based on ad hoc schemes. We argue in favor of the use of a particular canonical
labeling of atoms in molecules based on the smallest possible binary molecular code obtained
from the adjacency matrix when its rows are read from left to right and from top to bottom.
The approach has been illustrated with buckminsterfullerene. We have outlined advantages of
the approach and have shown that finding canonical labels is practical even in the case of large
regular graphs.

Key words

fullerenes
buckminsterfullerene

canonical labeling
canonical adjacency matrix

* Dedicated to Dr. Edward Kirby on the occasion of his 70th birthday.
** Authors to whom correspondence should be addressed. (M.R: Permanent address: Kingman Rd. Ames, IA50014, USA; E-mail:
dplavsic@irb.hr, vukicevi@pmfst.hr, mrandic@msn.com)

CROATICA CHEMICA ACTA
CCACAA 78 (4) 493¿502 (2005)

ISSN-0011-1643
CCA-3040

Original Scientific Paper

INTRODUCTION

As is well-known numbering of atoms in molecules is an
important subject that still, from time to time, is revis-
ited. There are two basically different approaches that
we may label as »traditional« and »computational.« The
former follows conventional agreements approved by in-
fluential international bodies, like IUPAC,1 or dominant
abstract services, like CAS,2 which can be characterized
by rules that are plausible but lacking mathematical con-
tent. In contrast »computational« approaches are charac-
terized by algorithms that are mathematically well-found-
ed, and tend to be susceptible to computer processing.3

The outcomes of some of these graph-theoretically based
approaches could be less user-friendly, but they have some
other advantages. For example, they facilitate enumera-
tion of isomers, as described by Balaban and Harary,4 or

lead to systematic classification and nomenclature as out-
lined by Balaban and Schleyer on diamond hydrocarbons.5

As already mentioned, in contrast to the traditional num-
bering of carbon atoms when non-traditional numberings,
like the canonical labeling to be considered in this arti-
cle, are adopted, they may show a »chaotic« distribution
of labels, as illustrated in Figure 1 with a set of molecu-
lar graphs of smaller organic compounds. This chaotic ap-
pearance of labels may have been one of the reasons for
the slow acceptance of canonical labeling of atoms in
molecules. However, as we will argue in this contribu-
tion, when one considers the benefits and the advantages
of mathematically based labels for atoms in comparison
with traditional approach, which is further burdened with
plethora of trivial names used in chemistry, one cannot
escape conclusion that the future is in favor of the nov-



elty. In Table I we show a selection of trivial names and
the corresponding Chemical Abstracts names used in or-
ganic chemistry for some smaller cyclic and polycyclic
compounds. We direct readers to the book of Hellwinkel6

on systematic nomenclature of organic chemistry where
one can find numerous additional examples. To make
things worse, not only that some chemical names tend to
be revised from time to time but the leading institutions
like CAS and IUPAC have adopted for a selection of com-
pounds different names.6 Moreover, the complexity of
rules for naming compounds often results in highly cum-
bersome names. For example, lovastatin, a potent inhibi-
tor of a rate controlling enzyme in cholesterol biosynthe-

sis, has Chemical Abstracts name reading as follows: (2S)-
2-Methylbutanoic acid (1S,3R,7S,8S,8aR)-1,2,3,7,8,8a-
hexahydro-3,7-dimethyl-8-�2-(2R,4R)-tetrahydro-4-hydro-
xy-6-oxo-2H-pyran-2-yl�ethyl�-1-naphthalenyl� ester. In
Table II we give a few additional examples that should
suffice to counterbalance opposition that some may have
against mathematical approaches to chemical nomencla-
ture. The illustrations listed were found on the first few
pages of the Merck Index,7 which shows that consider-
able number of compounds in the Merck Index (which
lists over 10,000 compounds) is associated with lengthy
names that require 3–4 lines to be fully listed. In addi-
tion, there are compounds for which yet official names
have not been proposed (or could not be proposed?).
Just to illustrate the point consider abamectin, which be-
longs to antiparasitic antibiotics, the first substance list-
ed in the Merck Index. Looking at Table II one cannot
escape recalling a witty comment of Sir Winston Chur-
chill regarding the work of committees, when stating that
dromedary is a horse designed by a committee!

CANONICAL LABELING OF ATOMS
IN MOLECULES

There are alternative canonical rules for labeling atoms
in molecules, some being restricted to subclass of struc-
tures (such as acyclic systems) and other being more ge-
neral. We will consider here a particular canonical num-
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Figure 1. Illustration of the canonical labeling of the vertices of
molecular graphs of organic compounds listed in Table I.

TABLE I. A selection of trivial names used in organic chemistry
and the corresponding Chemical Abstracts names

Trivial name Chemical Abstracts name

Triptycene 9,10-Dihydro-9,10-o-benzenoanthracene

Cubane Pentacyclo�4.2.0.0.2,5.0 3,8.0 4,7�octane

Benzvalene Tricyclo�3.1.0.02,6�hex-3-ene

Dewar benzene Bicycle�2.2.0�hexa-2,5-diene

Prizmane Tetracyclo�2.2.0.0.2,6.0 3,5�hexane

Twistane Tricyclo�4.4.0.03,8�decane

Adamantane Tricyclo�3.3.1.13,7�decane

Tetrahedrane Tricyclo�1.1.0.02,4�butane

Decalin Bicycle�4.4.0�decane

TABLE II. Some organic compounds described by their trivial names, empirical formulas, and cumbersome Chemical Abstracts names

Trivial name
and empirical formula

Chemical Abstracts name

Abietic Acid
C20 H30 O2

�1R-(1�, 4a�,4b�,10a�)�-1,2,3,4,4a,4b,5,6,10,10a-Decahydro-1,4a-dimethyl-7-(1-methylethyl)-1-
phenanthrenecarboxylic acid

Absinthin
C30 H40 O6

�3S-(3�,3a�,6�,6a�,6b�,7�,7a�,8�,10a�,11�,13a�,13b�,13c�,14b�)�-3,3a,4,5,6,6a,6b,7,7a,8,9,10,
10a,13a,13c,14b-Hexadecahydro-6,8-dihydroxy-3,6,8,11,14,15-hexamethyl-2H-7,13b-ethenopentaleno-
�1'',2'':6,7;5'',4'':6',7'�dicyclohepta�1,2-b:1',2'-b'�difuran-2,12-(11H)-dione

Acarbose
C25 H43 NO18

O-4,6-Dideoxy-4-���1S-(1�,4�,5�,6�)�-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl�
amino�-�-D-glucopyranosyl-(1�4)-O-�-D-glucopyranosyl-(1�4)-D-glucose



bering of atoms in a molecule that results in a unique ad-
jacency matrix, called the canonical adjacency matrix,
whose rows when viewed as binary numbers produce
the smallest such numbers possible. The approach has
been introduced by one of the present authors some time
ago,8 and was used to investigate symmetry properties
of smaller molecules9 as well as rather involved graphs
associated with degenerate rearrangements.10 The con-
cept of canonical labels has also been used for orderly
generation of classes of graphs, such as cubic graphs.11

The approach will be exemplified by a graph represent-
ing dodecahedron (Figure 2), which can be viewed as
the graph of the smallest fullerene.

We want to assign labels 1–20 to the twenty vertices
of the graph, such that its adjacency matrix results in the
smallest binary number possible when its rows are read
from left to right and from top to bottom. Consequently,
the first row of canonical adjacency matrix has to be the
smallest possible binary number, which for trivalent graph
on 20 vertices is: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.
This means that the vertex with label 1 (the first row of
the matrix) is adjacent to the vertices with labels 18, 19,
and 20 (the last three columns), which is illustrated at
the top of Figure 2. In other words, the vertex having the
smallest label has as the nearest neighbors the vertices
with the greatest labels. Of course, because all the verti-

ces of dodecahedron are equivalent we could have put
the label 1 at 20 different sites, one of which is illustrat-
ed. Equally the label 20 we could have put on three loca-
tions next to vertex 1, one of which is illustrated in Fig-
ure 2. Finally, the label 19 has two alternative locations,
one of which is illustrated in Figure 2. This determined
the site for the label 18 as the remaining »vacant« site
next to the vertex labeled with label 1. Hence, all in all
there are 20 × 3 × 2 = 120 possibilities already in the
first step in the assignment of labels, but all of these 120
possibilities produce the same entries for the first row of
the adjacency matrix.

We continue with considering the location of label
2. The vertex labeled with 2 has to have as few unlabel-
ed nearest neighbors as possible and they have to be la-
beled with the greatest of the remaining unused labels.
These two requirements assure that the second row in the
adjacency matrix is the smallest binary number among
the binary numbers that can result from labeling these
vertices with unused labels. Clearly, we have to place la-
bel 2 next to label 20. The remaining two neighbors of
the vertex 2 will have labels 17 and 16, but in order not
to proliferate the number of combinations to be consid-
ered we will postpone full assignment and will only »re-
serve« labels 17 and 16 for the sites next to the vertex 2,
as illustrated in the middle of Figure 2, in which two al-
ternative locations for vertex 2 are shown. In the next step,
illustrated at the bottom of Figure 2, we have placed la-
bel 3 to the other neighbor of vertex 20, being the opti-
mal site to produce the smallest binary number possible
for the third row. One should realize that a graph with 20
vertices has a total of 20! possible assignments of labels
to the vertices (a horrendous number 2.43290 × 1018),
which even when symmetry is taken into account amount
to a number of the order of 1014. Yet as we will see, with
the adopted postponement of determining the sites for
some of greater labels, it takes about dozen steps to ar-
rive at the unique canonical labels for the vertices. We
carry on the assigning of canonical labels to the unlabeled
vertices of the graph with label 4, as illustrated in Figure
3 at the top. The neighbors of vertex 4 are the vertices
labeled with 12, 13, and 19 as shown in Figure 3. At this
stage in the graph there is a single vertex, which has al-
ready two labeled neighbors which should be labeled
with 5. Its unlabeled neighbor has to be labeled with 11.
By placing label 5 we can immediately resolve the ambi-
guities concerning the neighbors of vertex 2 and 3, the
labels 13/12, and 17/16 that were introduced earlier but
not resolved. As is shown in the middle of Figure 3 the
canonical labels of the nearest neighbors of vertex 5 are
11, 13, and 17. We still have unresolved ambiguity con-
cerning labels 15 and 14, which are the greatest labels
having »vacant« neighbor site, which allow placing la-
bel 6 in two alternative sites, as illustrated at the bottom
of Figure 3. Once label 6 is assigned, in order that the
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Figure 2. The initial steps in the assignment of the canonical la-
bels to the vertices of the graph representing dodecahedron.



sixth row of the adjacency matrix produces the smallest
binary number possible we have to assign label 15 to its
neighbor. The next smallest labels 7 and 8 produce two
alternative assignments shown in Figure 4, which pro-
duce different matrices. The labeling shown at the right
corresponds to the smallest binary code since the vertex
labeled with 7 has neighbors labeled with 8, 10, and 13
while the assignment at the left assigns to the very same
vertices labels 8, 10, and 11, which clearly produces a
larger binary number for the seventh row. As we have
seen the search for canonical labels associated with the
canonical adjacency matrix is practical, that is it can be
accomplished in short time, even for sizable structures,
such as dodecahedron. Observe that although at some

steps we had to consider more than one possible assign-
ment after the assignment of the initial labels 1, 20, and
19 (associated with 120 possible alternative selections)
there was no additional degree of freedom to introduce
additional alternative combinations.

CANONICAL LABELING OF ATOMS, BONDS,
AND RINGS IN BUCKMINSTERFULLERENE

Buckminsterfullerene, C60, has a total of 60! different
assignments of labels to its atoms, but it may be surpris-
ing that, when one takes into account its symmetry, find-
ing the canonical labels for its 60 atoms is even simpler
than was the case of dodecahedron with only 20 verti-
ces. As one can see from Figure 5, where the initial steps
in the search for the canonical labels in C60 is illustrated,
after placing label 1 to any of the 60 symmetry equiva-
lent vertices we have two symmetry non-equivalent sites
for label 60, which are shown at the top of Figure 5. Fol-
lowing with the assignment of labels 2, 3, and 4 we find
out that the smallest value for the fifth row of the adja-
cency matrix comes when label 5 is placed between ver-
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cal labels to the vertices of the graph representing dodecahedron.
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tices with labels 54 and 58 (as shown at the left C60 dia-
gram) rather than between 54 and 56 (as shown at the
right C60 diagram). After selecting the site for label 5 the
labels for all yet unlabeled sites are predetermined and
as a result we obtain canonical labels shown in Figure 6.
Canonically labeled atoms of buckminsterfullerene al-
low a straightforward assignment of unique labels to all
the 90 CC bonds as well as to all the 12 pentagonal and
20 hexagonal faces as will be described below. Again we
admit that the final labels for CC bonds, pentagonal and
hexagonal faces do not appear »orderly« but one has to
recognize that there is no »simple« labeling in so large
systems that will appear simple. If one succeeded with
some rules to set labels for one region that appear orderly
that same approach will produce scattered labels for other
local regions. So it is out view that what is more impor-
tant than aiming at some locally pleasing and »simple«
arrangement of labels is to have simple rules for assign-
ment of labels, rather than simple distribution of labels.

Labeling of CC bonds

The canonical labeling of CC bonds in buckminsterful-
lerene is based on the fact that unique labels have been
assigned to the atoms. We start with carbon atom labeled
with 1 and assign to its three CC bonds labels 1, 2, 3 such
that bond with the highest other label becomes CC(1),
next highest is CC(2), and CC(3) is associated with the
smallest of the triplet numbers. Hence, CC(1) is bond
C(1)-C(60), CC(2) is bond C(1)-C(59) and CC(3) is
bond C(1)-C(58). We continue now with the three CC
bonds incident to carbon atom 2, which give: CC(4) be-
ing bond C(2)-C(60); CC(5) being bond C(2)-C(57), and
finally CC(6) being bond C(2)-C(56), and so on. In Ta-
ble III we list the proposed canonical labels for all the 90
CC bonds of buckminsterfullerene. The way how we
constructed the list is that the first entry of bond i–j is
greater than the second entry. As each carbon atom in
buckminsterfullerene is incident with three CC bonds
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TABLE III. Canonical labels for all the 90 CC bonds in buckminsterfullerene

Canonical label
of a bond

Canonical labels
of atoms making
up the bond

Canonical label
of a bond

Canonical labels
of atoms making
up the bond

Canonical label
of a bond

Canonical labels
of atoms making
up the bond

CC(1) 1–60 CC(31) 11–53 CC(61) 21–44

CC(2) 1–59 CC(32) 11–45 CC(72) 21–29

CC(3) 1–58 CC(33) 11–43 CC(63) 21–28

CC(4) 2–60 CC(34) 12–52 CC(64) 22–38

CC(5) 2–57 CC(35) 12–42 CC(65) 22–27

CC(6) 2–56 CC(36) 12–41 CC(66) 22–26

CC(7) 3–59 CC(37) 13–51 CC(67) 23–32

CC(8) 3–57 CC(38) 13–40 CC(68) 23–27

CC(9) 3–55 CC(39) 13–39 CC(69) 23–25

CC(10) 4–60 CC(40) 14–42 CC(70) 24–29

CC(11) 4–54 CC(41) 14–40 CC(71) 24–26

CC(12) 4–53 CC(42) 14–38 CC(72) 24–25

CC(13) 5–58 CC(43) 15–39 CC(73) 25–31

CC(14) 5–54 CC(44) 15–38 CC(74) 26–28

CC(15) 5–52 CC(45) 15–37 CC(75) 27–37

CC(16) 6–59 CC(46) 16–49 CC(76) 28–42

CC(17) 6–52 CC(47) 16–36 CC(77) 29–30

CC(18) 6–50 CC(48) 16–35 CC(78) 30–45

CC(19) 7–55 CC(49) 17–48 CC(79) 33–46

CC(20) 7–51 CC(50) 17–34 CC(80) 34–35

CC(21) 7–49 CC(51) 17–33 CC(81) 35–47

CC(22) 8–57 CC(52) 18–36 CC(82) 36–37

CC(23) 8–48 CC(53) 18–34 CC(83) 39–49

CC(24) 8–47 CC(54) 18–32 CC(84) 40–41

CC(25) 9–56 CC(55) 19–33 CC(85) 41–50

CC(26) 9–48 CC(56) 19–32 CC(86) 43–46

CC(27) 9–46 CC(57) 19–31 CC(87) 44–52

CC(28) 10–54 CC(58) 20–43 CC(88) 47–55

CC(29) 10–45 CC(59) 20–31 CC(89) 50–58

CC(30) 10–44 CC(60) 20–30 CC(90) 53–56



each atomic label appears three times in Table III. Ob-
serve that approximately for the two thirds of the list, till
we come to carbon atom 25, the occurrence of labels,
which are ordered lexicographically, successively repeat
the first atom of a bond three times. This is because for
atoms with label 24 or less all three canonical neighbors
have larger labels. However, with carbon atom 25 and
after, we see that some of its neighbors have smaller la-
bels, and hence the corresponding CC bonds have already
been listed. Thus, for example, because carbon atom 25
has as its neighbors 23, 24 and 31 we have to add to the
list only the bond C(25)-C(31), the other two bonds have
already been listed. By looking at the first entries in the
last column one can detect that numbers 31, 32, 37, 38,
42, etc. do not occur. This is because for these atoms all
three nearest neighbors have smaller canonical labels, and
hence bonds involving these atoms have already been
listed.

We can use canonical labels of atoms to arrive at ca-
nonical labels for rings. To wit, we simply assign to each
ring the ordered set of labels of atoms making up the ring.
Thus, each pentagonal ring will be described by means
of five numbers while each hexagonal ring will be de-
scribed by means of six numbers.

Labeling of pentagonal rings

In Table IV we have listed for the 12 pentagonal rings
labels of carbon atoms forming the rings. Since the rings
are disjoint none of the numbers appearing in the lists
occurs twice. The lexicographical ordering assigns to
each pentagonal ring one of labels between 1 and 12.

Labeling of hexagonal rings

In Table V we have listed for the 20 hexagonal rings la-
bels of carbon atoms making up the rings. As each car-
bon atom is common to two hexagonal rings its label oc-
curs twice in the list. The lexicographical ordering assigns
to each hexagonal ring one of labels between 1 and 20.

DISCUSSION

Those who are familiar with various problems accompa-
nying graph constructions, graph enumerations, graph
isomorphism and graph automorphism problems hardly
need arguments and justification for the effort here under-
taken to arrive at canonical labels for fullerenes. To some,
however, the development of a computer program (to be
briefly outlined in the Appendix) for the assignment of
canonical labels for fullerenes may appear as being of
marginal importance. We would like to argue just the op-
posite: Having available the computer program is an im-
portant advancement for documentation of information on
fullerenes, which we will justify in this section.

Hitherto the overall situation, when discussing or re-
porting information about fullerenes, is characterized by
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TABLE IV. Lexicographical ordering of pentagonal rings in buck-
minsterfullerene

Canonical label
of pentagonal ring

Canonical labels
of atoms making up the ring

1 1, 6, 50, 58, 59

2 2, 4, 53, 56, 60

3 3, 8, 47, 55, 57

4 5, 10, 44, 52, 54

5 7, 13, 39, 49, 51

6 9, 17, 33, 46, 48

7 11, 20, 30, 43, 45

8 12, 14, 40, 41, 42

9 15, 22, 27, 37, 38

10 16, 18, 34, 35, 36

11 19, 23, 25, 31, 32

12 21, 24, 26, 28, 29

TABLE V. Lexicographical ordering of hexagonal rings in buckminsterfullerene

Canonical label
of hexagonal ring

Canonical labels of atoms
making up the ring

Canonical label
of hexagonal ring

Canonical labels of atoms
making up the ring

1 1, 2, 3, 57, 59, 60 11 10, 21, 29, 30, 44, 45

2 1, 4, 5, 54, 58, 60 12 12, 21, 28, 42, 44, 52

3 2, 8, 9, 48, 56, 57 13 13, 14, 15, 38, 39, 40

4 3, 6, 7, 51, 55, 59 14 14, 22, 26, 28, 38, 42

5 4, 10, 11, 45,53, 54 15 15, 16, 36, 37, 39, 49

6 5, 12, 41, 50, 52, 58 16 17, 18, 19, 32, 33, 34

7 6, 13, 40, 41, 50, 51 17 18, 23, 27, 32, 36, 37

8 7, 16, 35, 47, 49, 55 18 19, 20, 31, 33, 43, 46

9 8, 17, 34, 35, 47, 48 19 20, 24, 25, 29, 30, 31

10 9, 11, 43, 46, 53, 56 20 22, 23, 24, 25, 26, 27



the use of graphical representations (such as simple 2-D
projections, Schlegel diagrams or 3-D stereo images),
which are accompanied by arbitrary labels. Very helpful
in that respect is availability of the atlas of fullerenes by
Fowler and Manolopoulos.12 Nevertheless, papers deal-
ing with fullerenes typically will display fullerene struc-
tures and often specific results pictorially. See for exam-
ple the work of Laidboeur et al.13 on the determination
of topological equivalent classes of atoms and bonds in
C20�C60, in which all twenty fullerenes have been de-
picted and all atoms labeled, or see the works of Babi}
and Trinajsti} on assembling fullerenes from identical
fragments14 and particularly on symmetric decomposi-
tion of buckminsterfullerene into identical monomeric
units15 where results are displayed on 15 molecular dia-
grams of buckminsterfullerene. The question that we
would like to raise is: Could these authors (and hundred
others that have not been mentioned) present their re-
sults without using graphical display of fullerene dia-
grams? The same question, of course, applies also to the
present authors regarding their report on the complexity
of fullerenes16 and very recent article which displays
158 symmetry non-equivalent Kekulé valence structures
of buckminsterfullerene.17 The answer is: No. All the
mentioned contributions and hundred others not men-
tioned could not be reported in a simple manner without
presenting the results graphically. We have to emphasize
»simple manner« because it is always possible to adopt
an ad hoc numbering of vertices and continue using such
in listing connectivity or bonds of interest. But part of
the problem is how to communicate the particular num-
bering adopted? In some cases one can use spiral string
of numbers, where it applies, and give some other speci-
fications, which for a most general structures are likely
to produce cumbersome and arbitrary nomenclature, that
others may not be willing to adopt. If one accepts canon-
ical labels of atoms that generates the smallest canonical
adjacency matrix, and follows with lexicographic order-
ing of pentagonal and hexagonal rings as proposed in this
work one could »transmit« results of works on fullerenes
without graphical supplementary information at all. Now
this is not to say that graphical displays have no merits,
on the contrary, they are very valuable and should ac-
company such work. However, if we want the same in-

formation to store in computer for future search and
comparison, then clearly our approach shows its merits.

To illustrate our point we reproduce in Figure 7 two
of the 15 symmetric decompositions of buckminsterful-
lerene obtained under action of C3i.14 The following list
of hexagonal rings, pentagonal rings, and CC bonds car-
ries the same information:

H1 + H4; H5 + H10; H6 + H12; H9 + H16; H13 + H15;
H 19+ H20

P1 + P3 + CC7; P2 + P7 + CC31; P4 + P8 + CC34;
P5 + P9 + CC43; P6 + P10 + CC50; P11 + P12 + CC72

The subscripts in CCi, Pj, and Hk indicate the canoni-
cal labels of CC bonds, pentagonal rings, and hexagonal
rings as listed in Tables III–V, respectively, and the sign +
indicates union of sets.

Similarly, we can indicate which eight (disjoint) ben-
zene rings form the five Clar structures of buckminster-
fullerene18,19 without using molecular diagram of Figure 8,
which shows one of the five symmetry related Clar struc-
ture with inscribed p-electron sextets. Here is such list:

Clar structure 1:
H1 + H5 + H7 + H9 + H12 + H15 + H18 + H20

Clar structure 2:
H1 + H6 + H8 + H10 + H11 + H13 + H16 + H20

Clar structure 3:
H2 + H3 + H7 + H8 + H11 + H14 + H17 + H18

Clar structure 4:
H2 + H4 + H9 + H10 + H12 + H13 + H17 + H19

Clar structure 5:
H3 + H4 + H5 + H6 + H14 + H15 + H16 + H19
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Figure 7. Symmetric decompositions of buckminsterfullerene ob-
tained under action of C3i (according to Babi} and Trinajsti}).

Figure 8. One of the five symmetry related Clar structures of buck-
minsterfullerene.



Observe that canonical labels induce ordering, thus
allowing unique labels for the five Clar structures (based
on lexicographical ordering of the constituting sets of
hexagons).

As the final illustration of use of the canonical la-
bels introduced here for C60 we will outline their use for
digital transmission of pictographic information (in the
form of listing relevant components). In Table VI we
have listed CC double bonds for two Kekulé valence
structures shown in Figure 9. The first structure (at left
in Figure 9) is the dominant Kekulé valence structure
with all CC double bonds being exocyclic to the penta-
gonal rings. This structure has twenty (the maximal num-
ber possible) of the smallest and most important conju-
gated circuits R1. This structure is also known as Fries
valence structure,20 being the structure with the maximal
number of benzene rings with three double bonds. Con-
jugated circuits21 are defined as those circuits within in-
dividual Kekulé valence structure that have regular alter-
nation of CC double and CC single bonds. They play the
key role in evaluation of the relative contributions of the
individual Kekulé valence structures to the molecular re-
sonance energy (RE). The second structure is one of the
least important Kekulé valence structure of buckminster-
fullerene, which as one can see from Figure 9, has no
smaller conjugated circuits R1, R2, or R3, which make
positive contribution to molecular RE. Such structures
are also known as anti-Fries valence structures.

Observe the possibility of lexicographical ordering
of Kekulé valence structures, based on the list of canoni-
cal labels for double CC bonds. It has yet to be seen if
such ordering will or will not correspond to the current
sorting of Kekulé valence structures based on their in-
nate degree of freedom.22 However, even if it does not, it
will for needs of chemical documentation supply unique
labels for 158 symmetry non-equivalent Kekulé valence
structures of buckminsterfullerene.
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Figure 9. Two symmetry non-equivalent Kekulé valence structures
of buckminsterfullerene. The labels 1 and 108 correspond to la-
bels of Kekulé valence structures used in Atlas of Kekulé valence
structures of buckminsterfullerene (Ref. 17).
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respond to labels of Kekulé valence structures used in Atlas of Ke-
kulé valence structures of buckminsterfullerene (Ref. 17)
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SA@ETAK

O kanonskom ozna~avanju ugljikovih atoma u fullerenima: C60 buckminsterfulleren

Dejan Plav{i}, Damir Vuki~evi} i Milan Randi}

Ozna~avanje atoma u velikim i slo`enim molekulama vrlo je ~esto proizvoljno ili je zasnovano na ad hoc

shemama. Preporu~a se novo i sustavno ozna~avanje atoma u molekulama koje se temelji na najmanjem mo-
gu}em binarnom molekularnom kodu. ^itanje matrice susjedstva grafa molekule po retcima definira binarni
molekularni kod: najmanji me|u njima se zove kanonski kod. Na primjeru molekule buckminsterfullerena po-
kazano je kako se mo`e odrediti ovaj kod. Istaknute su prednosti novoga na~ina ozna~avanja atoma u velikim
molekulama a posebice za one prikazane regularnim grafovima.
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Appendix

Let vertices of a graph be initially arbitrary labeled by 1,
2,…, v(G), where v(G) is the number of vertices of the
graph. We propose an algorithm which successively
chooses values of P'(1), P'(2), P'(3),�, in the restrictive
way (P'(i) = j means that we label with i the vertex which
was initially labeled with j). Suppose that values of
P'(1), P'(2),�, P'(k), are already chosen. Our aim is to
(restrictively) determine the possible candidates for the
value of P'(k+1) and proceed in the similar manner. The
first permutation produced by this algorithm is stored in
the array P. After that each of the permutations produced
by the algorithm is compared to the one stored in P and
if it is found that the considered new permutation is
»better«, then it is stored in P. At the end P contains the
canonical permutation.

More formally we use the following recursive algo-
rithm (presented in the pseudo-code):

rec(k)

1) If x = n do

1.1) If this is the first produced permutation then
P = P'

1.2) Else if P' produces »better« labeling then put
P = P'

2) Else

2.1) Determine the set Cand of candidates for
P'(k+1)

2.2) For each c � Cand then put P'(k+1) = c

and call rec(k+1)

The most important line of this algorithm is the line
2.1 in which one needs to determine the set Cand. It is
determined in the four steps:

Step 1: To each vertex v � V0, where V0 denotes the
set of vertices that are not already stored in the permuta-
tion, we assign the vector av = (i1,�, ik) such that iq = 1
if v and P(q) are adjacent and 0 otherwise.

Step 2: Vectors av, v � V0, are sorted according to
their lexicographical order and ranked. The vertices cor-
responding to the smallest vectors have rank 1, those im-
mediately after them have rank 2 and so on. The maxi-
mal rank assigned in this way is denoted by mr.

Step 3: To each vertex v � V0 of rank 1 we assign a
vector bv with mr entries in such a way that the i-th com-
ponent of the vector bv is the number of neighbors of v

that have rank i.
Step 4: From the set of vectors with rank 1, those

that are minimal (according to the lexicographical order)
are extracted and the vertices corresponding to them
form the set Cand.

A more complicated and a bit faster algorithm than
our algorithm is proposed in Ref. 23. The algorithm is
based on the successive refinement of the partition of
vertices and in each step it takes into account the refine-
ment obtained by the previous step of the algorithm.
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